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Abstract

Using the technique of Brown and Wu [11], we present a note on the paper [22] by Wu.

Indeed, we extend the multiplicity results for a class of semilinear problems to the quasilinear

elliptic problems with singular weights of the form:{
−div(|x|−ap |∇u|p−2∇u) = λ |x|−(a+1)p+c f(x) |u|q−2u x ∈ Ω,

|∇u|p−2 ∂u
∂n

= |x|−(a+1)p+c g(x) |u|r−2u x ∈ ∂Ω.

Here 0 ≤ a < N−p
p

, c is a positive parameter, 1 < q < p < r < p∗ (p∗ = pN
N−p

if N > p,

p∗ = ∞ if N ≤ p), Ω ⊂ RN is a bounded domain with smooth boundary, ∂
∂n

is the outer

normal derivative, λ ∈ R \ {0}, and f(x), g(x) are continuous functions which change sign

in Ω.
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1 Introduction

The aim of this paper is to prove some existence and multiplicity results of nontrivial

nonnegative solutions to the quasilinear elliptic problems:{
−div(|x|−ap |∇u|p−2∇u) = λ |x|−(a+1)p+c f(x) |u|q−2u x ∈ Ω,

|∇u|p−2 ∂u
∂n

= |x|−(a+1)p+c g(x) |u|r−2u x ∈ ∂Ω.
(1)

where 0 ≤ a < N−p
p

, c is a positive parameter, 1 < q < p < r < p∗ (p∗ = pN
N−p

if N > p,

p∗ = ∞ if N ≤ p), Ω ⊂ RN is a bounded domain with smooth boundary, ∂
∂n

is the outer

normal derivative, λ ∈ R \ {0}, and f(x), g(x) are are satisfying the following assumptions:

(H1) f(x) ∈ C(Ω̄) with ||f ||∞ = 1;

(H2) g(x) ∈ C(∂Ω) with ||g||∞ = 1.

For the regular case, that is, when a = 0 and c = p this problem arise in some physical

models like the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to p ∈ (1, 2)

while dilatant fluids correspond to p > 2. The case p = 2 expresses Newtonian fluids [5]. On

the other hand, quasilinear elliptic problems like (1) appears naturally in several branches of

pure and applied mathematics, such as the study of optimal constants for the Sobolev trace

embedding (see [13, 17, 18, 19]); the theory of quasiregular and quasiconformal mappings in

Riemannian manifolds with boundary (see [16, 20]); non-Newtonian fluids, reaction diffusion

problems, flow through porus media, nonlinear elasticity, glaciology, etc. (see [4, 5, 6, 14]).

The motivation for our investigation is the case a = 0 and c = p = 2( linear operator)

that was studied by Wu [22]. In the recent paper, Brown and Wu [11] studied the multiplicity

results of nontrivial nonnegative solutions for a semilinear elliptic system. Here we focus on

further extending the study in [11] for the quasilinear elliptic problem involving the singular

weights. Due to this singularity in the weights, the extensions are challenging and nontrivial.

Indeed, motivated by [22], and using recent ideas from [11], we shall stablish the existence

and multiplicity results for problem (1). In the case when a = 0 and c = p = 2 similar
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problems (with Dirichlet or Neuman boundary condition ) have been studied by Drabek

et al. [7, 8], Ambrosetti-Brezis-Cerami [2] using variational methods and by Amman and

Lopez-Gomez [3] by using global bifurcation theory.

In recent years, several authors use the Nehari manifold to solve semilinear and quasi-

linear problems ( see [1, 9, 10, 11, 21, 21, 23, 24] ). Brown and Zhang [12] have studied a

subcritical semilinear elliptic equation with a sign-changing weight function and a bifurca-

tion real parameter in the case a = 0 and c = p = 2 and Dirichlet boundary conditions.

Exploiting the relationship between the Nehari manifold and fibering maps (i.e., maps of

the form t 7−→ Jλ(tu) where Jλ is the Euler function associated with the equation), they

gave an interesting explanation of the well-known bifurcation result. In fact, the nature of

the Nehari manifold changes as the parameter λ crosses the bifurcation value. In this work,

we give a variational method which is similar to the fibering method ( see [15] or [9, 12] )

to prove the existence of at least two nontrivial nonnegative solutions of problem (1). In

particular, by using the method of [11], we do this without the extraction of the Plais-Smale

sequences in the Nehari manifold as in [1, 22].

This paper is divided into three sections, organized as follows. In section 2, we give

some notation, preliminaries, properties of the Nehari manifold and set up the variational

framework of the problem. In section 3, we give our main result.

2 Variational setting

Now, we are setting some spaces and their norms. If α ∈ R and l ≥ 1, we define

Ll(Ω, |x|α) as being the subspace of Ll(Ω), of the Lebesgue measurable functions u : Ω → R,
satisfying

∥u∥Ll(Ω,|x|α) =
(∫

Ω

|x|α|u|l
) 1

l
< ∞.

If 1, p < N and −∞ < a < N−p
p

, we define W = W 1,p
0 (Ω, |x|−ap), the completion of C∞

0 (Ω),

with respect to the norm

∥u∥ = (

∫
Ω

|x|−ap|∇u|pdx)
1
p .

Throughout this paper, we set C and C be the best Sobolev and the best Sobolev

trace constants for the embedding of W 1,p
0 (Ω, |x|−ap) in Lq(Ω, |x|−ap) and W 1,p

0 (Ω, |x|−ap)
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in Lr(∂Ω, |x|−ap), respectively. First we give the definition of the weak solution of (1).

Definition 2.1. We say that u ∈ W is a weak solution to (1) if for any v ∈ W with

v ≥ 0 we have∫
Ω

(|∇u|p−2 |x|−ap∇u .∇v )dx = λ

∫
Ω

|x|−(a+1)p+c f(x) |u|q−2u v dx

+

∫
∂Ω

|x|−(a+1)p+c g(x) |u|r−2u v ds.

It is clear that Problem (1) has a variational structure. Let Iλ : W → R be the corresponding

energy functional of problem (1) is defined by

Iλ(u) =
1

p
M(u)− λ

q
A(u)− 1

r
B(u),

where

M(u) =

∫
Ω

(|∇u|p |x|−ap)dx, A(u) =

∫
Ω

|x|−(a+1)p+c f(x) |u|q dx

and

B(u) =

∫
∂Ω

|x|−(a+1)p+c g(x) |u|r ds.

It is well known the weak solutions of equation (1) are the critical points of the energy

functional Iλ. Let J be the energy functional associated with an elliptic problem on a

Banach space X. If J is bounded below and J has a minimizer on X, then this minimizer

is a critical point of J. So, it is a solution of the corresponding elliptic problem. However,

the energy functional Iλ, is not bounded below on the whole space W, but is bounded on an

appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to (1).

Consider the Nehari minimization problem for λ ∈ R \ {0},

αλ = inf {Iλ(u) : u ∈ Nλ},

where Nλ = {u ∈ W\{0} : ⟨I ′λ(u), u⟩ = 0}. It is easy to see that u ∈ Nλ if and only if

M(u)− λA(u) = B(u). (2)
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Note that Nλ contains every nonzero solution of problem (1).

Define

Φλ(u) = ⟨I ′λ(u), u⟩.

Then for u ∈ Nλ,

⟨Φ′
λ(u), u⟩ = pM(u) − λ q A(u)− r B(u) (3)

= λ (p− q)A(u) − (r − p)B(u) (4)

= (p− q)M(u)− (r − q)B(u) (5)

= (p− r)M(u)− λ (q − r)A(u). (6)

Now, we split Nλ into three parts:

N+
λ = {u ∈ Nλ : ⟨Φ′

λ(u), u⟩ > 0},

N 0
λ = {u ∈ Nλ : ⟨Φ′

λ(u), u⟩ = 0},

N−
λ = {u ∈ Nλ : ⟨Φ′

λ(u), u⟩ < 0}.

To state our main result, we now present some important properties of N+
λ , N 0

λ , and N−
λ .

Lemma 2.2. There exists λ0 > 0 such that for 0 < λ < λ0, we have N 0
λ = ∅.

Proof. Suppose otherwise, thus for λ0 =
[

(p−q)

(r−q)(C)r

] p−q
r−p

[
(r−p)
(r−q)

1
Cq

]
, there exists λ ∈ (0, λ0)

such that N 0
λ ̸= ∅. Then for u ∈ N 0

λ we have

0 = ⟨Φ′
λ(u), u⟩ = (p− r)M(u) + λ (r − q)A(u) (7)

= (p− q)M(u) + (q − r)B(u). (8)

By the Sobolev imbedding theorem,

A(u) ≤ ||u||qq ≤ Cq ||u||qW , (9)

and

B(u) ≤ ||u||rr ≤ C
r ||u||rW . (10)

By using (9)− (10) in (7)− (8) we get

||u||W ≤
(λ(r − q)

r − p
Cq

) 1
p−q

,
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and

||u||W ≥
( (p− q)

(r − q)C
r

) 1
r−p

.

This imoplies λ ≥ λ0, which is a contradiction. Thus, we can conclude that there exists λ0 >

0 such that for 0 < λ < λ0, we haveN 0
λ = ∅. �

By (4) and (6), It is easy to see that the following lemma holds. We omit the straight forward

details.

Lemma 2.3. We have

(i) If u ∈ N+
λ , then A(u) > 0;

(ii) If u ∈ N−
λ , then B(u) > 0.

By Lemma 2.2, for 0 < λ < λ0 we write Nλ = N+
λ ∪N−

λ and define

α+
λ = inf

u∈N+
λ

Iλ(u); α−
λ (Ω) = inf

u∈N−
λ

Iλ(u).

Also, as proved in Binding, Drabek and Huang [8] or in Brown and Zhang [12], we have the

following lemma.

Lemma 2.4. Suppose that u0 is a local minimizer for Iλ on Nλ. Then, if u0 ̸∈ N 0
λ , u0

is a critical point of Iλ.

Then we have the following result.

Lemma 2.5. Iλ is coercive and bounded below on Nλ.

Proof. If u ∈ Nλ, it follows from (2) and the Sobolev embedding theorem

Iλ(u) = (
r − p

pr
)M(u)− λ (

r − q

qr
)A(u)

≥ (
r − p

pr
)M(u)− λ (

r − q

qr
) ∥u∥qq
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≥ (
r − p

pr
)M(u)− λ (

r − q

qr
)Cq ∥u∥qW .

= (
r − p

pr
) ∥u∥pW − λ (

r − q

qr
)Cq ∥u∥qW . (11)

Thus Iλ is coercive and bounded below on Nλ. �

Lemma 2.6. Let λ∗ = (r−p)
p q (r−q)Cr

[
p−q

(r−q)C
r ]

p−q
r−p . Then if 0 < λ < λ∗, We have

(i) α+
λ < 0;

(ii) α−
λ ≥ k0, for some k0 = k0(q, r, C, C).

Proof. (i) Let u ∈ N+
λ . By (5)

p− q

r − q
M(u) > B(u),

and so

Iλ(u) = (
1

p
− 1

q
)M(u) + (

1

q
− 1

r
)B(u)

≤ (
q − p

pq
)M(u) + (

r − q

qr
)
[(p− q)

(r − q)
M(u)

]
=

[q − p

pq
+

p− q

qr

]
M(u)

=
(p− q)(p− r)

pqr
M(u) < 0.

Thus α+
λ < 0.

(ii) Let u ∈ N−
λ , by (5) and the Sobolev trace imbedding theorem we have

M(u) <
r − q

p− q
B(u) ≤ r − q

p− q
∥u∥rr

≤ r − q

p− q
C

r ∥u∥rW .

This implies

||u||W > (
p− q

(r − q)C
r )

1
r−p for all u ∈ N−

λ . (12)
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By (3) we have

Iλ(u) ≥ ||u||qW
[r − p

pr
||u||p−q

W − λCq (
r − q

qr
)
]

>
( p− q

(r − q)C
r

) q
r−p

[r − p

pr

( p− q

(r − q)C
r

) p−q
r−p − λCq (

r − q

qr

]
.

Thus, if

0 < λ < λ∗,

then

Iλ > k0, for all u ∈ N−
λ ,

for some k0 = k0(p, q, r, C, C, λ) > 0. This completes the proof. �
For each u ∈ W with B(u) > 0, we write

tmax =
((p− q)M(u)

(r − q)B(u)

)1/(r−p)

> 0.

Then we have the following lemma.

Lemma 2.7 For each u ∈ W with B(u) > 0 and 0 < λ < λ0 =
[

(p−q)

(r−q)(C)r

] p−q
r−p

[
(r−p)
(r−q)

1
Cq

]
, we

have

(i) if A(u) ≤ 0, then there is unique t− > tmax such that t−u ∈ N−
λ and

Iλ(t
−u) = sup

t≥0
Iλ(tu);

(ii) if A(u) > 0, then there are unique 0 < t+ = t+(u) < tmax < t− such that t+u ∈ N+
λ ,

t−u ∈ N−
λ and

Iλ(t
+u) = inf

0≤t≤tmax

Iλ(tu), Iλ(t
−u) = sup

t≥0
Iλ(tu).

Proof. Fix u ∈ W with B(u) > 0. Let

E(t) = tp−q M(u)− tr−qB(u) for t ≥ 0.

Clearly, E(0) = 0, E(t) → −∞ as t → ∞. Since

E ′(t) = (p− q)tp−q−1M(u)− (r − q)tr−q−1B(u),
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we have E ′(t) = 0 at t = tmax, E
′(t) > 0 for t ∈ [0, tmax) and E ′(t) < 0 for t ∈ (tmax,∞).

Then E(t) achieves its maximum at tmax, increasing for t ∈ [0, tmax) and decreasing for

t ∈ (tmax,∞). Moreover,

E(tmax) =
((p− q)M(u)

(r − q)B(u)

) p−q
r−p

M(u)−
((p− q)M(u)

(r − q)B(u)

) r−q
r−p

B(u)

= ∥u∥qW
[
(
p− q

r − q
)
p−q
q−p − (

p− q

r − q
)
r−q
r−p

](∥u∥rW
B(u)

) p−q
r−p

≥ ∥u∥qW
(r − p

r − q

)(p− q

r − q
(C)−r

) p−q
r−p

. (13)

(i) A(u) ≤ 0 : There is a unique t− > tmax such that E(t−) = λA(u) and E ′(t−) < 0. Now,

(p− q)M(t−u)− (r − q)B(t−u)

= (t−)1+q
[
(p− q)(t−)p−1−q M(u)− (r − q)(t−)r−q−1B(u)

]
= (t−)1+q E ′(t−) < 0,

and

⟨I ′λ(t−u), t−u⟩
= (t−)pM(u)− (t−)q λA(u)− (t−)r B(u)

= (t−)q
[
(t−)p−qM(u)− λA(u)− (t−)r−q B(u)

]
= (t−)q

[
E(t−)− λA(u)

]
= 0.

Thus, t−u ∈ N−
λ . Since for t > tmax, we have

(p− q)M(tu)− (r − q)B(tu) < 0,

d2

dt2
Iλ(tu) < 0,

and
d

dt
Iλ(tu) = tp−1M(u)− λ tq−1A(u)− tr−1 B(u) = 0 for t = t−.

Thus, Iλ(t
−u) = supt≥0 Iλ(tu).
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(ii) A(u) > 0. By (13) and

E(0) = 0 < λA(u)

≤ λCq ∥u∥qW

< ∥u∥qW
(r − p

r − q

)(p− q

r − q
(C)−r

) p−q
r−p

≤ E(tmax)

for 0 < λ < λ0(p, q, r, C, C), there are unique t+ and t− such that 0 < t+ < tmax < t−,

E(t+) = λA(u) = E(t−),

E ′(t+) > 0 > E ′(t−).

We have t+u ∈ N+
λ , t−u ∈ N−

λ , and Iλ(t
−u) ≥ Iλ(tu) ≥ Iλ(t

+u) for each t ∈ [t+, t−] and

Iλ(t
+u) ≤ Iλ(tu) for each t ∈ [0, t+]. Thus,

Iλ(t
+u) = inf

0≤t≤tmax

Iλ(tu), Iλ(t
−u) = sup

t≥ 0
Iλ(tu).

This completes the proof. �
For each u ∈ W with λA(u) > 0, we write

tmax =
((r − q)λA(u)

(r − p)M(u)

)1/(p−q)

> 0. (14)

Then we have the following lemma.

Lemma 2.8 For each u ∈ W with λA(u) > 0, we have

(i) if B(u) ≤ 0, then there is unique t+ < tmax such that t+u ∈ N+
λ and

Iλ(t
+u) = inf

t≥0
Iλ(tu);

(ii) if B(u) > 0, then there are unique 0 < t+ = t+(u) < tmax < t− such that t+u ∈ N+
λ ,

t−u ∈ N−
λ and

Iλ(t
+u) = inf

0≤t≤tmax

Iλ(tu), Iλ(t
−u) = sup

t≥0
Iλ(tu).

Proof. Fix u ∈ W with λA(u) > 0. Let

E(t) = tp−r M(u)− λ tq−r A(u) for t > 0. (15)
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Clearly, E(t) → −∞ as t → 0+. Since

E
′
(t) = (p− r)tp−r−1M(u)− λ (q − r)tq−r−1A(u),

we have E
′
(t) = 0 at t = tmax, E

′
(t) > 0 for t ∈ [0, tmax) and E

′
(t) < 0 for t ∈ (tmax,∞).

Then E(t) achieves its maximum at tmax, increasing for t ∈ [0, tmax) and decreasing for

t ∈ (tmax,∞). Similar to argument in Lemma 2.7, we can obtain the result of Lemma 2.8.�

3 Existence result

Now we can state our main result.

Theorem 3.1 If the parameter λ satisfy 0 < λ < λ∗, then problem (1) has at least two

solutions u+
0 and u−

0 such that u±
0 ≥ 0 in Ω and u±

0 ̸= 0.

The proof of this Theorem will be a consequence of the next two propositions.

Proposition 3.2 If 0 < λ < λ∗, then the functional Iλ has a minimizer u+
0 in N+

λ and

it satisfies

(i) Iλ(u
+
0 ) = α+

λ ;

(ii) u+
0 is a nontrivial nonnegative solution of problem (1), such that u+

0 ≥ 0 in Ω and

u+
0 ̸= 0.

Proof. Let {un} be a minimizing sequence for Iλ onN+
λ , i.e., limn→∞ Iλ(un) = infu∈N+

λ
Iλ(u).

Then by Lemma 2.5 and the Rellich-Kondrachov theorem, there exist a subsequence {un}
and u+

0 ∈ W such that u+
0 is a solution of problem (1) and

un ⇀ u+
0 weakly in W,

un → u+
0 strongly in Lr(∂Ω) and in Lq(Ω).

This implies

λA(un) → λA(u+
0 ) as n → ∞

B(un) → B(u+
0 ) as n → ∞.

Since

Iλ(un) = (
r − p

pr
)M(un)− λ (

r − q

qr
)A(un),
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and by Theorem 2.6 (i)

Iλ(un) → α+
λ < 0 as n → ∞.

Letting n → ∞, we see that A(u0) > 0. In particular u+
0 ̸= 0. Now we prove that un → u+

0

strongly in W . Suppose otherwise, then

∥u+
0 ∥W < lim inf

n→∞
∥un∥W . (16)

Fix u ∈ W with A(u) > 0. Let

Ku(t) = E(t)−B(u),

where E(t) is as in (15.) Clearly, Ku(t) → −∞ as t → 0+, and

Ku(t) → −B(u) as t → ∞.

Since K ′
u(t) = E

′
(t), similar argument as in the proof of Lemma 2.8, we have Ku(t) achieves

its maximum at tmax, is increasing for t ∈ (0, tmax) and decreasing for t ∈ (tmax,∞), where

tmax =
((r − q)λA(u)

(r − p)M(u)

)1/(p−q)

> 0,

is as in (14). Since λA(u+
0 ) > 0, by Lemma 2.8, there is unique t+0 < tmax such that t+0 u

+
0 ∈

N+
λ and

Iλ(t
+
0 u

+
0 ) = inf

0≤t≤tmax(u0)
Iλ(tu

+
0 ).

Then

Ku+
0
(t+0 ) = (t+0 )

p−r M(u+
0 )− λ (t+0 )

q−r A(u+
0 )−B(u+

0 )

= (t+0 )
−r
(
M(t+0 u

+
0 )− λA(t+0 u

+
0 )−B(t+0 u

+
0 )
)

= 0. (17)

By (16) and (17) we obtain

Kun(t
+
0 ) > 0 for n sufficiently large.

Since un ∈ N+
λ , we have tmax(un) > 1. Moreover,

Kun(1) = M(un)− λA(un)−B(un) = 0,
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and Kun(t) is increasing for t ∈ (0, tmax(un)). This implies Kun(t) < 0 for all t ∈ (0, 1] and n

sufficiently large. We obtain 1 < t+0 ≤ tmax(u0). But t
+
0 u

+
0 ∈ N+

λ and

Iλ(t
+
0 u

+
0 ) = inf

0≤t≤tmax(u0)
Iλ(tu

+
0 ).

This implies

Iλ(t
+
0 u

+
0 ) < Iλ(u

+
0 ) < lim

n→∞
Iλ(un) = α+

λ ,

which is a contradiction. Hence

un → u+
0 strongly in W.

This implies

Iλ(un) → Iλ(u
+
0 ) = α+

λ as n → ∞.

Thus u+
0 is a minimizer for Iλ on N+

λ . Since Iλ(u
+
0 ) = Iλ(|u+

0 |) and |u+
0 | ∈ N+

λ , by Lemma 2.4

we may assume that u+
0 is a nontrivial nonnegative solution of equation (1). �

Next, we establish the existence of a local minimum for Iλ on N−
λ .

Proposition 3.3 If 0 < λ < λ∗, then the functional Iλ has a minimizer u−
0 in N−

λ and

it satisfies

(i) Iλ(u
−
0 ) = α−

λ ;

(ii) u−
0 is a nontrivial nonnegative solution of problem (1), such that u−

0 ≥ 0 in Ω and

u−
0 ̸= 0.

Proof. Let {un} be a minimizing sequence for Iλ onN−
λ , i.e., limn→∞ Iλ(un) = infu∈N−

λ
Iλ(u).

Then by Lemma 2.25 and the Rellich-Kondrachov theorem, there exist a subsequence {un}
and u−

0 ∈ W such that u−
0 is a solution of problem (1) and

un ⇀ u−
0 weakly in W,

un → u−
0 strongly in Lr(∂Ω) and in Lq(Ω).

This implies

A(un) → A(u−
0 ) as n → ∞

B(un) → B(u−
0 ) as n → ∞.

Moreover, by (5) we obtain

B(un) >
p− q

r − q
M(un); (18)
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By (12) and (18) there exists a positive number η0 such that

B(un) > η0.

This implies

B(u−
0 ) ≥ η0. (19)

Now we prove that un → u−
0 strongly in W . Suppose otherwise, then

∥u−
0 ∥W < lim inf

n→∞
∥un∥W .

By Lemma 2.7, there is unique t−0 such that t−0 u
−
0 ∈ N−

λ . Since {un} ∈ N−
λ , Iλ(un) ≥ Iλ(tun)

for all t ≥ 0, we have

Iλ(t
−
0 u

−
0 ) < lim

n→∞
Iλ(t

−
0 un) ≤ lim

n→∞
Iλ(un) = α−

λ ,

and this is a contradiction. Hence

un → u−
0 strongly in W.

This implies

Iλ(un) → Iλ(u
−
0 ) = α−

λ as n → ∞.

Since Iλ(u
−
0 ) = Iλ(|u−

0 |) and |u−
0 | ∈ N−

λ , by Lemma 2.34 and (19) we may assume that u−
0 is a

nontrivial nonnegative solution of equation (1). �

Proof of Theorem 3.1. By Propositions 3.2, 3.3, we obtain equation (1) has two nontrivial

nonnegative solutions u+
0 and u−

0 such that u+
0 ∈ N+

λ and u−
0 ∈ N−

λ . It remain to show that

the solutions found in Propositions 3.2 and 3.3 are distinct. Since N+
λ ∩N−

λ = ∅, this implies

that u+
0 and u−

0 are distinct. This concludes the proof.
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