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Abstract

This study concerns the existence of positive weak solutions to boundary value problems

of the form
—Aju=g(z,u), x e,
u(z) =0, x € 09,

where A, is the so-called p-Laplacian operator i.e. A,z = div (|[Vz[P72Vz2), p > 1, Qis a
smooth bounded domain in RV (N > 2) with 99 of class C?, and connected, and g(z,0) < 0
for some z € Q (semipositone problems). By using the method of sub-super solutions we
prove the existence of the positive weak solution to special types of g(z,u).
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1 Introduction

In this paper we consider the existence of positive weak solution to boundary value
problems of the form
{ _Apu:g(l',U), er) (1)
u(z) =0, x € 01,

where A, is the so-called p-Laplacian operator i.e. A,z = div (|Vz|P72Vz), p > 1, Qis a
smooth bounded domain in RN (N > 2) with 992 of class C?, and connected, and g(z,0) < 0
for some x € Q (semipositone problems). In particular, we first study the case when
g(z,u) = a(x)uP~! — b(x)us™t — ch(x), where ¢ > p and a(x),b(z) are C1(2) functions
that a(z) is allowed to be negative near the boundary of €2, and b(x) > by > 0 for z € Q.
Here h : Q@ — R is a CY(Q) function satisfying h(z) > 0 for z € Q, h(z) # 0, and
max,cq h(z) = 1. We prove that there exists a ¢y = ¢(€2,a,b) > 0 such that for 0 < ¢ < ¢
there exists a positive solution.

Problems involving the “p-Laplacian” arise from many branches of pure mathematics
as in the theory of quasiregular and quasiconformal mapping (see [10]) as well as from vari-
ous problems in mathematical physics notably the flow of non-Newtonian fluids.

The above equation arises in the studies of population biology of one species with u rep-
resenting the concentration of the species or the population density, and ch(z) representing
the rate of harvesting (see [7]).

In the earlier paper [1] we consider the problem (1) with p = 2. The purpose of this paper
is to extend this study to the p-Laplacian case. The case when p = 2 (the Laplacian opera-
tor), a(x), b(x) are positive constants throughout 2, has been studied in [7]. Also recently in
[8] the authors extend this study to the p-Laplacian case. In [3] the authors studied the case
when ¢ = 0 (non-harvesting case), b(x) = 1 for Q and a(z) is apositive function throughout
Q. However the ¢ > 0 case is a semipositone problem (g(z,0) < 0) and studying positive
solutions in this case is significantly harder. Here we consider the challenging semipositone
case ¢ > (. Semipositone problems have been of great interest during the past two decades,
and continue to pose mathematically difficult problems in the study of positive solutions (see
2,5).

We next study the case when g(x,u) = Am(z) f(u), where the weight m satisfying
m € C(Q) and m(z) > mg > 0 for x € Q, f € C*0, p) is a nondecreasing function for some
p > 0 such that f(0) < 0 and there exist a € (0, p) such that f(¢)(t — ) > 0 for t € [0, p].
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See [5] where positive solution is obtained for large A when m(x) = 1 for x € Q and f is
p-sublinear at infinity. We are interested in the existence of a positive solution in a range of
A without assuming any condition on f at infinity. Our approach is based on the method of
sub-super solutions, see [3,9].

2 Existence results

Let Wy* = Wy*(Q),s > 1, denote the usual Sobolev space. We give the definition of
weak solution and sub-super solution of (1).

Definition 2.1. We say that u € W,”(Q) is a weak solution to (1) if for any v € W, with
v > 0 we have

/Q|Vu|p_2Vu.Vvdx = /Qg(x,u)vdx.

However in this paper, we in fact study the existence of C'(Q) solutions that strictly
positive in 2.

Definition 2.2. We say that ¢ € W,?(Q) is a subsolution to (1) if
/Q|V1p|p‘2 Vi .Vodr < /Qg(x,l/J)vdx,

hold for all v € W, with v > 0.

Definition 2.3. We say that z € W,”(Q) is a supersolution to (1) if
/ V2P 2Vz.Vodr > /g(w,z)vdm,
Q Q

hold for all v € Wol’p with v > 0.

Now if there exists sub and super solutions ¥ and z respectively such that 0 < ¢ < 2
for z € ©, then (1) has a positive solution u € WyP(Q) such that ¢ < u < z (see [3,4]).
We shall obtain the existence of positive weak solution to problem (1) by constructing a
positive subsolution ¢ and supersolution z.

To precisely state our existence result we consider the eigenvalue problem

Do = XoPP? 0, e,
{ 6 =0, v € o0, (2)

Let ¢y € C*(Q) be the eigenfunction corresponding to the first eigenvalue A; of (2) such
that ¢1(x) > 0 in Q, and ||¢1]|cc = 1. It can be shown that % < 0 on 09 and hence,
depending on 2, there exist positive constants k,n, y such that

M@t —|VoiP < —k, 2 €Q,, (3)
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¢1Zﬂ7 'IGQO:Q\QU’ (4)

with Q, = {z € Q | d(z,0Q) < n}. Further assume that there exists a constants ag,a; > 0
such that a(z) > —a in Q, and a(z) > a; in Qy = Q\ Q,,.
We will also consider the unique solution, ¢ € C*(Q), of the boundary value problem

-A,(=1, €,
(=0, x € 09,
to discuss our existence result. It is known that ¢ > 0 in 2 and c% < 0 on 0.

First we obtain the existence of positive weak solution of (1) in the case when
g(z,u) = a(x) uP™! — b(x) ut™t — ch(x).

Theorem 2.4. Suppose that ag < k(p/(p — 1))’"t and A\ (p/(p — 1))*"* < a;. Then
there exists ¢y = ¢o(€2, ag,a1,b) > 0 such that if 0 < ¢ < ¢ then the problem (1) has a
positive solution wu.

Proof. To obtain the existence of positive weak solution to problem (1), we construct-
ing a positive subsolution ¢ and supersolution z. We shall verify that ¢ = 5(;57;’/ P=1 i5 a

subsolution of (1), where ¢ > 0 is small and specified later (note that |[¢|| < 6). Let the
test function w € Wy with w < 0. A calculation shows that
L1ver2 e 9w = o plp =177 [ 0]V Vor Vude
= 0 pfp = P [Vl Ve V(oyw) du— [ Vi wda)
=0 pfp =17 [ (u ot = [Varl") wa. (5)

Thus v is a subsolution if

o p/p =17 (el = Vo) wde < [ (a@) v = b(a) ™t~ chle)) wda,
Q Q
Now A\ ¢f — |V [P < —k in Q,, and therefore

P (p/p—1PE (M) —|VaP) <~k (p/p—1)PH
< —qpdPTl — HbHOO(Sq_l —c,

if

97



S.H. Rasouli, G.A. Afrouzi and J. Vahidi / TIMCS Vol .3 No.1 (2011) 94-101

¢ < ¢(0) = 0" (k(p/p — 1P — ag — [bl| 6777).
Clearly ¢(0) > 0.

Furthermore, we note that ¢; > > 0 in Qg = Q\ Q,, and therefore

P p/p— 1PTE (M — Vo)) < Mo (p/p— 1P
< a0 Y — |[b]|s 07 —

if
(a1 — (p/p— 1) Al)ﬂp)l/q—p
116]|oo ’
¢ <¢(6) = 6" (a0 — (p/p — )P~ M) i = [[bl]oo 697P).

Clearly ¢(d) > 0. Choose # = min{#;,0,} and 6 = 6/2. Then simplifying, both ¢ and
¢ are greater than (£)771 (2977 (|b|| — ||]|s0). Hence if ¢ < (£)471 (2977 |[b] |0 — |[b]|o) =
co(2, ag, a1, b) then 9 is a subsolution.

Next, we construct a supersolution z of (1). We denote z = N((z), where the constant
N > 0 is large and to be chosen later. We shall verify that z is a supersolution of (1). To
this end, let Let w(z) € W, ?(Q) with w > 0. Then we have

6<Q2:(

/Q VP 2VeVwde = NP-L /Q VP2V Vi de

= Np_l/wda:.
Q

Thus z is a supersolution if

NP~ 1/ wdzr > / x) 22— b(x) 277 — ch(x)) wdx,
and therefore if N > N/ where Ny = SUD0,(af|wo /b0y /27 ( 1 @] oo VP~F = bo 077 1), We have
/ |Vz[P2Vz . Vwdr > / (a(z) 21 — b(x) 277! — ch(x)) wdz,
0 Q

and hence z is supersolution of (1). Since ¢ > 0 and 9¢/dn < 0 on 0f2, we can choose N
large enough so that 1 < z is also satisfied. Hence Theorem 2.4 is proven. O

Now, we obtain the existence of positive weak solution of (1) in the case when g(z,u) =
Am(x) f(u). Assume that there exist positive constants r1,7rs € (o, p] satisfying:

r 1/p—1 oo pP/1P oo (A ]lm]so
(H.1) = >max{)\ /p— (pHCHp_ul ), p!C_Hl ( 1n|1‘0u‘1!’f(r(2) )1/p 1,
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(H.2) £ f(r1) > A [£(0)].

Theorem 2.5. Let (H.1),(H.2) hold. Then there exist A\, < A such that (1) has a positive
solution for A € [\, A].

Proof. Let A, ¢, be as before. We now construct our positive subsolution. Let ¢ =
7y P/t g2/ et the test function w(z) € WeP(Q) with w > 0. Using a calculation
similar to the one in the proof of Theorem 2.4, we have

LIV Ve T = 2 e [ Ow et~ (Vo) wde.

Thus v is a subsolution if
p

( p—

Now A\ ¢} — |V |P < —k in ©,, and therefore

[0 - 19e P wde < A [ m(e) () wds

ST et = [Val) - < —k(pf sy

< Am(z) f(¥),

if
k (p%l 7y pp/tP)p=l

mo | f(0)]

A< A=

Furthermore, we note that ¢; > > 0 in Qp = Q\ ©Q,, and therefore

W =r Iup/l—p qb]f/(p_l) > lup/l—p Iup/(p—l) — 1

thus f(v) > f(r1). Hence if

Ay (-2~ ry yP/1-P)p—1
A= 1(,,_1 1M ) 7
myo f(rl)

we have

( ri PPN (AL @R — [V [P)

p—1

VAN VAR VAN
>
S
e
—
£
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We get A\, < A by using (H.2). Therefore if A, <\ < ), then 1 is subsolution.

Next, we construct a supersolution z of (1) such that z > ¢). We denote z = =

T S(@)-
We shall verify that z is a super solution of (1). To this end, let Let w(z) € WyP(Q) with
w > 0. Then we have

p—2 _ T2 p—1
/Q|Vz\ VzVwdr = ( Hoo) /del'. (6)

IS

Thus z is a super solution if

<||£|2!oo>p1/ﬂwdx2 )‘/Qm(l')f(Z)wdx_

But f(z) < f(r2) and hence z is a super solution if

o/l
A= Tl £ ()

We easily see that A, < A, by using (H.1). Finally, using (5), (6) and the weak comparoson
principle [4], we see that ¢ < z in Q when (H.1) is satisfied. Therefore (1) has a positive
solution for A € [\, A], where A = min{\, A}. This completes the proof of Theorem 2.5. O

Remark 2.6. Theorem 2.5 holds no matter what the growth condition of f is, for large u.
Namely, f could satisfy p-superlinear or p-linear growth condition at infinity.
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