The Journal of
Mathematics and Computer Science

Available online at
http://www.TIMCS.com
The Journal of Mathematics and Computer Science Vol 3 No. 2 (2011) 165-175

Quasi-Permutation Representations for the Borel and Maximal Parabolic Subgroups of $\operatorname{SP}\left(4,2^{n}\right)$

M. Ghorbany
Department of Mathematics, Iran University
of Science and Technology, Emam , Behshahr, Mazandaran , Iran.
m-ghorbani@iust.ac.ir

Received: May 2011, Revised: June 2011
Online Publication: July 2011

Abstract

A square matrix over the complex field with non-negative integral trace is called a quasi-permutation matrix.Thus every permutation matrix over C is a quasi-permutation matrix. The minimal degree of a faithful representation of G by quasi-permutation matrices over the complex numbers is denoted by $c(G)$, and $r(G)$ denotes the minimal degree of a faithful rational valued complex character of G. In this paper $c(G)$ and $r(G)$ are calculated for the Borel or maximal parabolic subgroups of $S P\left(4,2^{f}\right)$.

Keywords: General linear group, Quasi-permutation.

1- Introduction

In 1963 Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology drives from the fact that if
G is a finite group of permutations of a set Ω of size n, and we think of G as acting on the complex vector space with basis Ω, then the trace of an element $g \in G$ is equal to the number of points of Ω fixed by g.

Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Then in 1994 Hartley with his colleague investigate further the analogy between permutation groups and quasi-permutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational field and found some interesting results.(See [2],[8]).

If F is a subfield of the complex numbers C, then a square matrix over F with non-negative integral trace is called a quasi-permutation matrix over F.Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let $c(G)$ be the minimal degree of a faithful representation of G by complex quasi-permutation matrices.

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in Q$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to $G L(n, Q)$ a rational representation of G and its corresponding character will be called a rational character of G. Let $r(G)$ denote the minimal degree of a faithful rational valued character of G.

If $\varepsilon \in C$ is an algebraic number over Q, then the Galois group of $Q(\varepsilon)$ over Q is denoted by Γ.

Finding the above quantities have been carried out in some papers, for example in [3],[4] , [5] and [7] we found these for the groups $\operatorname{GL}(2, q), S U\left(3, q^{2}\right), P S U\left(3, q^{2}\right)$, $\operatorname{SL}(3, q), P S L(3, q)$ and $G_{2}\left(2^{n}\right)$ respectively.

In this paper we will calculate $c(G)$ and $r(G)$ for Borel or maximal parabolic subgroups of $S P\left(4,2^{f}\right)$.

2-Notation and preliminary results

Assume that E is a splitting field for G and that F is a subfield of E. If $\chi, \psi \in \operatorname{Irr}_{E}(G)$ we say that χ and ψ are Galois conjugate over F if $F(\chi)=F(\psi)$ and there exists $\sigma \in \operatorname{Gal}(F(\chi) / F)$ such that $\chi^{\sigma}=\psi$, where $F(\chi)$ denotes the field obtained by adding the values $\chi(g)$, for all $g \in G$, to F. It is clear that this defines an equivalence relation on $\operatorname{Irr}_{E}(G)$.

Let η_{i} for $0 \leq i \leq r$ be Galois conjugacy classes of irreducible complex characters of G. For $0 \leq i \leq r$ let φ_{i} be a representative of the class η_{i}, with $\varphi_{o}=1_{G}$. Write
$\Psi_{i}=\sum_{\chi_{i} \in n_{i}} \chi_{i}$ and $K_{i}=\operatorname{ker}_{i}$. We know that $K_{i}=\operatorname{ker} \Psi_{i}$. For $I \subseteq\{0,1,2, \cdots, r\}$, put $K_{I}=\bigcap_{i \in I} K_{i}$. By definition of $r(G), c(G)$ and using above notations we have:
$r(G)=\min \left\{\xi(1): \xi=\sum_{i=1}^{r} n_{i} \Psi_{i}, n_{i} \geq 0, K_{I}=1\right.$ for $\left.I=\left\{i, i \neq 0, n_{i}>0\right\}\right\}$
$c(G)=\min \left\{\xi(1): \xi=\sum_{i=0}^{r} n_{i} \Psi_{i}, n_{i} \geq 0, K_{I}=1\right.$ for $\left.I=\left\{i, i \neq 0, n_{i}>0\right\}\right\}$
where $n_{0}=-\min \{\xi(g) \mid g \in G\}$.
In [1] we defined $d(\chi), m(\chi)$ and $c(\chi)$ [See Definition 3.4]. Here we can redefine it as follows:

Definition 2.1.

Let χ be a complex charater of G, such that $\operatorname{ker} \chi=1$ and $\chi=\chi_{1}+\cdots+\chi_{n}$ for some $\quad \chi_{i} \in \operatorname{Irr}(G)$. Then define
(1) $d(\chi)=\sum_{i=1}^{n}\left|\Gamma_{i}\left(\chi_{i}\right)\right| \chi_{i}(1)$,
(2) $m(\chi)= \begin{cases}0 & \text { if } \chi=1_{G}, \\ \left|\min \left\{\sum_{i=1}^{n} \sum_{\alpha \in \Gamma_{i}\left(\chi_{i}\right)} \chi_{i}^{\alpha}(g): g \in G\right\}\right| & \text { otherwise, }\end{cases}$
(3) $c(\chi)=\sum_{i=1}^{n} \sum_{\alpha \in \Gamma_{i}\left(\chi_{i}\right)} \chi_{i}^{\alpha}+m(\chi) 1_{G}$.

So

$$
r(G)=\min \{d(\chi): \operatorname{ker} \chi=1\}
$$

and

$$
c(G)=\min \{c(\chi)(1): \operatorname{ker} \chi=1\}
$$

We can see all the following statements in [1].

Corollary 2.2.

Let $\chi \in \operatorname{Irr}(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)=d(\chi)+m(\chi)$.

Lemma 2.3.

Let $\chi \in \operatorname{Irr}(G), \chi \neq 1_{G}$. Then $c(\chi)(1) \geq d(\chi)+1 \geq \chi(1)+1$.

Lemma 2.4.

Let $\quad \chi \in \operatorname{Irr}(G)$. Then
(1) $c(\chi)(1) \geq d(\chi) \geq \chi(1)$;
(2) $c(\chi)(1) \leq 2 d(\chi)$. Equality occurs if and only if $Z(\chi) /$ ker χ is of even order.

3. Quasi-permutation representations

We begin with a brief summary of facts relevant to our treatment of the group .

Let K be the finite field with q elements, where $q=p^{f}$ and p is a prime number. Let \bar{K} be the algebraic closure of K, and put

$$
K_{i}=\left\{x \in \bar{K} \mid x^{q^{i}}=x\right\} .
$$

Then K_{i} is the subfield of \bar{K} with q^{i} elements, and $K_{1}=K$. Let κ be a fixed generator of the multiplicative group K_{4}^{*} and put $\tau=\kappa^{q^{2}-1}, \theta=\kappa^{q^{2}+1}, \eta=\theta^{q-1}$ and $\gamma=\theta^{q+1}$. Then we have $\langle\theta\rangle=K_{2}^{*}$ and $\langle\gamma\rangle=K^{*}$. Choose a fixed isomorphism from the multiplicative group K_{4}^{*} into the multiplicative group of complex numbers, and let τ, θ, η and γ be the images of τ, θ, η and γ respectively under this isomorphism. Let G be the 4 -dimensional symplectic group over K, that is,

$$
G=\left\{\left.A \in G L(4, K)\right|^{t} A J A=J\right\},
$$

where $J=\left(\begin{array}{lll} & & \\ & & \\ & & \\ & & \\ -1 & & \\ & & \end{array}\right)$ and ${ }^{t} A$ is the transposed matrix of A. For $t \in K$, define

$$
x_{a}(t)=\left(\begin{array}{cccc}
1 & t & & \\
& 1 & & \\
& & 1 & -t \\
& & & 1
\end{array}\right), \quad x_{b}(t)=\left(\begin{array}{llll}
1 & & & \\
& 1 & t & \\
& & 1 & \\
& & & 1 \\
& & &
\end{array}\right) \text {, }
$$

$$
x_{a+b}(t)=\left(\begin{array}{cccc}
1 & & t & \\
& 1 & & t \\
& & 1 & \\
& & & 1
\end{array}\right), x_{2 a+b}(t)=\left(\begin{array}{cccc}
1 & & & t \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right),
$$

and put $\Delta^{+}=\{a, b, a+b, 2 a+b\}$. Then for $r \in \Delta^{+}, \Xi_{r}=\left\{x_{r}(t) \mid t \in K\right\}$ is a subgroup of G isomorphism to the additive group of K, and we have the folloing commutator relations, where the commutator $x^{-1} y^{-1} x y$ is denoted by $[x, y]$:

$$
\begin{gathered}
{\left[x_{a}(t), x_{b}(u)\right]=x_{a+b}(t u) x_{2 a+b}\left(-t^{2} u\right),} \\
{\left[x_{a}(t), x_{a+b}(u)\right]=x_{2 a+b}(2 t u),} \\
{\left[x_{r}(t), x_{s}(u)\right]=1, \text { for all other pairs of } r, s \in \Delta^{+} .}
\end{gathered}
$$

Next , define $h\left(z_{1}, z_{2}\right)=\left(\begin{array}{llll}z_{1} & & & \\ & z_{2} & & \\ & & z_{2}^{-1} & \\ & & & z_{1}^{-1}\end{array}\right) \quad$ for $\quad z_{i} \in K_{4}^{*} \quad$ and put
$U=\Xi_{a} \Xi_{b} \Xi_{a+b} \times \Xi_{2 a+b}, \wp=\left\{h\left(z_{1}, z_{2}\right) \mid z_{i} \in K^{*}\right\} \quad$ and $\quad B=\wp U$. Then U is a Sylow p-subgroup of G, and B is the normalizer of U in G (called the Borel subgroup of G). Put $\omega_{r}=x_{r}(1)^{t} x_{r}(-1) x_{r}(1)$ for $r \in \Delta^{+}$. Especially ,

$$
\omega_{a}=\left(\begin{array}{cccc}
& 1 & & \\
-1 & & & \\
& & & -1 \\
& & 1 &
\end{array}\right), \omega_{b}=\left(\begin{array}{llll}
1 & & & \\
& & 1 & \\
& -1 & & \\
& & & 1
\end{array}\right)
$$

Then G is generated by $B \cup\left\{\omega_{a}, \omega_{b}\right\}$. The maximal parabolic subgroups of G generated by $B \cup\left\{\omega_{a},\right\}$ and $B \cup\left\{\omega_{b},\right\}$ are denoted by P and Q respectively.

We know that every irreducible character of Borel subgroup B is the induced character of some linear character of a subgroup, that is, B is an M-group. The character table of B is given in Table (I) and the character tables of P and Q are given in Tables (II, III) of the Appendix of [6].

In the next theorem we shall determine $r(G)$ and $c(G)$ for a Borel subgroup of $S P\left(4,2^{n}\right)$.

Theorem 3.1.

Let G be a Borel subgroup of $S P\left(4,2^{n}\right)$, then

1) $r(B)= \begin{cases}2 m q(q-1) & \text { if } q \geq 4 m+1, \\ \frac{q(q-1)^{2}}{2} & \text { otherwise }\end{cases}$
2) $c(B)=\left\{\begin{array}{ll}2 m q^{2} & \text { if } q \geq 4 m+1, \\ \frac{q^{2}(q-1)}{2} & \text { otherwise }\end{array} \quad\right.$ where $\quad m=\left|\Gamma\left(\chi_{4}(k)\right)\right|$.

Proof. By Definition 2.1, in order to calculate $r(G)$ and $c(G)$, we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \operatorname{Ker} \chi=1$.

Then by Corollary 2.2, Lemmas 2.3 and 2.4 and Table (I) of [6], for the Borel subgroup B we have:
$d\left(\chi_{1}\right)=\left|\Gamma\left(\chi_{1}(k, l)\right)\right| \chi_{1}(k, l)(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{q(q-1)^{2}}{2}+1$ and $c\left(\chi_{1}\right)(1) \geq 1+\frac{q^{2}(q-1)}{2}$,
$d\left(\chi_{2}\right)=\left|\Gamma\left(\chi_{2}(k)\right)\right| \chi_{2}(k)(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{(q-1)\left(q^{2}-q+2\right)}{2}$ and $c\left(\chi_{2}\right)(1) \geq \frac{q\left(q^{2}-q+2\right)}{2}$, $d\left(\chi_{3}\right)=\left|\Gamma\left(\chi_{3}(k)\right)\right| \chi_{3}(k)(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{(q-1)\left(q^{2}-q+2\right)}{2}$ and $c\left(\chi_{3}\right)(1) \geq \frac{q\left(q^{2}-q+2\right)}{2}$, $d\left(\chi_{4}\right)=\left|\Gamma\left(\chi_{4}(k)\right)\right| \chi_{4}(k)(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{q\left(q^{2}-1\right)}{2}$ and $c\left(\chi_{4}\right)(1) \geq \frac{q^{2}(q+1)}{2}$, $d\left(\chi_{5}\right)=\left|\Gamma\left(\chi_{5}(k)\right)\right| \chi_{5}(k)(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{q\left(q^{2}-1\right)}{2}$ and $c\left(\chi_{5}\right)(1) \geq \frac{q^{2}(q+1)}{2}$,
$d\left(\chi_{6}\right)=\left|\Gamma\left(\theta_{1}\right)\right| \theta_{1}(1)+\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1) \geq \frac{(q-1)^{2}(q+2)}{2}$ and $c\left(\chi_{6}\right)(1) \geq q^{2}(q-1)$,
$d\left(\chi_{7}\right)=\left|\Gamma\left(\chi_{1}(k, l)\right)\right| \chi_{1}(k, l)(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{q(q-1)^{2}}{2}+1$ and $c\left(\chi_{7}\right)(1) \geq 1+\frac{q^{2}(q-1)}{2}$,
$d\left(\chi_{8}\right)=\left|\Gamma\left(\chi_{2}(k)\right)\right| \chi_{2}(k)(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{(q-1)\left(q^{2}-q+2\right)}{2} \quad$ and $c\left(\chi_{8}\right)(1) \geq \frac{q\left(q^{2}-q+2\right)}{2}$,
$d\left(\chi_{9}\right)=\left|\Gamma\left(\chi_{3}(k)\right)\right| \chi_{3}(k)(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{(q-1)\left(q^{2}-q+2\right)}{2}$ and $c\left(\chi_{9}\right)(1) \geq \frac{q\left(q^{2}-q+2\right)}{2}$,
$d\left(\chi_{10}\right)=\left|\Gamma\left(\chi_{4}(k)\right)\right| \chi_{4}(k)(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{q\left(q^{2}-1\right)}{2}$ and $c\left(\chi_{10}\right)(1) \geq \frac{q^{2}(q+1)}{2}$,
$d\left(\chi_{11}\right)=\left|\Gamma\left(\chi_{5}(k)\right)\right| \chi_{5}(k)(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{q\left(q^{2}-1\right)}{2}$ and $c\left(\chi_{11}\right)(1) \geq \frac{q^{2}(q+1)}{2}$,
$d\left(\chi_{12}\right)=\left|\Gamma\left(\theta_{1}\right)\right| \theta_{1}(1)+\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1) \geq \frac{(q-1)^{2}(q+2)}{2}$ and $c\left(\chi_{12}\right)(1) \geq q^{2}(q-1)$,
$d\left(\chi_{13}\right)=\left|\Gamma\left(\chi_{5}(k)\right)\right| \chi_{5}(k)(1)+\left|\Gamma\left(\chi_{4}(k)\right)\right| \chi_{4}(k)(1) \geq 2 q(q-1)$ and $c\left(\chi_{13}\right)(1) \geq 2 q^{2}$,
$d\left(\theta_{2}(k)\right)=\left|\Gamma\left(\theta_{2}(k)\right)\right| \theta_{2}(k)(1)=\frac{q(q-1)^{2}}{2}$ and $c\left(\theta_{2}(k)\right)(1)=\frac{q^{2}(q-1)}{2}$,
$d\left(\theta_{3}(k)\right)=\left|\Gamma\left(\theta_{3}(k)\right)\right| \theta_{3}(k)(1)=\frac{q(q-1)^{2}}{2}$ and $c\left(\theta_{3}(k)\right)(1)=\frac{q^{2}(q-1)}{2}$,
An overall picture is provided by the Table(I):
Table (I)

χ	$d(\chi)$	$c(\chi)(1)$
χ_{1}	$\geq q(q-1)^{2} / 2+1$	$\geq 1+q^{2}(q-1) / 2$
χ_{2}	$\geq(q-1)\left(q^{2}-q+2\right) / 2$	$\geq q\left(q^{2}-q+2\right) / 2$
χ_{3}	$\geq(q-1)\left(q^{2}-q+2\right) / 2$	$\geq q\left(q^{2}-q+2\right) / 2$
χ_{4}	$\geq q\left(q^{2}-1\right) / 2$	$\geq q^{2}(q+1) / 2$
χ_{5}	$\geq q\left(q^{2}-1\right) / 2$	$\geq q^{2}(q+1) / 2$
χ_{6}	$\geq(q-1)^{2}(q+2) / 2$	$\geq q^{2}(q-1)$

χ_{7}	$\geq q(q-1)^{2} / 2+1$	$\geq 1+q^{2}(q-1) / 2$
χ_{8}	$\geq(q-1)\left(q^{2}-q+2\right) / 2$	$\geq q\left(q^{2}-q+2\right) / 2$
χ_{9}	$\geq(q-1)\left(q^{2}-q+2\right) / 2$	$\geq q\left(q^{2}-q+2\right) / 2$
χ_{10}	$\geq q\left(q^{2}-1\right) / 2$	$\geq q^{2}(q+1) / 2$
χ_{11}	$\geq q\left(q^{2}-1\right) / 2$	$\geq q^{2}(q+1) / 2$
χ_{12}	$\geq(q-1)^{2}(q+2) / 2$	$\geq q^{2}(q-1)$
χ_{13}	$\geq 2 q(q-1)$	$\geq 2 q^{2}$
$\theta_{2}(k)$	$q(q-1)^{2} / 2$	$q^{2}(q-1) / 2$
$\theta_{3}(k)$	$q(q-1)^{2} / 2$	$q^{2}(q-1) / 2$

Note that the characters $\theta_{2}(k)$ and $\theta_{3}(k)$ are rational, now let $\left|\Gamma\left(\chi_{4}(k)\right)\right|=m$ where $\Gamma\left(\chi_{4}(k)\right)=\Gamma\left(Q\left(\chi_{4}(k)\right): Q\right)=\Gamma\left(Q\left(\chi_{5}(k)\right): Q\right)$.

Now by above table and Definition 2.1 and Table (I) of [6], we have
$\min \{d(\chi): \operatorname{Ker} \chi=1\}= \begin{cases}2 m q(q-1) & \text { if } q \geq 4 m+1, \\ \frac{q(q-1)^{2}}{2} & \text { otherwise, }\end{cases}$
$\min \{c(\chi)(1): \operatorname{Ker} \chi=1\}= \begin{cases}2 m q^{2} & \text { if } q \geq 4 m+1, \\ \frac{q^{2}(q-1)}{2} & \text { otherwise. }\end{cases}$
Hence $\quad r(B)= \begin{cases}2 m q(q-1) & \text { if } q \geq 4 m+1, \\ \frac{q(q-1)^{2}}{2} & \text { otherwise }\end{cases}$
and
$c(B)= \begin{cases}2 m q^{2} & \text { if } q \geq 4 m+1, \\ \frac{q^{2}(q-1)}{2} & \text { otherwise.W }\end{cases}$
In the following theorem, we constructed the $r(G)$ and $c(G)$ of parabolic subgroup Q of $S P\left(4,2^{n}\right)$.

Theorem 3.2

Let G be a maximal parabolic subgroup P or Q of $S P\left(4,2^{n}\right)$, then

1) $r(G)=\frac{q(q-1)^{2}}{2}$
2) $c(G)=\frac{q^{2}(q-1)}{2}$.

Proof. Since the groups P and Q have similar proofs, we will prove only Q.In
order to calculate $r(G)$ and $c(G)$, we need to determine $d(\chi)$ and $c(\chi)(1)$ for all characters that are faithful or $\bigcap_{\chi} \operatorname{Ker} \chi=1$.

Then by Corollary 2.2 , Lemmas 2.3,2.4 and Table (III) of [6], for the maximal parabolic subgroup Q we have:
$d\left(\chi_{1}\right)=\left|\Gamma\left(\chi_{1}^{\prime}(k)\right)\right| \chi_{1}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq q\left(q^{2}-1\right)+1 \quad$ and $c\left(\chi_{1}\right)(1) \geq q^{3}+q^{2}+1$, $d\left(\chi_{2}\right)=\left|\Gamma\left(\chi_{1}^{\prime}(k)\right)\right| \chi_{1}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq q(q-1)^{2}+1$ and $c\left(\chi_{2}\right)(1) \geq q^{3}-q^{2}+1$, $d\left(\chi_{3}\right)=\left|\Gamma\left(\chi_{1}^{\prime}(k)\right)\right| \chi_{1}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq \frac{q\left(q^{2}-1\right)}{2}+1$ and $c\left(\chi_{3}\right)(1) \geq \frac{\left(q^{3}+q^{2}+2\right)}{2}$, $d\left(\chi_{4}\right)=\left|\Gamma\left(\chi_{1}^{\prime}(k)\right)\right| \chi_{1}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{q(q-1)^{2}}{2}+1 \quad$ and $\quad c\left(\chi_{4}\right)(1) \geq \frac{\left(q^{3}-q^{2}+2\right)}{2}$, $d\left(\chi_{5}\right)=\left|\Gamma\left(\chi_{2}^{\prime}(k)\right)\right| \chi_{2}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq q^{3} \quad$ and $\quad c\left(\chi_{5}\right)(1) \geq q^{3}+q^{2}+q+1$, $d\left(\chi_{6}\right)=\left|\Gamma\left(\chi_{2}^{\prime}(k)\right)\right| \chi_{2}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq q\left(q^{2}-2 q+2\right)$ and $c\left(\chi_{6}\right)(1) \geq q^{3}-q^{2}+q+1$, $d\left(\chi_{7}\right)=\left|\Gamma\left(\chi_{2}^{\prime}(k)\right)\right| \chi_{2}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq \frac{q\left(q^{2}+1\right)}{2}$ and $c\left(\chi_{7}\right)(1) \geq \frac{\left(q^{3}+q^{2}+2 q+2\right)}{2}$, $d\left(\chi_{8}\right)=\left|\Gamma\left(\chi_{2}^{\prime}(k)\right)\right| \chi_{2}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{q\left(q^{2}-2 q+3\right)}{2}$ and $c\left(\chi_{8}\right)(1) \geq \frac{\left(q^{3}-q^{2}+2 q+2\right)}{2}$, $d\left(\chi_{9}\right)=\left|\Gamma\left(\chi_{3}^{\prime}(k, l)\right)\right| \chi_{3}^{\prime}(k, l)(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq(q+1)\left(q^{2}-q+1\right) \quad$ and $c\left(\chi_{9}\right)(1) \geq q^{3}+q^{2}+q+2$, $d\left(\chi_{10}\right)=\left|\Gamma\left(\chi_{3}^{\prime}(k, l)\right)\right| \chi_{3}^{\prime}(k, l)(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq(q+1)+q(q-1)^{2}$ and $c\left(\chi_{10}\right)(1) \geq q^{3}-q^{2}+q+2$, $d\left(\chi_{11}\right)=\left|\Gamma\left(\chi_{3}^{\prime}(k, l)\right)\right| \chi_{3}^{\prime}(k, l)(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq(q+1)\left(q^{2}-q+2\right) / 2 \quad$ and $\quad c\left(\chi_{11}\right)(1) \geq \frac{\left(q^{3}+q^{2}+2 q+4\right)}{2}$, $d\left(\chi_{12}\right)=\left|\Gamma\left(\chi_{3}^{\prime}(k, l)\right)\right| \chi_{3}^{\prime}(k, l)(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{(q+1)+q(q-1)^{2}}{2}$ and $c\left(\chi_{12}\right)(1) \geq \frac{\left(q^{3}+q^{2}+2 q+4\right)}{2}$, $d\left(\chi_{13}\right)=\Gamma\left(\chi_{4}^{\prime}(k)\right)\left|\chi_{4}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq\left(q^{2}-1\right)(q+1) \quad\right.$ and $c\left(\chi_{13}\right)(1) \geq q^{2}(q+2)$, $d\left(\chi_{14}\right)=\left|\Gamma\left(\chi_{4}^{\prime}(k)\right)\right| \chi_{4}^{\prime}(k)(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq(q-1)\left(q^{2}+1\right) \quad$ and $c\left(\chi_{14}\right)(1) \geq q^{3}$,
$d\left(\chi_{15}\right)=\left|\Gamma\left(\chi_{4}^{\prime}(k)\right)\right| \chi_{4}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq(q+2)\left(q^{2}-1\right) / 2 \quad$ and $\quad c\left(\chi_{15}\right)(1) \geq \frac{q^{2}(q+3)}{2}$ $d\left(\chi_{16}\right)=\Gamma\left(\chi_{4}^{\prime}(k)\right)\left|\chi_{4}^{\prime}(k)(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{(q-1)\left(q^{2}+q+2\right)}{2}\right.$ and $c\left(\chi_{16}\right)(1) \geq \frac{q^{2}(q+1)}{2}$ $d\left(\chi_{17}\right)=\left|\Gamma\left(\chi_{7}^{\prime}(k, l)\right)\right| \chi_{7}^{\prime}(k, l)(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq(q-1)\left(q^{2}+q+1\right) \quad$ and $c\left(\chi_{17}\right)(1) \geq q\left(q^{2}+q+1\right)$, $d\left(\chi_{18}\right)=\left|\Gamma\left(\chi_{7}^{\prime}(k, l)\right)\right| \chi_{7}^{\prime}(k, l)(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq(q-1)\left(q^{2}-q+1\right) \quad$ and $c\left(\chi_{18}\right)(1) \geq q\left(q^{2}-q+1\right)$, $d\left(\chi_{19}\right)=\left|\Gamma\left(\chi_{7}^{\prime}(k, l)\right)\right| \chi_{7}^{\prime}(k, l)(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq \frac{(q-1)\left(q^{2}+q+2\right)}{2}$ and $c\left(\chi_{19}\right)(1) \geq \frac{q^{2}(q+3)}{2}$, $d\left(\chi_{20}\right)=\left|\Gamma\left(\chi_{7}^{\prime}(k, l)\right)\right| \chi_{7}^{\prime}(k, l)(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{(q-1)\left(q^{2}-q+2\right)}{2}$ and $c\left(\chi_{20}\right)(1) \geq \frac{q\left(q^{2}-q+2\right)}{2}$, $d\left(\chi_{21}\right)=\left|\Gamma\left(\theta_{1}^{\prime}\right)\right| \theta_{1}^{\prime}(1)+\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq(2 q-1)\left(q^{2}-1\right) \quad$ and $\quad c\left(\chi_{21}\right)(1) \geq 2\left(q^{3}+q^{2}-1\right)$, $d\left(\chi_{22}\right)=\left|\Gamma\left(\theta_{1}^{\prime}\right)\right| \theta_{1}^{\prime}(1)+\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq(2 q+1)(q-1)^{2} \quad$ and $\quad c\left(\chi_{22}\right)(1) \geq 2 q^{2}(q-1)$,

$$
\begin{aligned}
& d\left(\chi_{23}\right)=\left|\Gamma\left(\theta_{1}^{\prime}\right)\right| \theta_{1}^{\prime}(1)+\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1) \geq \frac{(3 q-2)\left(q^{2}-1\right)}{2} \text { and } c\left(\chi_{23}\right)(1) \geq \frac{q^{2}(3 q-1)}{2}, \\
& d\left(\chi_{24}\right)=\left\lvert\, \Gamma\left((\theta _ { 1 } ^ { \prime }) \left|\theta_{1}^{\prime}(1)+\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1) \geq \frac{(3 q+2)(q-1)^{2}}{2} \text { and } c\left(\chi_{24}\right)(1) \geq \frac{3 q^{2}(q-1)}{2},\right.\right.\right. \\
& d\left(\chi_{5}^{\prime}(k)\right)=\left|\Gamma\left(\chi_{5}^{\prime}(k)\right)\right| \chi_{5}^{\prime}(k)(1) \geq q\left(q^{2}-1\right) \quad \text { and } c\left(\chi_{5}^{\prime}(k)\right)(1) \geq q^{2}(q+1), \\
& d\left(\chi_{6}^{\prime}(k)\right)=\left|\Gamma\left(\chi_{6}^{\prime}(k)\right)\right| \chi_{6}^{\prime}(k)(1) \geq q(q-1)^{2} \quad \text { and } c\left(\chi_{6}^{\prime}(k)\right)(1) \geq q^{2}(q-1), \\
& d\left(\theta_{2}^{\prime}(k)\right)=\left|\Gamma\left(\theta_{2}^{\prime}(k)\right)\right| \theta_{2}^{\prime}(k)(1)=\frac{q\left(q^{2}-1\right)}{2} \text { and } c\left(\theta_{2}^{\prime}(k)\right)(1)=\frac{q^{2}(q+1)}{2}, \\
& d\left(\theta_{3}^{\prime}(k)\right)=\left|\Gamma\left(\theta_{3}^{\prime}(k)\right)\right| \theta_{3}^{\prime}(k)(1)=\frac{q(q-1)^{2}}{2} \text { and } c\left(\theta_{3}^{\prime}(k)\right)(1)=\frac{q^{2}(q-1)}{2} .
\end{aligned}
$$

The values are set out in the following table:
Table (II)

χ	$d(\chi)$	$c(\chi)(1)$
χ_{1}	$\geq q\left(q^{2}-1\right)+1$	$\geq q^{3}+q^{2}+1$
χ_{2}	$\geq q(q-1)^{2}+1$	$\geq q^{3}-q^{2}+1$
χ_{3}	$\geq q\left(q^{2}-1\right) / 2+1$	$\geq\left(q^{3}+q^{2}+2\right) / 2$
χ_{4}	$\geq q(q-1)^{2} / 2+1$	$\geq\left(q^{3}-q^{2}+2\right) / 2$
χ_{5}	$\geq q^{3}$	$\geq q^{3}+q^{2}+q+1$
χ_{6}	$\geq q\left(q^{2}-2 q+2\right)$	$\geq q^{3}-q^{2}+q+1$
χ_{7}	$\geq q\left(q^{2}+1\right) / 2$	$\geq\left(q^{3}+q^{2}+2 q+2\right) / 2$
χ_{8}	$\geq q\left(q^{2}-2 q+3\right) / 2$	$\geq\left(q^{3}-q^{2}+2 q+2\right) / 2$
χ_{9}	$\geq(q+1)\left(q^{2}-q+1\right)$	$\geq q^{3}+q^{2}+q+2$
χ_{10}	$\geq(q+1)+q(q-1)^{2}$	$\geq q^{3}-q^{2}+q+2$
χ_{11}	$\geq(q+1)\left(q^{2}-q+2\right) / 2$	$\geq\left(q^{3}+q^{2}+2 q+4\right) / 2$
χ_{12}	$\geq(q+1)+q(q-1)^{2} / 2$	$\geq\left(q^{3}-q^{2}+2 q+4\right) / 2$
χ_{13}	$\geq(q+1)\left(q^{2}-1\right)$	$\geq q^{2}(q+2)$
χ_{14}	$\geq(q-1)\left(q^{2}+1\right)$	$\geq q^{3}$
χ_{15}	$\geq(q+2)\left(q^{2}-1\right) / 2$	$\geq q^{2}(q+3) / 2$
χ_{16}	$\geq(q-1)\left(q^{2}+q+2\right) / 2$	$\geq q^{2}(q+1) / 2$
χ_{17}	$\geq(q-1)\left(q^{2}+q+1\right)$	$\geq q\left(q^{2}+q+1\right)$
χ_{18}	$\geq(q-1)\left(q^{2}-q+1\right)$	$\geq q\left(q^{2}-q+1\right)$
χ_{19}	$\geq(q-1)\left(q^{2}+q+2\right) / 2$	$\geq q^{2}(q+3) / 2$
χ_{20}	$\geq(q-1)\left(q^{2}-q+2\right) / 2$	$\geq q\left(q^{2}-q+2\right) / 2$
χ_{21}	$\geq(2 q-1)\left(q^{2}-1\right)$	$\geq 2\left(q^{3}+q^{2}-1\right)$

χ_{22}	$\geq(2 q+1)(q-1)^{2}$	$\geq 2 q^{2}(q-1)$
χ_{23}	$\geq(3 q-2)\left(q^{2}-1\right) / 2$	$\geq q^{2}(3 q-1) / 2$
χ_{24}	$\geq(3 q+2)(q-1)^{2} / 2$	$\geq 3 q^{2}(q-1) / 2$
$\chi_{5}^{\prime}(k)$	$\geq q\left(q^{2}-1\right)$	$\geq q^{2}(q+1)$
$\chi_{6}^{\prime}(k)$	$\geq q(q-1)^{2}$	$\geq q^{2}(q-1)$
$\theta_{2}^{\prime}(k)$	$q\left(q^{2}-1\right) / 2$	$q^{2}(q+1) / 2$
$\theta_{3}^{\prime}(k)$	$q(q-1)^{2} / 2$	$q^{2}(q-1) / 2$

Now by Table (II) and Definition 2.1 ,we have
$\min \{d(\chi): \operatorname{Ker} \chi=1\}=\frac{q(q-1)^{2}}{2} \quad$ and
$\min \{c(\chi)(1): \operatorname{Ker} \chi=1\}=\frac{q^{2}(q-1)}{2}$.
Hence $\quad r(G)=\frac{q(q-1)^{2}}{2}, c(G)=\frac{q^{2}(q-1)}{2}, \quad$ and the result follows.

References

[1] H. Behravesh , Quasi-permutation representations of p-groups of class 2 , J.London Math. Soc. (2)55, 251-26 (1997).
[2] J.M. Burns , B. Goldsmith , B. Hartley and R. Sandling, on quasi-permutation representations of finite groups, Glasgow Math, J. 36, 301-308 (1994).
[3] M.R. Darafsheh , M. Ghorbany , A. Daneshkhah and H. Behravesh, Quasi-permutation representation of the group $G L(2, q)$, Journal of Algebra 243,142-167(2001).
[4] M.R. Darafsheh and M.Ghorbany, Quasi-permutation representations of the groups $S U\left(3, q^{2}\right)$ and $\operatorname{PSU}\left(3, q^{2}\right)$, Southest Asian Bulletin of Mathemetics (2002)26 ,395-406.
[5] M.R. Darafsheh and M.Ghorbany, Quasi-permutation representations of the groups $S L(3, q)$ and $\operatorname{PSL}(3, q)$, Iranian Journal of Science and Technology, Tra.A, Vol. 26, No. A1 (2002)145-154.
[6] H. Enomoto , The characters of the finite symplectic group $S P(4, q), q=2^{f}$, Osaka J. Math. 9(1972), 75-94.
[7] M.R. Darafsheh and M.Ghorbany, Special representations of the group $G_{2}\left(2^{n}\right)$ with minimal degrees, Southest Asian Bulletin of Mathemetics (2006)30: 663-670.
[8] W.J. Wong , Linear groups analogous to permutation groups, J. Austral. Math. Soc (Sec. A) 3 , 180-184, (1963).

