The Journal of
Mathematics and Computer Science

Available online at
http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol . 3 No. 1 (2011) 11-20

Multiplicity results for a Kirchhoff-type doubly eigenvalue boundary value problem

S. Heidarkhani ${ }^{a}$ and G.A. Afrouzi ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran
e-mail address: s.heidarkhani@razi.ac.ir
${ }^{b}$ Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, 47416-1467 Babolsar, Iran
e-mail address: afrouzi@umz.ac.ir

Received: March 2011, Revised: May 2011
Online Publication: July 2011

Abstract

This paper is concerned with the existence of at least three weak solutions to a class of Kirchhoff-type doubly eigenvalue boundary value problem. The technical approach is mainly based on a very recent three critical points theorem due to B. Ricceri [On a three critical points theorem revisited, Nonlinear Anal., 70 (2009) 3084-3089.]

Keywords- Kirchhoff-type problem; Critical point; Three solutions; Variational methods. 2000 Mathematics Subject Classification: 35J20; 35J25; 35J60.

1 Introduction

Consider the following Kirchhoff-type problem

$$
\left\{\begin{array}{l}
-K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda f(x, u)+\mu g(x, u) \tag{1}\\
u(a)=u(b)=0
\end{array}\right.
$$

where $K:[0,+\infty[\rightarrow R$ is a continuous function, $f, g:[a, b] \times R \rightarrow R$ are two Carathéodory functions and $\lambda, \mu>0$.

Our approach is studying problem (1) relies on the following three critical points theorem (see also [16] for an earlier version as well as $[3,11]$ for related results).

Theorem A. [Ricceri, 15] Let X be a reflexive real Banach space, $I \subseteq R$ an interval, $\Phi: X \longrightarrow R$ a sequentially weakly lower semicontinuous C^{1} functional bounded on each bounded subset of X whose derivative admits a continuous inverse on X^{*} and $J: X \longrightarrow R$ a C^{1} functional with compact derivative.
Assume that

$$
\lim _{\|x\| \rightarrow+\infty}(\Phi(x)+\lambda J(x))=+\infty
$$

for all $\lambda \in I$, and that there exists $\rho \in R$ such that

$$
\sup _{\lambda \in I} \inf _{x \in X}(\Phi(x)+\lambda(J(x)+\rho))<\inf _{x \in X} \sup _{\lambda \in I}(\Phi(x)+\lambda(J(x)+\rho)) .
$$

Then, there exist a non-empty open set interval $A \subseteq I$ and a positive real number q with the following property: for every $\lambda \in A$ and every C^{1} functional $\Psi: X \longrightarrow R$ with compact derivative, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the equation

$$
\Phi^{\prime}(u)+\lambda J^{\prime}(u)+\mu \Psi^{\prime}(u)=0
$$

has at least three solutions in X whose norms are less than q.
In the subsequent proofs, we also use the next result precisely to verify the minimax inequality in Theorem A.

Proposition B. [Bonanno, 3] Let X be a non-empty set and Φ, J two real functions on X. Assume that $\Phi(x) \geq 0$ for every $x \in X$ and there exists $u_{0} \in X$ such that $\Phi\left(u_{0}\right)=$ $J\left(u_{0}\right)=0$. Further, assume that exist $u_{1} \in X, r>0$ such that
$\left(\kappa_{1}\right) \Phi\left(u_{1}\right)>r$
$\left(\kappa_{2}\right) \sup _{\Phi(x)<r}(-J(x))<r \frac{-J\left(u_{1}\right)}{\Phi\left(u_{1}\right)}$.
Then, for every $\nu>1$ and for every $\rho \in R$ satisfying

$$
\sup _{\Phi(x)<r}(-J(x))+\frac{r \frac{-J\left(u_{1}\right)}{\Phi\left(u_{1}\right)}-\sup _{\Phi(x)<r}(-J(x))}{\nu}<\rho<r \frac{-J\left(u_{1}\right)}{\Phi\left(u_{1}\right)},
$$

one has

$$
\sup _{\lambda \in R} \inf _{x \in X}(\Phi(x)+\lambda(J(x)+\rho))<\inf _{x \in X} \sup _{\lambda \in[0, \sigma]}(\Phi(x)+\lambda(J(x)+\rho))
$$

where

$$
\sigma=\frac{\nu r}{r \frac{-J\left(u_{1}\right)}{\Phi\left(u_{1}\right)}-\sup _{\Phi(x)<r}(-J(x))} .
$$

Problems of Kirchhoff-type have been widely investigated, and among the papers, we refer to the papers $[2,6,7,10,12,13,19]$ and references therein.

Recently, B. Ricceri in an interesting paper [17] established the existence of at least three weak solutions to a class of Kirchhoff-type doubly eigenvalue boundary value problem using Theorem 2 of [14].

The purpose of this paper is to establish the existence of a non-empty open set interval $A \subseteq I$ and a positive real number q with the following property: for each $\lambda \in A$ and for each Carathéodory function $g:[a, b] \times R \rightarrow R$ such that $\sup _{|\xi| \leq s}|g(., \xi)| \in L^{1}(a, b)$ for all $s>0$, there is $\delta>0$ such that, for each $\mu \in[0, \delta]$, problem (1) admits at least three weak solutions in $W_{0}^{1,2}(a, b)$ whose norms are less than q.

For a thorough account on the existence of at least solutions to some second order differential equations with Dirichlet boundary value condition by Ricceri's three critical points theorem [16], we refer to [1,4,5,8,9].

For basic notations and definitions we refer to [18].

2 Preliminaries

We say that u is a weak solution to (1) if $u \in W_{0}^{1,2}(a, b)$ and

$$
K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x-\int_{a}^{b}(\lambda f(x, u(x)+\mu g(x, u(x))) v(x)=0
$$

for every $v \in W_{0}^{1,2}(a, b)$.
In the sequel, X will denote the Sobolev space $W_{0}^{1,2}(a, b)$ equipped with the norm

$$
\|u\|=\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

Let $K:[0,+\infty[\rightarrow R$ be a continuous function such that there exists a positive number m with $K(t) \geq m$ for all $t \geq 0$ and let $f:[a, b] \times R \rightarrow R$ be a Carathéodory function such that $\sup _{|\xi| \leq s}|f(., \xi)| \in L^{1}(a, b)$ for all $s>0$.

Corresponding to K and f we introduce the functions $\tilde{K}:[0,+\infty[\rightarrow R$ and $F:[a, b] \times$ $R \rightarrow R$ as follows

$$
\begin{equation*}
\tilde{K}(t)=\int_{0}^{t} K(s) d s \text { for all } t \geq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x, t)=\int_{0}^{t} f(x, s) d s \text { for all }(x, t) \in[a, b] \times R \tag{3}
\end{equation*}
$$

3 Results

Our main results fully depend on the following technical lemma:
Lemma 1. Assume that there exist positive constants c, d, α and β with $\beta-\alpha<b-a$ such that
(i) $\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)>\frac{4 m c^{2}}{b-a}$,
(ii) $F(x, t) \geq 0$ for each $(x, t) \in([a, a+\alpha] \cup[b-\beta, b]) \times[0, d]$,
(iii) $\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x<\frac{4 m c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}$.

Then, there exist $r>0$ and $w \in X$ such that $\tilde{K}\left(\|w\|^{2}\right)>2 r$ and

$$
\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x<2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)} .
$$

Proof: We put

$$
w(x)= \begin{cases}\frac{d}{\alpha}(x-a) & \text { if } a \leq x<a+\alpha \tag{4}\\ d & \text { if } a+\alpha \leq x \leq b-\beta \\ \frac{d}{\beta}(b-x) & \text { if } b-\beta<x \leq b\end{cases}
$$

and $r=\frac{2 m c^{2}}{b-a}$. It is easy to see that $w \in X$ and, in particular, one has

$$
\|w\|^{2}=d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right) .
$$

Hence, from (i) we have $\tilde{K}\left(\|w\|^{2}\right)>2 r$. Since $0 \leq w(x) \leq d$ for each $x \in[a, b]$, condition (ii) ensures that

$$
\int_{a}^{a+\alpha} F(x, w(x)) d x+\int_{b-\beta}^{b} F(x, w(x)) d x \geq 0 .
$$

Moreover, owing to our assumptions, we obtain

$$
\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x<\frac{4 m c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)} \leq 2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)} .
$$

So, the proof is complete.
Now, we state our main result.
Theorem 1. Assume that there exist positive constants c, d, α and β with $\beta-\alpha<b-a$ such that (i), (ii) and (iii) in Lemma 1 hold. Furthermore, suppose that
(iv) $\frac{(b-a)^{2}}{2 m} \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{1}{\theta}$ for almost every $x \in[a, b]$ and for all $t \in R$, and for some θ satisfying

$$
\theta>\frac{\frac{2 m c^{2}}{b-a}}{\frac{4 m c^{2}}{b-a} \frac{\int a+\alpha}{b-\beta} F(x, d) d x} \underset{\tilde{K}\left(d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)\right)}{ }-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x \text {; }
$$

(v) there exists a continuous function $h:[0,+\infty[\rightarrow R$ such that

$$
h\left(t K\left(t^{2}\right)\right)=t
$$

for all $t \geq 0$.
Then, there exist a non-empty open interval $A \subseteq] 0, \theta]$ and a number $q>0$ with the following property: for each $\lambda \in A$ and for an arbitrary Carathéodory function $g:[a, b] \times R \rightarrow R$ such that $\sup _{|\xi| \leq s}|g(., \xi)| \in L^{1}(a, b)$ for all $s>0$, there is $\delta>0$ such that, whenever $\mu \in[0, \delta]$, problem (1) admits at least three weak solutions in X whose norms are less than q.

Remark 1. Other candidates for test function w in (4) can be considered to other versions of the statement.

Remark 2. Even if $K(t)=1$ for all $t \geq 0$ and $\mu=0$ in (1), we obtain the extension of previous works, specially when $f(x, t)=f(t)$ for every $(x, t) \in[a, b] \times R,[a, b]=[0,1]$ and $\alpha=\beta=\frac{1}{4}$, Theorem 2 reduced to Theorem 2 in [4]. When $\alpha=\beta=\frac{b-a}{4}$, Theorem 2 becomes to Theorem 2 in [5].

Here, we want to point out a remarkable particular situation of Theorem 1.
Corollary 1. Assume that there exist positive constants $c, d, p_{1}, p_{2}, \alpha$ and β with $\beta-\alpha<b-a$ such that (ii) in Lemma 1 holds, and
(j) $p_{1} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{2} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}>\frac{4 p_{1} c^{2}}{b-a}$,
(jj) $\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x<\frac{4 p_{1} c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{p_{1} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{2} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}}$,
$(\mathrm{jjj}) \frac{(b-a)^{2}}{2 p_{1}} \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{1}{\theta}$ for almost every $x \in[a, b]$ and for all $t \in R$, and for some θ satisfying

$$
\theta>\frac{\frac{2 p_{1} c^{2}}{b-a}}{\frac{4 p_{1} c^{2}}{b-a} \frac{\int_{a+\alpha}^{b-\beta} F(x, d) d x}{p_{1} d^{2}\left(\frac{\alpha+\beta}{\alpha \beta}\right)+\frac{p_{2}}{2} d^{4}\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{2}}-\int_{a}^{b} \sup _{t \in[-c, c]} F(x, t) d x}
$$

Then, there exist a non-empty open interval $A \subseteq] 0, \theta]$ and a number $q>0$ with the following property: for each $\lambda \in A$ and for an arbitrary Carathéodory function $g:[a, b] \times R \rightarrow R$ such that $\sup _{|\xi| \leq s}|g(., \xi)| \in L^{1}(a, b)$ for all $s>0$, there is $\delta>0$ such that, whenever $\mu \in[0, \delta]$, problem

$$
\left\{\begin{array}{l}
-\left(p_{1}+p_{2} \int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda f(x, u)+\mu g(x, u) \tag{5}\\
u(a)=u(b)=0
\end{array}\right.
$$

admits at least three weak solutions in X whose norms are less than q.
Proof: For fixed $p_{1}, p_{2}>0$, set $K(t)=p_{1}+p_{2} t$ for all $t \geq 0$. Bearing in mind that $m=p_{1}$, from (j), (jj) and (jjj) we find (i), (iii) and (iv) respectively. In particular, we note that from the setting of K, there exists a continuous function $h:[0,+\infty[\rightarrow R$ such that

$$
h\left(t K\left(t^{2}\right)\right)=t
$$

for all $t \geq 0$, because the function K is non-decreasing in $[0,+\infty[$, with $K(0)>0$, then $t \rightarrow t K\left(t^{2}\right)(t \geq 0)$ is increasing and onto $[0,+\infty[$ (see [17, Remark 4]). So, Assumption (jj) is satisfied. Hence, Theorem 1 yields the conclusion.

Finally, we conclude this section by giving an example to illustrate our results.
Example 1. Consider the problem

$$
\left\{\begin{array}{l}
-\left(1+\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} d x\right) u^{\prime \prime}=\lambda\left(e^{-u} u^{12}(13-u)+1\right)+\mu g(x, u), \tag{6}\\
u(0)=u(1)=0
\end{array}\right.
$$

where $g:[0,1] \times R \rightarrow R$ is a fixed L^{1}-Carathéodory function and $\lambda, \mu>0$. Choose $K(t)=$ $1+t$ for all $t \geq 0$ and $f(x, t)=f(t)=e^{-t} t^{12}(13-t)+1$ for every $t \in[0,1]$. Assumptions (j) and (jj) are satisfied by choosing, for instance $d=2, c=1,[a, b]=[0,1]$ and $\alpha=\beta=\frac{1}{4}$. In particular, since $\lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}=0$, we see that the assumption (jjj) is fulfilled. So, Corollary 1 is applicable to the problem (6) for every $\theta>\frac{272}{2^{12} e^{-2}-136 e^{-1}-135}$.

4 Proof of Theorem 1

For each $u \in X$, we put

$$
\Phi(u)=\frac{1}{2} \tilde{K}\left(\|u\|^{2}\right)
$$

and

$$
J(u)=-\int_{\Omega} F(x, u(x)) d x
$$

where \tilde{K} and F are given in (2) and (3), respectively. Clearly, Φ is a sequentially weakly lower semicontinuous C^{1} functional as well as is bounded on each bounded subset of X, and J is a C^{1} functional with compact derivative. In particular, one has

$$
\Phi^{\prime}(u)(v)=K\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x\right) \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x
$$

and

$$
J^{\prime}(u)(v)=-\int_{\Omega} f(x, u(x)) v(x) d x
$$

for every $v \in X$. We claim that Φ^{\prime} admits a continuous inverse on X (we identity X to X^{*}). To this end, we need to find a continuous operator $T: X \rightarrow X$ such that $T\left(\Phi^{\prime}(u)\right)=u$ for all $u \in X$.
Let $T: X \rightarrow X$ be the operator defined by

$$
T(v)= \begin{cases}\frac{h(\|v\|)}{\|v\|} v & \text { if } v \neq 0 \\ 0 & \text { if } v=0\end{cases}
$$

where h is defined in the statement. Since, h is continuous and $h(0)=0$, we have that the operator T is continuous in X. So, for every $u \in X$, taking into account that $\inf _{t \geq 0} K(t) \geq$ $m>0$, using (v) we obtain

$$
T\left(\Phi^{\prime}(u)\right)=T\left(K\left(\|u\|^{2}\right) u\right)=\frac{h\left(K\left(\|u\|^{2}\right)\|u\|\right)}{K\left(\|u\|^{2}\right)\|u\|} K\left(\|u\|^{2}\right) u=\frac{\|u\|}{K\left(\|u\|^{2}\right)\|u\|} K\left(\|u\|^{2}\right) u=u .
$$

Hence, our claim is proved. Moreover, since $m \leq K(s)$ for all $s \in[0,+\infty[$, we have

$$
\begin{equation*}
\Phi(u) \geq \frac{m}{2}\|u\|^{2} \text { for all } u \in X \tag{7}
\end{equation*}
$$

Further, thanks to (iv), there exist two constants $\gamma, \tau \in R$ with $0<\gamma<\frac{1}{\theta}$ such that

$$
\frac{(b-a)^{2}}{2 m} F(x, t) \leq \gamma t^{2}+\tau \text { for a.e. } x \in(a, b) \text { and all } t \in R .
$$

Fix $u \in X$. Then

$$
\begin{equation*}
F(x, u(x)) \leq \frac{2 m}{(b-a)^{2}}\left(\gamma|u(x)|^{2}+\tau\right) \text { for all } x \in(a, b) . \tag{8}
\end{equation*}
$$

Then, for any fixed $\lambda \in] 0, \theta]$, taking into account that

$$
\begin{equation*}
\max _{x \in[a, b]}|u(x)| \leq \frac{(b-a)^{\frac{1}{2}}}{2}\|u\|, \tag{9}
\end{equation*}
$$

from (7) and (8), we obtain

$$
\begin{aligned}
\Phi(u)+\lambda J(u) & =\frac{1}{2} \tilde{K}\left(\|u\|^{2}\right)-\lambda \int_{a}^{b} F(x, u(x)) d x \\
& \geq \frac{m}{2}\|u\|^{2}-\frac{2 \theta m}{(b-a)^{2}}\left(\gamma \int_{a}^{b}|u(x)|^{2}+\tau(b-a)\right) \\
& \geq \frac{m}{2}\|u\|^{2}-\frac{2 \theta m}{(b-a)^{2}}\left(\gamma \frac{(b-a)^{2}}{4}\|u\|^{2}+\tau(b-a)\right) \\
& =\frac{m}{2}(1-\gamma \theta)\|u\|^{2}-\frac{2 \theta \tau m}{b-a},
\end{aligned}
$$

and so

$$
\lim _{\|u\| \rightarrow \infty}(\Phi(u)+\lambda J(u))=+\infty .
$$

Now, we claim that there exist $r>0$ and $w \in X$ such that

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(u))<r \frac{-J(w)}{\Phi(w)} .
$$

Moreover, taking into account that (9), from (7) we have

$$
\left.\left.\Phi^{-1}(]-\infty, r\right]\right) \subseteq\left\{u \in X ;|u(x)| \leq \sqrt{\frac{r(b-a)}{2 m}} \text { for all } x \in[a, b]\right\}
$$

and it follows that

$$
\sup _{\left.u \in \Phi^{-1}(]-\infty, r \mid\right)}(-J(u)) \leq \int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}, \sqrt{\left.\frac{r(b-a)}{2 m}\right]}\right.} F(x, t) d x .
$$

Now, thanks to Lemma 1, there exist $r>0$ and $w \in X$ such that $\tilde{K}\left(\|w\|^{2}\right)>2 r$ and

$$
\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{r(b-a)}{2 m}}\right.}^{\left.\operatorname{sem}^{\frac{r(b-a)}{2 m}}\right]} \underset{ }{ } F(x, t) d x<2 r \frac{\int_{a}^{b} F(x, w(x)) d x}{\tilde{K}\left(\|w\|^{2}\right)} .
$$

So, $\Phi(w)>r$ and

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-J(u))<r \frac{-J(w)}{\Phi(w)} .
$$

Hence, due to the choice of θ, taking $u_{0}=0$ and $u_{1}=w$, by Proposition B, for a suitable constant ρ, we obtain

$$
\sup _{\lambda \in R} \inf _{u \in X}(\Phi(u)+\lambda J(u)+\rho \lambda)<\inf _{u \in X} \sup _{\lambda \in[0, \theta]}(\Phi(u)+\lambda J(u)+\rho \lambda) .
$$

For any fixed L^{1}-Carathéodory function $g:[a, b] \times R \rightarrow R$, set

$$
\Psi(u)=-\int_{a}^{b} \int_{0}^{u(x)} g(x, s) d s d x .
$$

It is well known that Ψ is a continuously differentiable functional whose differential $\Psi^{\prime}(u) \in$ X^{*}, at $u \in X$ is given by

$$
\Psi^{\prime}(u)(v)=-\int_{a}^{b} g(x, u(x)) v(x) d x \text { for every } v \in X
$$

such that $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Now, all the assumptions of Theorem A, are satisfied. Hence, applying Theorem A, taking into account that the critical points of the functional $\Phi+\lambda J+\mu \Psi$ are exactly the weak solutions of the problem (1), we have the conclusion.

References

[1] G.A. AFROUZI and S. HEIDARKHANI, Three solutions for a quasilinear boundary value problem, Nonlinear Anal. 69 (2008) 3330-3336.
[2] C. O. ALVES, F. S. J. A. CORRÊA and T. F. MA, Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
[3] G. BONANNO, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003) 651-665.
[4] G. BONANNO, Existence of three solutions for a two point boundary value problem, Appl. Math. Lett. 13 (2000) 53-57.
[5] P. CANDITO, Existence of three solutions for a nonautonomous two point boundary value problem, J. Math. Anal. Appl. 252 (2000) 532-537.
[6] M. CHIPOT and B. LOVAT, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. 30 (1997) 4619-4627.
[7] X. HE and W. ZOU, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[8] S. HEIDARKHANI and D. MOTREANU, Multiplicity results for a two-point boundary value problem, PanAmerican Mathematical Journal 19/3 (2009) 69-78.
[9] R. LIVREA, Existence of three solutions for a quasilinear two point boundary value problem, Arch. Math. 79 (2002) 288-298.
[10] T. F. MA, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. 63 (2005), e1957-e1977.
[11] S. A. MARANO and D. MOTREANU, On a three critical points theorem for nondifferentiable functions and applications nonlinear boundary value problems, Nonlinear Anal. 48 (2002) 37-52.
[12] A. MAO and Z. ZHANG, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009) 1275-1287.
[13] K. PERERA and Z. T. ZHANG, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006) 246-255.
[14] B. RICCERI, A further three critical points theorem, Nonlinear Anal. 71 (2009) 41514157.
[15] B. RICCERI, A three critical points theorem revisited, Nonlinear Anal. 70 (2009) 30843089.
[16] B. RICCERI, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-226.
[17] B. RICCERI, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization 46 (2010) 543-549.
[18] E. ZEIDLER, Nonlinear functional analysis and its applications, Vol. II, III. Berlin-Heidelberg-New York 1985.
[19] Z. T. ZHANG and K. PERERA, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 (2006), 456-463.

