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Abstract 

 
In this paper we propose a dynamic model for evaluating of time risk in 
stochastic network, where the activity durations are exponentionaly distributed 
random variable and independent. We would like to present a new definition of 
general risk index for project in each time and connect it to the notation of its 
activity criticalities. We model such networks as finite-state, absorbing, and 
continuous Marko chain with upper triangular generator matrices. The state 
space is related to the network structure. The criticality index for each activity 
will be computed and then we put forward a fuzzy way of measuring the 
criticality to computing project states criticality. Then by using the probability of 
absorption in each state severity of criticality will be computed dynamically. The 
criticality measure obtained may serve as a measure of risk or of the supervision 
effort needed by senior management. It also by ranking the states before project 
initiating is able to forecast the critical states in order and help to the project 
management to developing a proper guideline for resource planning and allocation. 
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1-introduction 

Although project risk management has been investigated by many researchers, one cannot 
find many models regarding dynamic project risk management in the literature. Several 
research employed concept of dynamic PERT to compute project completion time. Charnes 
et al. [1] developed a chance-constrained programming, where the activity durations are 
assumed to be exponential. For polynomial activity durations, Martin [2] provided a 
systematic way of analyzing the problem through series-parallel reductions. Schmit and 
Grossmann [3] developed a new technique for computing the exact overall duration of a 
project, when activity durations use a probability density function, which combines 
piecewise polynomial segments and Dirac delta functions, defined over a finite interval. 
Fatemi Ghomi and Hashemin [4] generalized the Gaussian quadrature formula to compute F 
(T) or the distribution of the total duration, T. Fatemi Ghomi and Rabbani [5] presented a 
structural mechanism, which changes the structure of a network to a series parallel 
network, in order to estimate F(T).Kulkarni and Adlakha [6] developed a continuous-time 
Markov process approach to PERT problems, with exponentially distributed activity 
durations. Elmaghraby [7] provided lower bounds for the true expected project completion 
time. Azaron and modarres [8] developed an analytical method to compute the project 
completion time in dynamic PERT networks with generating projects.Azaron et al [9] 
developed a method for approximating the distribution function of the longest path length 
in the network of queues by constructing a proper continuous-time Markov chain. 
Fulkerson [10], Robillard [11] and Perry and Creig [12] have done similar work. 
Other research also investigated concept of criticality and risk in each activity or path and 
completion time in project network by using fuzzy and crisp duration time. Zielin´ski [13], 
Slyeptsov and Tyshchuk [14, 15], Dubois et al. [16], Chanas et al. [17], Chanas and Zielin´ski 
[18–20], Kuchta [21], and others [22–24], employed the concept of fuzziness [25, 26] to 
these cases, and developed analysis approaches. Most of these approaches are based on the 
CPM with formulas for the forward and the backward recursions, in which the deterministic 
activity times are replaced with the fuzzy activity times.Fatemi and Teimouri [27] 
presented a exact formula to compute the path critical index and activity critical index for 
the PERT network by assuming that each activity duration time is a discrete random 
variable. Bowman [28] described an algorithm for estimating arc and path criticalities in 
stochastic activity network by combining Mont Carlo simulation with exact analysis 
conditioned on node release times. Other researchers also done similar cases, but 
investigating the criticality of a set of activities that are simultaneous progress in project 
network do not much. 

However in this paper we describe a method by combining the concept of continuous-time 
Markov process approach to PERT problems that are explained by Kulkarni and Adlakha [6] 
and the approach was proposed by  Bowman[28] for estimating arc criticality to obtaining 
the risk index for a set of activity that are progress in project network. The risk index would 
help the decision maker to forecast and decide which time project and activity have to be 
supervised more closely and which time less. 

The present paper is organized as follows. In section 2 a full description of transforming 
PERT network into continuous-time Markov chain from [6] and [8] is outlined. Section 3 
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deals with the computing risk index for activities and each state by using fuzzy concept and 
[28].proposed method for dynamic risk estimation in this section is introduced. Numerical 
example in section 4 is presented and finally we draw the conclusion of the paper in section 
5. 

 

2. Transforming PERT network into continuous-time Markov chain 

In this section , we  review the method of Kulkarni and Adlakha [6] to transforming PERT 
network into continuous-time Markov chain and obtain the distribution function of 
absorption to each state of Markov chain by starting from state 1 in every time of project 
implementation. 

Let G = (V, A) be a network with set of nodes  mvvvV ,...,, 21  and set of arcs 

 naaaA ,...,, 21 .Assume that G is a directed acyclic network with a single source and a 

single sink. . The source and sink nodes are denoted by s and t, respectively. Length of arc 
Aa  is an exponentially distributed random variable with parameter a . For Aa , let 

)(as be the starting node of arc a  and )(af be the ending node of arc a . 

Definition 1. )(vI  and )(vO are the sets of arcs ending and starting at node v, respectively, 

which are defined as follows: 
},)(:{)( VvvafAavI   

},)(:{)( VvvasAavO   

Definition 2. If VW  such that Ws and WVWt  , then an (s, t) cut is defined as: 

   WafWasAaWW  )(,)(:,  

An (s, t) cut ),( WW is called a uniformly directed cut (UDC), if  WW , is empty. Each UDC is 

clearly a set of arcs, in which the starting node of each arc belongs to W  and the ending 

node of each arc belongs toW . 
Definition 3. Let FED  be a uniformly directed cut (UDC) of a network. Then, it is 

called an admissible 2-partition, if: 
1. DFE   

2. FE   

3.   FafIFa  )(,  

Definition 4. During the project execution and at time t , each activity can be in one of the 
active, dormant or idle states, which are defined as follows: 
(i) Active: activity a  is active at time t , if it is being executed at time t . 
(ii) Dormant: activity a  is dormant at time t , if it has finished but there is at least one 

unfinished activity in  )(afI .If activity a  is dormant at time t , then its successor activities 

in  )(afO cannot begin. 

(iii) Idle: activity a  is idle at time t  if it is neither active nor dormant at time t . 

The sets of active and dormant states are denoted by  tY ,  tZ  respectively, 

and  )(),()( tZtYtX  . 
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Let S  denote the set of all admissible 2-partition UDCs of the network, and   , SS . 

Note that ),()( tX implies that )(tY  and )(tZ , i.e., all activities are idle at time t  

and hence the project is completed by time t .   0;)(),()(  ttZtYtX Is a continuous-time 

Markov process with the state space S . The elements of the infinitesimal generator matrix 

of this process denoted by    SFEFEFEFEqQ  ),(),,(&),(),,( and are calculated as 

follows:  
 

  aFEFEq  ),(),,(        ;,,)(, aFFaEEaFafIEifa             (1) 

 
                              ;)(,)(,)(,; afIFFafOaEEaFafIEifaa    

 

                     FFEEif
Ea

a  


,  

                     = 0                  otherwise 
 0);( ttX  Is a finite-state absorbing continuous-time Markov process and 

since   0),(),,( q , it is concluded that this state is an absorbing one and obviously the 

other states are transient. Furthermore, we number the states in S  such this Q matrix are 

an upper triangular one. We assume that the states are numbered SN ,...,3,2,1 . State 1 is 

the initial state, namely  ),(sO , and state N is the absorbing state, namely  و . 

Chapman–Kolmogorov forward equations can be applied to compute the distribution 
function of the absorption to each state of Markov chain by starting from state 1 in the 
stochastic network. Applying the forward algorithm, define: 

  NiXitXPtPi ,...,2,1,1)0()()(                                                            (2) 

Using the forward algorithm, the system of differential equations for the vector 

 )(),...,(),()( tPtPtPtP N21  is given by: 

,)()( QtPtP                                                                                                    (3) 

 TP 0,...,0,1)0(   

By using the Laplace transform we can solve the system of differential equations for the 

vector  )(),...,(),()( tPtPtPtP N21 . 

 
3. Arcs and states criticality (risk) estimation 
 
The criticality of each activity is defined the probability that each activity is on the critical 
path of the network. In this section first we present the method of Bowman [28] to obtain 
the arcs criticality in project network. In this method the arcs criticality are computed by 
using following theorem and conditioning on the node release times (the time at which all 
arcs coming into a node have been completed and all arcs emanating from the node can 
begin).  
The theorem refers to Figure 1. Figure 1 focuses the view of a network on a single node  
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(Node *). Similarly, Theorem focuses on a single node at a time, thus providing a basis for 
arc criticality estimation for the entire network. The following notation is used in addition 
to that which has already been introduced. 
Let iT  = the length of the longest path to node i  (with realizations it  ), 

 kCn = the probability that node k  is on the longest path, 

 xFi = the cdf for the length of arc i , and 

 nTT ttf
n

,...,1...1
= the joint PDF for the node release times and the activity durations are 

exponentionaly distributed. 
 iC a = criticality of activity i (the probability that the activity i  is on the critical path of the 

network). 
 
THEOREM1. 
 

      nnTTnnaa dtdtttftTtTiCiC
n

...,...,,...,... 11...11 1
  









   For qi ,...,1               (4) 

Where 

 

   

   
 nnnq

k

q

kj
j

jjkk

q

ij
j

jjii

nna tTtTC

ttFttf

ttFttf

tTtTiC 







 










,...,*,..., 11

1 1

**

1

**

11           (5) 

And 

   





sq

qj

nnannn tTtTjCtTtTC
1

1111 ,...,,...,*                                              (6) 

 
Figure 1 

 
Now by using theorem1 we can compute the criticality index of each state of Markov chain 
as follows: 
Definition 5. the criticality index of each state is the criticality of the set of active activities 
in each state. 
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q 

* 
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aq+
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Let )(tYi =the set of active activities in state i in time t  

in =number of active activities in state i (number of member of )(tYi ) 

 ijC =the criticality of activity j in state i  

Define: 

 iiji njCl ,...,1;min                                                                                      (7) 

 
 iiji njCu ,...,1;max                                                                                     (8) 

i

n

j

ij

i
n

C

R

i





1                                                                                                      (9) 

il , iu and iR  can be candid for state i criticality index. But selecting the il and iu , 

respectively is optimistic and pessimistic selection. Using of the iR is suitable, but is not very 

good estimate. Because the different states with variety activity criticality can be have 
similar amount. Therefore using of fuzzy triangular number can be proper in this case. 
Hence let us to define: 

 
   iiii uRlx ,,~      1.00                                                                                  (10) 

ix~ Is presented in figure 2. 

 
Figure 2. 

 
  Is amount of the decision maker’s attitude or understanding of criticality that takes into 
account to il and iu  have a chance for selecting as a state criticality index. 

The membership function of  ix~  is defined as follow: 

    1
1




 i

ii

i Rx
lR

x


    If   ii Rxl                                                           (11) 

            1
1




 i

ii

Rx
uR 

  If    ii uxR  

 

iR  

1 

il  iu  
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Now by the centroid defuzzy method we can obtain the criticality (risk) index of each state 
as follow: 

 

 




i

i

i

i

u

l
i

u

l
i

i

dxx

dxxx
R





                                                                                                        (12) 

 
Now we are ready to introduce dynamic risk estimation for each state. Let us define: 
 

    iii RtPtSR                                                                                                              (13) 

 

 tSRi =the severity of risk in state i  at time t   

 tPi = the probability of absorption at time t  in state i  when starting in state 1 

iR = the risk index for state i  

By using (13) we are able to forecast and estimate the severity of project risk in every time 
of project implementation. 
 
4. Numerical example 
 
To illustrate the proposed method we investigate the example that it was studied by 
Elmaghrabi [29] to compute project completion time.  
In figure 3 assume all arc lengths are exponentially distributed and C1,C2 and C3 are 
uniformly direct cuts. 

 
Figure 3. 

Where:   
C1= {1, 2}, C2= {2, 3, 4} and C3= {4, 5} 
Note that we did not include cutset {1, 3, 5} since it is not a UDC: arcs (1, 2) and (3, 4) are 

directed from W intoW , but arc (2, 3) is directed from W intoW . 
When the project is initiated cutset C1 would come into play, and activities 1 and 2 are 

1 
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4 
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both active. Change in the state of the project can come about in one of two shapes: either 
(i) activity 1 completes before activity 2, in which case cutset C2 comes into play, or  
(ii) activity 2 completes, in which case it remains dormant until activity 1 completes, at 
which time the cutset changes to C2 with activities 3 and 4 active and activity 2 remaining 
dormant. Denote an active activity by the letter ‘a’ and a dormant activity by the letter ‘d’. 
Then we may represent the possible states thus far discussed as follows: 
 

)2,1( aa →  da 2,1  Or  aaa 4,3,2  

 

According to similar process other states will be obtained and S is presented as follow: 
 
 














)5,4(),5,4(),5,4(),4,3,2(),4,3,2(),4,3,2(

),4,3,2(),4,3,2(),4,3,2(),2,1(),2,1(

daadaadaadaddda

adaaadaaadaaa
S  

And 

  , SS Is defined as follow: 

 














),(),5,4(),5,4(),5,4(),4,3,2(),4,3,2(

),4,3,2(),4,3,2(),4,3,2(),4,3,2(),2,1(),2,1(

daadaadaadad

ddaadaaadaaadaaa
S  

The state space of the continuous-time Markov process is presented in figure 4 and table 1. 

 
 

Figure 4. 
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Table 1. 

The states of continuous-time Markov process 

 
 

The elements of the infinitesimal generator matrix of this process appear as follow: 
 





































































000000000000

24.24.0000000000

25.025.000000000

025.24.49.00000000

004.04.0000000

003.003.000000

00003.4.7.00000

0003.024.054.0000

0004.24.00064.000

00000024.4.3.94.00

000000002.02.0

0000000002.3.5.

Q  

 
The differential equations corresponding to the rate matrix Q from (3) are: 

)(5.)( 1,11,1 tPtP                       (*) 

)(2.)(3.)( 2,11,12,1 tPtPtP   

)(94.)(2.)( 3,11,13,1 tPtPtP   

)(64.)(3.)(2.)( 4,13,12,14,1 tPtPtPtP   

)(54.)(4.)( 5,13,15,1 tPtPtP   

)(7.)(24.)( 6,13,16,1 tPtPtP   

)(3.)(4.)(24.)( 7,16,15,17,1 tPtPtPtP   

)(4.)(3.)(24.)( 8,16,14,18,1 tPtPtPtP   

number state 

1   ,2,1 aa  

2     da 2,1  

3   ,4,3,2 aaa  

4     daa 2,4,3  

5     daa 3,4,2  

6     daa 4,3,2  

number state 

7     dda 4,3,2  

8     dda 4,2,3  

9   ,5,4 aa  

10     da 4,5  

11     da 5,4  

12   ,  
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)(49.)(3.)(4.)( 9,15,14,19,1 tPtPtPtP   

)(25.)(24.)(4.)(3.)( 10,19,18,17,110,1 tPtPtPtPtP   

)(24.)(25.)( 11,19,111,1 tPtPtP   

)(24.)(25.)( 11,110,112,1 tPtPtP   

 TP 0,...,0,1)0(   

Note that )(,1 tP i  is the probability of absorption at time t  in state i  when starting in state 

1.to solve this system differential equation by using Laplace transform we will have:  

From (*): 
5.

1
)()0()5.)(()(5.)0()( 1,11,11,11,11,11,1




s
sPPssPsPPssP  

Now inversion of this Laplace transform would give: 

 tetP 5.

1,1 )(   

By using this method for other differential equations the solutions appears as follow: 
tt ee 5.2.

1,2 (t)P    
tt ee 94.5.

1,3 (t)P    
tttt eeee 64.94.5.2.

1,4 (t)P    
ttt eee 94.54.5.

1,5 (t)P    
ttt eee 94.7.5.

1,6 (t)P    
ttttt eeeee 7.94.54.5.3.

1,7 (t)P  

  ttttt eeeee 64.94.5.2.4.

1,8 (t)P

te 7.  
  ttttt eeeee 64.94.5.2.49.

1,9 (t)P

te 54.  
  ttttt eeeee 94.54.5.3.25.

1,10 (t)P

-.49t-.64t-.2t-.4t7. 87.049722e-1.21212e-7.3730304e2.666664e   te  
  ttttt eeeee 94.5.2.49.24.

1,11(t)P

tt ee 54.64.    
  tttt eeee 54.5.3.25.

1,12 (t)P

  te 64.-.2t-.4t-.7t-.94t 757575.013.918458e-1.666665e-0.555555e0.2525247e  
tt ee 24.49 999977.4049722.87    

 
Now we estimate the activities criticality by using theorem 1. 
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Therefore: 
 

5.11,5.7,5,0 4321  TTTT
 

 
And by (5): 
 

  
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293.4
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1

415.624.5.61425.

5.61425.
25.5.11124.167.91

24.167.91
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
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





eeee

ee
C

 
By similar calculation other arcs criticalities are obtain as follow: 
 

738.,262.,233.,505. 12132324  CCCC  

 
And then by (9) 

5.
2

262.738.

2

2

1

1

1 





j

jC

R  

And respectively: 
 

,233.,262.,384.,369.,333.,738. 765432  RRRRRR  

0,495.,505.,5.,248. 12111098  RRRRR  

For simplify let us assume 0 .now by using (7), (8) and (9) the fuzzy triangular numbers 
are made .results are presented in the following table. 
 

ix~ iu il 
iR state i 

.262,.500,.738) ).738 .262 .500 )2,1( aa 1 

.738,.738,.738) ).738 .738 .738 )2,1( da 2 
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.233,.333,.505) ).505 .233 .333 )4,3,2( aaa 3 

.233,.369,.505) ).505 .233 .369 )4,3,2( aad 4 

.262,.384,.505) ).505 .262 .384 )4,3,2( ada 5 

.233,.248,.262) ).262 .233 .248 )4,3,2( daa 6 

.262,.262,.262) ).262 .262 .262 )4,3,2( dda 7 

.233,.233,.233) ).233 .233 .233 )4,3,2( dad 8 

.495,.500,.505) ).505 .495 .500 )5,4( aa 9 

.505,.505,.505) ).505 .505 .505 )5,4( ad 10 

.495,.495,.495) ).495 .495 .495 )5,4( da 11 

0,0,0) )0 0 0   , 12 

Table 2. 
Now by the centroid defuzzy method the criticality (risk) index of each state is obtained as 
follow:  

0.248,0.343,0.369,0.357,0.738,0.5, 654321  RRRRRR  

 
00.495,0.505,0.498,0.233,0.262, 121110987  RRRRRR  

Now the severity of risk for each state will be calculated from (13).in the remaining paper 
SR is used instead “severity of risk”. To show the results of the proposed method, present 
example is investigated at interval time [0-15]. (We assume that the time step is equal to 
0.1).amount of SR for some times is presented in table 3. 

SR For some times in each state 
Time 

state 
T=0.1 T=5 T=7.5 T=10 T=12.5 T=15 

1 0.47561471 0.04104250 0.01175887 0.00336897 0.00096523 0.00027654 
2 0.02137931 0.21091630 0.14731396 0.09490483 0.05915405 0.03633468 
3 0.00664452 0.01184423 0.00367553 0.00107996 0.00031198 0.00008963 
4 0.00020916 0.04262407 0.03224555 0.02130445 0.01338915 0.00824664 
5 0.00012844 0.01413854 0.00692216 0.00277203 0.00100292 0.00034186 
6 0.00006347 0.00531377 0.00226479 0.00079547 0.00025506 0.00007795 
7 0.00000158 0.01255955 0.01137865 0.00763502 0.00442552 0.00236683 
8 0.00000159 0.01517855 0.01577093 0.01245568 0.00868858 0.00569315 
9 0.00000564 0.05013567 0.04941036 0.03696320 0.02453516 0.01542563 

10 0.00000009 0.05477884 0.09169653 0.10119975 0.09055081 0.07181572 
11 0.00000004 0.02120638 0.03567689 0.03960991 0.03570870 0.02858365 
12 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

Table 3. 
Treat of the amount of SR for each state is shown in the following figures at times T= 0.1, 
T=5, T=10 and T=15.  



Hossein Mehrabadi / TJMCS Vol .3 No.1 (2011) 35-52 

 47 

0.00000000
0.10000000

0.20000000

0.30000000
0.40000000

0.50000000

severity of 

the risk

1 2 3 4 5 6 7 8 9 101112

states

the severity of the risk for states at 

time T=.1

 
Figure 5. 

In initial times the state no 1 have the SR almost equal to 0.475 and other states own 
less SR .  
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Figure 6. 
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Figure 7. 
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Figure 8. 

Figures 6,7and 8 imply that some states such as 6 and 7 own less SR during project 
implementation.  
Respectively, treat of SR for some states such as 1,6and 11 in interval time [0-15] are 
presented in following figures: 

treat of the severity of risk in state 1
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 r
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Figure 9. 

treat of the severity of risk in state 6
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Figure 10. 
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treat of the severity of  risk in state 11
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Figure 11. 

 
Curve of maximum SR  at each time of project implementation in interval [0-15] is present 
in figure 12. 
 

treat of the MAX severities of the risk in interval [0-15]
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Figure 12. 

 
 
5. Conclusion 

 

In this paper an analytical method is developed to evaluating severity of the risk in PERT 
network, where the activity durations are exponentionaly distributed random variable and 
independent. In the proposed method, the PERT network was transformed into continuous-
time Markov process. Then we presented a method for computing the risk index for each 
state of Markov process based on fuzzy theory and by using absorption probability in each 
state the severity of risk for each state was computed. It connects a new concept of project 
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risk to its activity criticalities and proposes a new method to evaluating the risk in 
stochastic networks. The measure obtained would help the decision maker to forecast and 
decide which time project and activity have to be supervised more closely and which time 
less. It also can serve as indicator of general risk of whole of the project to reporting to the 
senior management or others in each specific time. In other word it can be use as a tool to 
identify states that needs to more attention and keep in managing and resources allocation. 
This model is being introduced here for the first time, and it would be impossible to 
compare our result to other paper results. Our estimation can be considered as a good index 
for general risk of project and a start to develop some analytical or approximation 
approaches to deal with overall project risk management. 

However, this paper can be considered as an introduction for the development of proper 
dispatching rules in dynamic risk management, analytically. For further research, it is 
necessary to understand the limitations of our method and then develop some approaches 
to overcome the problems, which result from the limitations. The state space of the 
continuous-time Markov process grows exponentially with the network size. As the worst 
case example, for a complete transformed network with l nodes and 2/)1( ll arcs, the size 

of the state space is given by 1)(  ll UUlN , where 





l

k

klk

lU
0

)(2                                                                                                                              (14) 

 (Refer to [6]). 
 

Therefore, the major limitation of the method described in this paper is its nature of NP 
hardness. In practice, the number of arcs is generally much less than 2/)1( ll , and it should 

also be noted that for large networks, any alternate method of producing reasonably 
accurate answers will be prohibitively expensive. 
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