

Available online at
http:// www.T]MCS.com
The Journal of Mathematics and Computer Science Vol. 4 No. 3 (2012) 295-300

On Lorentzian α-Sasakian manifolds

A. Taleshian ${ }^{*}, 1$ and N. Asghari ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Mazandaran, P.O.Box 47416-1467, Mazandaran, Iran taleshian@umz.ac.ir
2 Department of Mathematics, University of Mazandaran, P.O.Box 47416-1467, Mazandaran, Iran. nasgharigm2009@yahoo.com

Received: February 2012, Revised: May 2012
Online Publication: July 2012

Abstract

We study Ricci-semi symmetric, ϕ-Ricci semisymmetric and ϕ-symmetric Lorentzian α -Sasakian manifolds. Also, we study a Lorentzia α-Sasakian manifold satisfies $S(X, \xi) \cdot R=0$. keywords: Ricci semisymmetric Lorentzia α-Sasakian manifold, ϕ-Ricci symmetric Lorentzian α-Sasakian manifold, ϕ-symmetric Lorentzian α-Sasakian manifold.

1 Introduction

The notion of local symmetry of Rimannian manifolds have been weakened by many authors in several ways to the different extent. As a weaker version of local symmetry, Takahashi [6], introduced the notion of locally ϕ-symmetry on sasakian manifolds. In respect of contact Geometry, the notion of ϕ-symmetry was introduced and studied by Boeckx, Buecken and Vanhecke [2], with several examples. In [3], De studied the notion of ϕ-symmetry with several examples for Kenmotsu manifolds. In 1977, Adati and Matsumoto defined Para-sasakian manifold and special Para-Sasakian manifolds [4], which are special classes of an almost para contact manifold introduced by sato [5].

[^0]
A. Taleshian and N. Asghari/ TJMcsVol. 4 No. 3 (2012) 295-300

2 Preliminaries

A differentiable manifold M of dimension n is called a Lorentzian α-Sasakian manifold if it admits a $(1,1)$ tensor filed ϕ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy [4, 7]

$$
\begin{align*}
& \phi^{2}=I+\eta \otimes \xi, \tag{2.1}\\
& \eta(\xi)=-1, \tag{2.2}\\
& g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{2.3}\\
& \phi \xi=0, \eta(\phi X)=0, \tag{2.4}\\
& g(X, \xi)=\eta(X), \tag{2.5}
\end{align*}
$$

for all $X, Y \in T M$. From the above relations it follows that a Lorentzian α-Sasakian manifold satisfies

$$
\begin{align*}
& \nabla_{X} \xi=-\alpha \phi X \tag{2.6}\\
& \left(\nabla_{X} \eta\right) Y=-\alpha g(X, Y), \tag{2.7}\\
& \left(\nabla_{X} \phi\right) Y=\alpha g(X, Y) \xi-\alpha \eta(Y) X, \tag{2.8}
\end{align*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Also, a Lorentzian α-Sasakian manifold M is said to be η-Einstein if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.9}
\end{equation*}
$$

for any vector fields X, Y where a, b are functions on M.
Further, on such an From the above relations it follows that a Lorentzian α-Sasakian manifold satisfiesthe following relations hold[7]

$$
\begin{align*}
& R(X, Y) \xi=\alpha^{2}(\eta(Y) X+\eta(X) Y), \tag{2.10}\\
& R(\xi, X) Y=\alpha^{2}(g(X, Y) \xi+\eta(Y) X), \tag{2.11}\\
& R(\xi, X) \xi=\alpha^{2}(X+\eta(X) \xi), \tag{2.12}\\
& S(X, \xi)=(n-1) \alpha^{2} \eta(X), \tag{2.13}\\
& Q \xi=(n-1) \alpha^{2} \xi, \tag{2.14}\\
& S(\xi, \xi)=-(n-1) \alpha^{2}, \tag{2.15}\\
& S(\phi X, \phi Y)=S(X, Y)+(n-1) \alpha^{2} \eta(X) \eta(Y), \tag{2.16}
\end{align*}
$$

for any vector fields X, Y, Z, where $R(X, Y) Z$ is the curvature tensor, and S is the Ricci tensor.
Definition 2.1 An n-dimensional Lorentzian α-Sasakian manifold is said to be an Einstein manifold if its Ricci tensor satisfies the condition

$$
\begin{equation*}
S(X, Y)=\lambda g(X, Y), \tag{2.17}
\end{equation*}
$$

where λ is a constant.
Definition 2.2 A Lorentzian α-Sasakian manifold is said to be Ricci-semi symmetric if its Ricci tensor satisfies the condition

A. Taleshian and N. Asghari/ TJMcsVol. 4 No. 3 (2012) 295-300

$$
\begin{equation*}
R(X, Y) \cdot S=0 \tag{2.18}
\end{equation*}
$$

for any vector fields X, Y.

3 Main Results

In this section, we prove the following theorems:
Theorem 3.1 Let M be an n-dimensional Lorentzian α-Sasakian manifold. If M is Ricci semisymmetric then it is an η-Einstein manifold.

Proof. Suppose that M is Ricci semisymmetric then in view of (2.18) we have

$$
R(X, Y) \cdot S=0,
$$

this implies that

$$
\begin{equation*}
S(R(X, Y) U, V)+S(U, R(X, Y) V)=0 . \tag{3.1}
\end{equation*}
$$

Putting $X=\xi$ in (3.1) we get

$$
\begin{equation*}
S(R(\xi, Y) U, V)+S(U, R(\xi, Y) V)=0 . \tag{3.2}
\end{equation*}
$$

Using (2.11) in (3.2) we get

$$
S\left(\alpha^{2}(g(Y, U) \xi+\eta(U) Y), V\right)+S\left(U, \alpha^{2}(g(Y, V) \xi+\eta(V) Y)\right)=0
$$

which implies

$$
\begin{align*}
& 0=\alpha^{2} g(Y, U) S(\xi, V)+\alpha^{2} \eta(U) S(Y, V) \tag{3.3}\\
&+\alpha^{2} g(Y, V) S(U, \xi)+\alpha^{2} \eta(V) S(U, Y),
\end{align*}
$$

Putting $U=\xi$ in (3.3) and using (2.2), (2.5) and (2.13) we obtain

$$
S(Y, V)=-(n-1) \alpha^{2} g(Y, V)+2(n-1) \alpha^{2} \eta(Y) \eta(V) .
$$

Therefore, in view of (2.9), M is an η-Einstein manifold. This completes the proof of the theorem.

Definition 3.2 A Lorentzian α-Sasakian manifold M is said to be ϕ-Ricci symmetric if the Ricci operator satisfies

$$
\phi^{2}\left(\left(\nabla_{X} Q\right)(Y)\right)=0,
$$

for all vector fields X and Y on M and $S(X, Y)=g(Q X, Y)$ [4].
If X and Y are orthogonal to ξ, then manifold is said to be locally ϕ-Ricci symmetric.
Theorem 3.3 An n-dimensional Lorentzian α-Sasakian manifold is ϕ-Ricci symmetric if and only if manifold is an Einstein manifold.

Proof. Suppose that the manifold is ϕ-Ricci symmetric then in view of Definition 3.2 we have

$$
\phi^{2}\left(\left(\nabla_{X} Q\right)(Y)\right)=0 .
$$

Using (2.1) in above equation we obtain

$$
\begin{equation*}
\left(\nabla_{X} Q\right)(Y)+\eta\left(\left(\nabla_{X} Q\right)(Y)\right) \xi=0 . \tag{3.4}
\end{equation*}
$$

Taking inner product of (3.4) with Z we get

$$
g\left(\left(\nabla_{x} Q\right)(Y), Z\right)+\eta\left(\left(\nabla_{x} Q\right)(Y)\right) \eta(Z)=0
$$

which implies

A. Taleshian and N. Asghari/ TJMcsvol. 4 No. 3 (2012) 295-300

$$
g\left(\nabla_{X} Q(Y)-Q\left(\nabla_{X} Y\right), Z\right)+\eta\left(\left(\nabla_{x} Q\right)(Y)\right) \eta(Z)=0,
$$

which on simplifying gives

$$
\begin{equation*}
g\left(\nabla_{X} Q(Y), Z\right)-S\left(\nabla_{X} Y, Z\right)+\eta\left(\left(\nabla_{X} Q\right)(Y)\right) \eta(Z)=0 . \tag{3.5}
\end{equation*}
$$

Replacing Y by ξ in (3.5) we get

$$
\begin{equation*}
g\left(\nabla_{X} Q(\xi), Z\right)-S\left(\nabla_{x} \xi, Z\right)+\eta\left(\left(\nabla_{x} Q\right)(\xi)\right) \eta(Z)=0 \tag{3.6}
\end{equation*}
$$

Using (2.4), (2.13) and (2.14) in (3.6) we obtain

$$
\begin{equation*}
-(n-1) \alpha^{3} g(\phi X, Z)+\alpha S(\phi X, Z)+\eta\left(\left(\nabla_{X} Q\right)(\xi)\right) \eta(Z)=0 \tag{3.7}
\end{equation*}
$$

Replacing Z by ϕZ in (3.7) we get

$$
\begin{equation*}
S(\phi X, \phi Z)=(n-1) \alpha^{2} g(\phi X, \phi Z) . \tag{3.8}
\end{equation*}
$$

Using (2.3) and (2.16) in (3.8) we obtain

$$
S(X, Z)=(n-1) \alpha^{2} g(X, Z) .
$$

Therefore, the manifold is an Einstein manifold.
Next, suppose that the manifold is an Einstein manifold. Then in view of (2.17) we have $S(X, Y)=\lambda g(X, Y)$, wher $S(X, Y)=g(Q X, Y)$ and λ is constant. Hence $Q X=\lambda X$. Therefore, we obtain $\phi^{2}\left(\left(\nabla_{X} Q\right)(Y)\right)=0$. This completes the proof.

Theorem 3.4 An n-dimensional ($n>3$), Lorentzian α-Sasakian manifold satisfying the condition $S(X, \xi) \cdot R=0$ is an η-Einstein manifold.

Proof. Since $S(X, \xi) \cdot R=0$ we have

$$
(S(X, \xi) \cdot R)(U, V) Z=0,
$$

which implies

$$
\begin{align*}
& 0=\left(\left(X \wedge_{s} \xi\right) \cdot R\right)(U, V) Z \\
& =\left(X \wedge_{s} \xi\right) R(U, V) Z+R\left(\left(X \wedge_{s} \xi\right) U, V\right) Z \\
& +R\left(U,\left(X \wedge_{S} \xi\right) V\right) Z+R(U, V)\left(X \wedge_{s} \xi\right) Z, \tag{3.9}
\end{align*}
$$

where endomorphism $X \wedge_{S} Y$ is defined by

$$
\begin{equation*}
\left(X \wedge_{S} Y\right) Z=S(Y, Z) X-S(X, Z) Y \tag{3.10}
\end{equation*}
$$

Using (3.10) in (3.9) we get by virtue of (2.13)

$$
\begin{aligned}
0=(& n-1) \alpha^{2}[\eta(R(U, V) Z) X+\eta(U) R(X, V) Z \\
& +\eta(V) R(U, X) Z+\eta(Z) R(U, V) X] \\
& -S(X, R(U, V) Z) \xi-S(X, U) R(\xi, V) Z \\
& -S(X, V) R(U, \xi) Z-S(X, Z) R(U, V) \xi,
\end{aligned}
$$

taking the inner product with ξ we obtain

$$
\begin{aligned}
0=(n & -1) \alpha^{2}[\eta(R(U, V) Z) \eta(X)+\eta(U) \eta(R(X, V) Z) \\
& +\eta(V) \eta(R(U, X) Z)+\eta(Z) \eta(R(U, V) X)] \\
& +S(X, R(U, V) Z)-S(X, U) \eta(R(\xi, V) Z) \\
& -S(X, V) \eta(R(U, \xi) Z)-S(X, Z) \eta(R(U, V) \xi) .
\end{aligned}
$$

Putting $U=Z=\xi$ in the above equation an using (2.10)-(2.13) we get

$$
0=(n-1) \alpha^{2}\left[-2 \alpha^{2} \eta(V) \eta(X)+\alpha^{2} g(V, X)-\alpha^{2} \eta(V) \eta(X)\right]
$$

$$
+(n-1) \alpha^{4} \eta(V) \eta(X)+\alpha^{2} S(X, V),
$$

with simplify of the last equation we have

$$
S(X, V)=-(n-1) \alpha^{2} g(X, V)+2(n-1) \alpha^{2} \eta(X) \eta(V)
$$

Therefore, in view of (2.9) manifold is an η-Einstein manifold. The proof is complete.
Definition 3.5 A Lorentzian α-Sasakian manifold M is said to be ϕ-symmetric if

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0,
$$

for all vector fields X, Y, Z, W on M [6].
Theorem 3.6 A ϕ-symmetric Lorentzian α-Sasakian manifold is an η-Einstein manifold.
Proof. If manifold is ϕ-symmetric then in view of Definition 3.5 we have

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0
$$

by virtue of (2.1) we get

$$
\left(\nabla_{W} R\right)(X, Y) Z+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi=0,
$$

taking inner product with U, we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) g(\xi, U)=0 \tag{3.11}
\end{equation*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, n$, be an orthonormal basis of tangent space at any point of the manifold. Then by putting $X=U=e_{i}$ in (3.11) and taking summation over $i, 1 \leq i \leq n$, we have

$$
\left(\nabla_{W} S\right)(Y, Z)+\sum_{i=1}^{n} \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) g\left(\xi, e_{i}\right)=0
$$

Replacing $Z=\xi$ in the above equation, we obtain

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)+\sum_{i=1}^{n} \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right) g\left(\xi, e_{i}\right)=0 \tag{3.12}
\end{equation*}
$$

The second term of (3.12), takes the form

$$
\begin{aligned}
& \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right),
\end{aligned}
$$

with simplify of the above equation we have

$$
\begin{equation*}
\eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right)=0 \tag{3.13}
\end{equation*}
$$

The equations (3.12) and (3.13) imply that

$$
\left(\nabla_{W} S\right)(Y, \xi)=0,
$$

which gives

$$
\nabla_{W}(S(Y, \xi))-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right)=0,
$$

in view of (2.6) and (2.6) we obtain

$$
\begin{equation*}
(n-1) \alpha^{2} \nabla_{W} \eta(Y)-(n-1) \alpha^{2} \eta\left(\nabla_{W} Y\right)+\alpha S(Y, \phi W)=0 . \tag{3.14}
\end{equation*}
$$

Replacing Y by ϕY in (3.14) we get

$$
\begin{equation*}
S(\phi Y, \phi W)=(n-1) \alpha g\left(\left(\nabla_{W} \phi\right) Y, \xi\right) . \tag{3.15}
\end{equation*}
$$

Using (2.2), (2.8) and (2.16) in the above equation we have

A. Taleshian and N. Asghari/ TJMcsVol. 4 No. 3 (2012) 295-300

$$
S(Y, W)=-(n-1) \alpha^{2} g(W, Y)-2(n-1) \alpha^{2} \eta(Y) \eta(W) .
$$

This implies that manifold is an η-Einstein.

Reference

[1] Adati, T. and Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13 (1977), 25-32.
[2] Boeckx, E., Buecken, P. and vanhecke, L., ϕ-symmetric contact metric spaces, glasgow Math. J., 41 (1999), 409-416.
[3] De, U.C., On ϕ-symmetric Kenmotsu manifolds, International Electronic J. Math., Vol. 1, No. 1, (2009), 33-38.
[4] De, U. C. and Sarkar, A., On ϕ-Ricci symmetric Sasakian manifolds, Proceedings of the Janieon Math. Soc., 11 (1) (2008), 47-52.
[5] Sato, I., On a structure similar to the almost contact structure, Tensor, (N.S.), 30 (1976), 219-224.
[6] Takahashi T., Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29(1977), 91-113.
[7] Yildiz, A. and Turan, M., A class of Lorenzian α-Sasakian manifolds, Kyungpook Math.J. 49 (2009), 789-799.

[^0]: * Corresponding author

