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Abstract 
Herein, Reconstruction of Variational Iteration Method (RVIM) is used for computing solutions of the 

seventh-order Sawada-Kotera equation (sSK) and a Lax’s seventh order KdV equations (LsKdV). The 
results are compared with the Adomian decomposition method (ADM) and the known analytical 
solutions. Results obtained expose effectiveness and capability of this method to solve the seven-order 
Sawada-Kotera (sSK) and a Lax's seven-order KdV (LsKdV) equations.  
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1. Introduction 

Establishing a new reliable algorithm of variational iteration method, Reconstruction of variational 
iteration method is the purpose of this paper.  In various areas of science, especially in physics and 
engineering, variational methods were considered [1, 2]. The variational iteration method was 
proposed by He [3–5] and was successfully applied to autonomous ordinary differential equation [6], 
to Burger’s and coupled Burger’s equations [7], to Bratu’s equation [8], to non-linear partial 
differential equations with variable coefficients [9], to linear Helmholtz partial differential equation 
[10], and to Klein–Gordon equations [11]. It was shown that this method is more powerful than 
existing techniques such as the Adomian method [12, 13], homotopy perturbation method [14] 
Energy Balance method [15], Homotopy Analysis Method [16], etc. The perturbation method suffers 
from the computational workload, especially when the degree of nonlinearity increases. Moreover, 
the Adomian method suffers from the complicated algorithms used to calculate the Adomian 
polynomials that are necessary for nonlinear problems.  
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In 2009 Hesameddini and Latifizadeh proposed a new method based on Laplace transform -
Reconstruction of variational iteration method (RVIM) [17, 18, 24-26] in which the correctional 
function of the variational iteration method is obtained without using the Variational Theory [3-5].  
Therefore in this method the complexity in calculating the Lagrange multiplier has been removed. 
The RVIM technique has no specific requirements, such as linearization, small parameters, etc. 

In this paper, RVIM is used for studying the following seventh order Sawada-Kotera equation and 
Lax’s seventh-order KdV equation. 

,0))432(7)(7035( 2224 =+++++++ xxxxxxxxxxxxxxxxxxxxt uuuuuuuuuuuu                        (1) 

.0))(21)2(6363( 2224 =+++++++ xxxxxxxxxxxxxxxxxxxxt uuuuuuuuuuuu                          (2) 

Eq. (1) is known as the seventh order Sawada -Kotera equation [19, 20] and Eq. (2) is known as the 
Lax’s seventh-order KdV equation [19, 21] respectively. Further we compare the result with given 
solutions using ADM [19, 22]. 

2. Basic Idea of RVIM 

To clarify the basic ideas of our proposed method in [17], we consider the following differential 
equation same as VIM based on Lagrange multiplier [23]: 

),,(),,(),,( 111 kkk xxfxxNuxxLu  =+                                                         (3) 
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Where L is a linear operator, N a nonlinear operator and  ),,( 1 kxxf   an inhomogeneous term.  

We can rewrite equation (3) down a correction functional as follows: 
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therefore 

)),,(),,,(()( 11 kkjxj xxuxxhxuL =                        (6) 

With artificial initial conditions being zero regarding the independent variable jx . 

By taking Laplace transform of both sides of the equation (6) in the usual way and using the artificial 
initial conditions, we obtain the result as follows 

)),,,,,,((),,,,,().( 111111 uxxsxxHxxsxxUsP kiikii +−+− =               (7) 

Where P(s) is a polynomial with the degree of the highest derivative in equation (7), (the same as the 
highest order of the linear operator 

jxL ). The following relations are possible;  

H[h] =                       (8-a) 
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P(s)
1B(s) =                                                      (8-b) 

B(s))][b(xi =                        (8-c) 

Which that in equation (8-a) the function )),,,,,,(( 111 uxxsxxH kii +−  an )),,,,,,(( 111 uxxxxxh kiii +−
have been abbreviated as H, h respectively. 

 Hence, rewrite the equation (7) as; 

)().),,,,,,((),,,,,( 111111 sBuxxsxxHxxsxxU kiikii +−+− =                          (9)   

Now, by applying the inverse Laplace Transform on both sides of equation (9) and by using the (8-a) - (8-
c), we have; 

τττ dxbuxxxx ikii )().),,,,,,((h),xx,x,x,,u(x 111
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Now, we must impose the actual initial conditions to obtain the solution of the equation (3). Thus, we 
have the following iteration formulation: 
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where u0 is initial solution with or without unknown parameters. Assuming  u0 is the solution of ¸ Lu, 
with initial/boundary conditions of the main problem, In case of no unknown parameters, u0 should 
satisfy initial/boundary conditions. When some unknown parameters are involved in  u0, the unknown 
parameters can be identified by initial/boundary conditions after few iterations, this technology is very 
effective in dealing with boundary problems. It is worth mentioning that, in fact, the Lagrange multiplier 
in the He's variational iteration method is )()( ττλ −= ixb as shown in [17]. 

The initial values are usually used for selecting the zeroth approximation  u0 . With u0 determined, then 
several approximations 0u n  >n , follow immediately. Consequently, the exact solution may be 
obtained by using 

).,xx,x,x,,(xulim),xx,x,x,,u(x k1ii1-i1nnk1ii1-i1 +∞→+ =                                   (12) 

3. Applying RVIM for sSK and LsKdV 

To demonstrate the effectiveness of the method we consider here Eqs.(1) and (2) with given initial 
condition. 

3.1. Example 1: 

Consider the sSK equation (1) with the initial condition [19]: 

)),(tanh32(
3
4),( 22

0 kxktxu −=                                                   (13) 

At first rewrite eq. (1) based on selective linear operator as    
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{ }
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Now Laplace transform is implemented with respect to independent variable x on both sides of eq. 
(14) and by using the new artificial initial condition (which all of them are zero) we have  
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And whereas Laplace inverse transform of 1/s is as follows  

                                                                                        1]1[1 =−

s
                                                                     

(17)                                                                                    

 

Therefore by using the Laplace inverse transform and convolution theorem it is concluded that 

                                                           ∫=
t

duxhtxu
0

),,(),( εε                                                      (18)                                                                                        

Hence, we arrive the following iterative formula for the approximate solution of subject to the initial 
condition (13). 

 

So, in exchange with applying recursive algorithm, following relations are achieved 
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Now we start with an arbitrary initial approximation )),(tanh32(
3
4),( 22

0 kxktxu −=  that satisfies 

the initial condition and by using the RVIM iteration formula (19), we have the following successive 
approximation 
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Figure.1. The surfaces on both columns respectively show the solutions, u(x,t), for RVIM on the right and 
ADM on the left when k=0.1. 

3.2. Example 2: 

Consider the LsKdV equation with given initial condition [19]:  

),(sec2),( 22
0 kxhktxu =                                                              (20) 

At first rewrite eq. (2) based on selective linear operator as    
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RVIM's iteration formulae in t-direction can be readily obtained. 
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Now we start with an arbitrary initial approximation ),(sec2),( 22
0 kxhktxu =  that satisfies the 

initial condition and by using the RVIM iteration formula (26), we have the following successive 
approximation 
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and so on. Using the above terms, in Fig.2, ),(2 txu and exact solution )(sec2),( 22 kxhktxu =  [21] 
is drawn. 

 

  

Figure.2. The surfaces on both columns respectively show the solutions, u(x,t), for RVIM on the right 
and ADM on the left when k=0.1. 

4. Conclusion 

In this paper, we successfully apply Reconstruction of Variational Iteration Method (RVIM) to 
approximate the solution of sSK and LsKdV equations. Also, comparisons were made between 
Reconstruction of Variational Iteration Method (RVIM) and Adomian decomposition method (ADM) 
for sSK and LsKdV equations. Moreover, the RVIM reduces the size of calculations by not requiring 
the tedious Adomian polynomials, and hence the iteration is direct and straightforward. The results 
reported here provide further evidence of the usefulness of RVIM for finding the analytic and 
numeric solutions for the linear and nonlinear diffusion equations and, it is also a promising method 
to solve different types of nonlinear equations in mathematical physics. 
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