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Abstract: 

In this article, We apply Krylov subspace methods in combination of the ADI, BLAGE,... 

method as a preconditioner for a class of linear systems arising from compact finite 

difference schemes in solution of hyperbolic equations )u,uu,t,F(x,t)u(x,-u txxxtt   

subject to appropriate initial and Dirichlet boundary conditions, where   is constant. 

We show The BLAGE preconditioner is extremely effective in achieving optimal 

convergence rates. Numerical results performed on model problem to confirm the 

efficiency of our approach. 
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1-Introduction: 

When solving PDE's by means of numerical methods one often has to deal with large 

systems of linear equations, especially if the PDE's is time-independent or if the time-

integrator is implicit [8]. For real life problems, these large systems can often only be 

solved by means of some iterative method. Even if the system is preconditioned, the 

basic iterative method often converges slowly or even diverges. The numerical solution 

of one space second order hyperbolic equations with nonlinear first derivative terms in 

Cartesian, cylindrical and spherical coordinates are of great importance in many fields of 

engineering and sciences. Many computational models give rise to large sparse linear 

systems. For such systems iterative methods are usually preferred to direct methods 

which are expensive both in memory and computing requirements. When the iterative 

method is based on Krylov subspaces, there is a need to use preconditioning techniques 

in order to achieve convergence in a reasonable number of iteration steps. Since the 

preconditioner plays a critical role in preconditioned Krylov subspace methods, many 

preconditioners have been proposed and studied [22, 5, 11]. Unfortunately, some 

preconditioners have been proposed and studied by many of researchers [17, 10, 11], 

that are not effective for discretization of compact approximation. The ADI method is a 

preconditioner [15, 12] for non-symmetric systems that can be very effective but this 

method is not effective for more general block tri-diagonal systems arising from the 

high-order approximations. Also, BLAGE method [3] is proposed as a preconditioner for 

a class of non-symmetric linear systems arising from the high-order finite difference 

schemes. In this article, we compare different preconditioned methods for solving linear 

systems arising from the compact high-order approximation of hyperbolic equation 

(1.1))u,uu,t,F(x,t)u(x,-u txxxtt   

Defined in the region T]t[0 W   , where } 1 x 0 |{x W   and   is constant. The 

initial conditions consists of 

(1.2)1,x 0(x),g(x,0)u(x),gu(x,0) 2t1   

and boundary conditions consists of 

(1.3)0,t(t),ht)u(1,(t),ht)u(0, 10   

where t)u(x,u  . The resulting block tri-diagonal linear system of equations is solved by 

using Krylov subspace methods. The outline of this paper is as follows:  
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In Section 2, we briefly introduce some available preconditioners. In Section 3, we 

describe Krylov subspace methods. In Section 4 we present a class of compact high-

order finite difference operators and in Section 5, we present an example arising from 

the compact high-order approximations. In Section 6, we report a brief conclusion. 

2-Preconditioner 

The convergence rate of iterative methods depends on spectral properties of the 

coefficient matrix. Hence we will attempt to transform the linear system into another 

equivalent system in the sense that it has the same solution, but has more favorable 

spectral properties. A preconditioner is a matrix that effects such as a transformation [2, 

4]. If the preconditioner be as 21MMM   then the preconditioned system is as 

(2.1)bMx)(MAMM -1

12

-1

2

-1

1  . 

The matrices 1M  and 2M  are called the left and right preconditioners, respectively. 

Now, we briefly describe preconditioners that we use for solving linear systems and let 

us take A matrix arising from fourth order approximations that is block tri-diagonal. 

2-1Preconditioner based on relaxation technique 

Let A=D+L+U such that D, L and U are diagonal, lower and upper triangular block 

matrices, respectively. A splitting of the coefficient matrix is as A=M-N where the 

stationary iteration for solving a linear system is as 

(2.2)bMNxMx -1(k)-11)(k  . 

In Table 1, we briefly show preconditioners based on relaxation technique. 

In the above notation,   is called the relaxation parameter. The optimal value of the 

parameter   reduces the number of iterations to a lower order [1]. We have chose M in 

Jacobi, G-S, SOR as a left preconditioner and in SSOR preconditioner, we have chose 

L) (D
)-(2

1
M1 


  as a left preconditioner and U)(DDM -1

2  as a right 

preconditioner. Also, we take
211

2

J

opt
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Table 1: Preconditioners based on relaxation technique Preconditioner 

Preconditioner M 

Jacobi D 

Gauss-Seidel (D+L) 

SOR )(
1

LD 


  

SSOR )()(
)2(

1 1 UDDLD 





  

 

2-2ADI preconditioner 

Peaceman and Rachford [16] in 1955 presented the ADI method for solving linear 

systems. Let A=H+V and in the form 



























nn

nnn

BA

CBA

CBA

CB

A

111

222

11

  

Where },,{ 111 iiii cbatridiagA  , },,{ 222 iiii cbatridiagB   and },,{ 333 iiii cbatridiagC   of 

order NN  where H and V are bounded and include },,5.0{ 13 iii bbBH  , 

},,,,5.0{ 3311 iiiii cacaBV  . The alternative direction implicit method for solving the linear 

system Ax=b is in following form: 

(2.3),I)ur-(V-bI)ur(H (k)

1

1/2)(k

1    

(2.4),I)ur-(H-bI)ur(V 1/2)(k

2

1)(k

2

   

The ADI preconditioner is as I)rI)(Vr(HM 21  that I)r(HM 11  and 

I)r(VM 22  where Parameters 1r  and 2r  are acceleration parameters. Young and Varga 

[25, 23] proved that the optimum value for 1r  and 2r  is   where  , ii    and 

ii  ,  are eigenvalues of matrices H and V respectively. 

2-3BLAGE preconditioner 

The BLAGE method [3, 7] was originally introduced as analogue of the AGE method [6]. 

The BLAGE uses fractional splitting technique that is applied in two half steps on linear 

systems with block tri-diagonal matrices of order 22 NN  and in the form 
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where ii B ,A and iC  are tri-diagonal matrices of order NN . The splitting of matrix A is 

sum of matrices 1G  and 2G  in which 21 GGA  where 1G  and 2G  are of the form  
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for odd values of  n  where ii B
2

1
=B  . The BLAGE preconditioner is as 

I)I)(G(GM 2211    that I)(GM 111   and I)(GM 222   where 1  and 2  are 

optimal iteration parameters. We have experimentally chosen the relaxation parameter 

211   and
122    where )(M1min1   ,  )(M1max1   and )(M 2min2   , 

)(M 2max2   so that we will have the minimum condition number. 

3-Krylov subspace methods 

Let 0x   be an arbitrary initial guess for linear systems given by bAx  and let 

00 Ax-br  be the corresponding residual vector. A Krylov subspace of order m  that is 

shown with r)(A,Km is defined as follows: 

(3.1) }r A,...,rA ,{rspan  )r(A,K 0

1-m

000m  . 

For un-symmetric matrix A, different Krylov methods can be used such as GMRES, 

GMRES(m), QMR, CGS, BiCG, BiCGSTAB [18, 24]. Now, we briefly describe some Krylov 

subspace methods: 

3-1Generalized Minimal residual(GMRES) method 

In 1986, Saad and Schultz [19] introduced GMRES method for solving non-symmetric 

systems. This method has the property of minimizing the norm of the residual vector 

over the Krylov subspace method at every step. The major drawback for GMRES method 

is that the amounts of work and storage required per iteration linearly rises with the 
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iteration number. The usual way for overcome this problem is to restart after m 

iteration.  

Proposition 3.1: Assume that A is a diagonalizable matrix and let -1XDXA  where 

},...,diag{D n1   is the diagonal matrix of eigenvalues. Define, 

.|)p(|maxmin in1,...,i1p(0)Pp

)(

m
 m  

Then, the residual norm achieved by the m-th step of GMRES satisfies the inequality  

,r)(
20

m

m XKr   Where .K(X)
2

1

2

 XX When A  is positive real with symmetric 

part M , the following error bound can be derived from the proposition, 

(3.2),r]/1[ 0

2/m

mr   

with 2

min (M))(  ,  A).(A T

max  This proves the convergence of the GMRES(m) for 

all m  when A  is positive real [18]. 

3-2Bi-Conjugate Gradient (BiCG) method 

Bi-conjugate gradient (BiCG) method was suggested by Fletcher in 1977, is applied to 

non-symmetric matrices. BiCG method needs matrix-vector products with A  and TA . 

Also, BiCG method is sensitive to possible breakdowns and numerical instabilities 

Proposition 3.2: The vectors produced by the Bi-conjugate Gradient algorithm satisfy 

the following orthogonality properties: 

)4.3(,,0),(

)3.3(,,0),(

*

*

jiforpAp

jiforrr

ij

ij




 

The following theorem is well-known, [18]. 

3-3Quasi- Minimal Residual (QMR) method 

In 1991, Freund and Nachtigal proposed the quasi-minimal residual (QMR) method for 

solving non-Hermitian linear systems. Later in 1994, they presented QMR method based 

on the coupled two-term recurrences instead of three-term recurrences [9]. This 

method sometimes avoids the break down of BiCG method. Also, QMR method has a 

regular convergence behavior than other Krylov subspace methods. 

Proposition 3.3: The residual norm of the approximate solution mx  of QMR method 

satisfies the relation ....
20121 rssVAxb mmm   

The following theorem  is well-known, cf. [18]. 

3-4Conjugate Gradient Squared (CGS) method 
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In 1989, Sonneveld presented the conjugate gradient squared (CGS) method for non-

symmetric systems [21]. The speed of convergence of this method usually is about twice 

as fast as BiCG method. Convergence behavior of this method is often quite irregular, 

which may result loss of accuracy in the updated residual. Algorithm of Preconditioned 

Conjugate Gradient Squared method is presented in [21]. 

3-5Bi-Conjugate Gradient Stabilized (BiCGSTAB) method 

This method is applied for non-symmetric systems. Bi-conjugate gradient stabilized 

method is an alternative for CGS method that avoids the irregular convergence behavior 

of CGS method while maintaining about the same speed of convergence [20]. Algorithm 

of BiCGSTAB method that applied to the preconditioned system (2.1) is presented in [2]. 

4-Compact high-order approximations 

Now let us
h

k
p  , Mohanty et al. [14] have derived finite difference schemes of fourth-

order accuracy for equations of the form 

t),f(x,t)u(x,t)u(x,t)u(x,t)uA(x,-u txxxtt    

Here, we present the compact high-order scheme for (4.1) that can be written in the 

form 
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Where 

)11.4(,226,)(,)( 42343224321 LLLLLLLL  

)12.4(,4212,)22(,)22( 41643154314 LLLLLLLL  

)13.4(,226,)(,)( 42943284327 LLLLLLLL  

If we put above operators in (4.1) we arrive to a system of equations in which the 

corresponding matrix is tri-diagonal. We can solve this system with well-known 

iterative methods such as Krylov subspace methods. 

5-Numerical experiment 

In this section, we present a numerical example to show the computational efficiency of 

the preconditioning methods introduced in Section 2. Our initial guess is the zero vector 

and the iterations are stopped when the norm of relative residual is less than 610 . In 

following Tables, We show the iteration number without using preconditioner by "no 

pre". The computations have been done on a P.C. with Corw 2 Pue 2.0 Ghz and 1024 MB 

RAM. We consider hyperbolic differential equation 

)1.5(uuuu txxxtt  , 

subject to appropriate initial and Dirichlet boundary conditions (1-2,1-3), where 

(5.2)3t).exp(2xt)u(x,   

We discretized equation (5.1) by using compact high-order approximation. We show the 

iteration count of different Krylov subspace methods in combination various 

preconditioning in Tables 2-6. When mesh size h  is finer, we encounter break down by 
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using direct preconditioners while BLAGE preconditioners work quite well. In Figures 1-

5, comparison of convergence behaviors are shown. Also, In Fig. 6, 7, for sample we 

show distribution of eigen-values ADI and BLAGE preconditioners that  M ,M 21 are left 

and right preconditioners respectively. It is obvious that the distribution of eigen-value 

BLAGE preconditioner is regular than ADI. 

Number of iterations with GMRES method 

N no pre Jacobi SOR SSOR ADI BLAGE 

1/20 147 131 72 53 33 63 

1/40 350 335 170 144 48 183 

1/60 564 530 273 318 220 294 

1/80 770 724 Nun Nun 405 455 

 

Number of iterations with CGS method 

N no pre Jacobi SOR SSOR ADI BLAGE 

1/20 162 155 82 57 52 79 

1/40 621 878 417 637 114 369 

1/60 1232 Nun Nun Nun Nun 912 

1/80 2003 Nun Nun Nun Nun 1430 

 

Number of iterations with QMR method 

N no pre Jacobi SOR SSOR ADI BLAGE 

1/20 154 143 102 60 45 81 

1/40 553 605 407 409 93 309 

1/60 1113 Nun Nun Nun Nun 781 

1/80 1930 Nun Nun Nun Nun 1356 

 

 

 

Number of iterations with BiCG method 

N no pre Jacobi SOR SSOR ADI BLAGE 

1/20 154 148 103 61 44 82 
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1/40 553 608 486 405 91 309 

1/60 1126 Nun Nun Nun Nun 803 

1/80 1922 Nun Nun Nun Nun 1504 

 

Number of iterations with BiCGSTAB method 

N no pre Jacobi SOR SSOR ADI BLAGE 

1/20 369 291 96 67 54 83 

1/40 1067 1265 584 917 111 499 

1/60 2169 Nun Nun Nun Nun 1381 

1/80 3503 Nun Nun Nun Nun 2132 

 

 

Comparison of convergent behavior of GMRES (left) and CGS (right) methods 

 

Comparison of convergent behavior of QMR (left) and BiCG (right) methods 
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Comparison of convergent behavior of BiCGSTAB method 

 

Distribution of eigenvalues in ADI Preconditioner 

 

Distribution of eigen-values in BLAGE Preconditioner 

We see that we obtain less iteration number with using ADI and SSOR preconditioners 

but SSOR preconditioner needs more computing time than other preconditioners. Also, 

we saw that using ADI and BLAGE preconditioner we save in computing time. It is seen 

that when the condition number is high, the ADI and SSOR preconditioner do not work 

very well but in well-conditioned problems the iteration number of the BLAGE, SSOR 

preconditioners is less and the iteration number of the Jacobi and SOR preconditioners 

is more. We found when mesh size is finer, the QMR, BiCG, CGS and BiCGSTAB methods 

in composition preconditioners don't work very well but with using GMRES method in 
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composition preconditioners, we get less iteration number than other preconditioned 

Krylov subspace methods. Also, preconditioned GMRES method has regular convergence 

behavior. 

6-Conclusions 

Here, we compared the different preconditioners in non-symmetric systems for 

hyperbolic equation. From Tables and Figures, we see that although all the methods 

seem to work well with BLAGE preconditioning using GMRES gives the fastest 

convergence. Also, the computing time of BLAGE preconditioner is less than other 

preconditioners. So we propose using BLAGE preconditioner because of less computing 

time and the less iteration numbers. We propose using the parallel machines for better 

comparison of block preconditioners because the BLAGE and ADI preconditioners can 

be employed in parallel environment where the preconditioning operations can be 

divided into several sub-problems which can be run in parallel [3]. 
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