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Abstract

This study explores adaptive predefined-time fractional-order proportional-derivative terminal sliding mode control (APt-
FoSMC) for robotic manipulators dealing with uncertainties and external disturbances. We introduce a new predefined-time
proportional-derivative FoSMC control method that uses proportional-derivative control to ensure guaranteed predefined-time
convergence and superior tracking performance. This approach also helps to reduce control input chattering, which is a common
issue. The APtFoSMC is designed not to require previous knowledge of the boundaries of the uncertain system dynamics it es-
timates. Applying the Lyapunov theorem establishes the predefined-time stability of the suggested closed-loop system. We then
use computer simulations on a PUMA 560 robotic manipulator system to validate the effectiveness of the suggested APtFoSMC
approach.
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1. Introduction

Accurate control of robotic manipulators is necessary for automation in a variety of industries. How-
ever, it could be challenging to accomplish this control due to their intricate and erratic movements. It
is well known that unknown disturbances and uncertainties easily destroy the precision of motion and
stability of performance that a manipulation task requires [12]. Most control techniques developed to
date rely on a mathematical model of the robot to simulate its behavior and derive a control law [21].
Unfortunately, real robots may behave quite differently due to manufacturing variances. This may result
in unexpected behavior or unmodeled dynamics, which can greatly affect control performance and lead
to errors, instability, or safety issues [24]. This uncertainty illustrates the increasing need for robotics to
develop robust control approaches. Unlike more traditional methods, robust control aims at maintaining
desired performance and stability in the presence of these unknowns [3].
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Because sliding mode control (SMC) can handle external disturbances and uncertainties, it has become
increasingly popular for controlling complex systems in recent years. This becomes particularly important
for real-world robots with complex dynamics that are difficult to characterize sufficiently [25, 36]. Then,
terminal SMC (TSM) was developed, and its advantage was that it guaranteed the state’s convergence
in a specified period [9, 42]. When robots follow a predetermined path, they are more precise and
robust. As stated by this research, TSM may have a larger convergence rate than other approaches [10,
16, 32]. Moreover, some applications of TSM have to be judiciously considered and could pose problems
in the long term [11, 31, 35, 38]. The present research is dedicated to making TSM more robust and
sensitive [13, 40]. Fractional-order calculus generalizes conventional calculus by permitting integrals and
derivatives of arbitrary (non-integer) order; therefore, a subset of generalized differential order is called
fractional order [6]. This freedom gives more effective modeling and control in complex systems of science
and engineering [18, 20]. According to [28], the FOSMC method is viable for improving robotic system
control. FOSMC extends the advantages of conventional sliding mode control by integrating fractional-
order calculus, which can improve tracking and robustness performances against uncertain dynamics [23].
This technique has already been successfully tried with a lot of robotic systems, including autonomous
vehicles, mobile robots, and robot manipulators, and that shows potential for better performance in the
area of robotic technology [33].

Although finite-time control methods provide guaranteed state convergence in a finite amount of
time, the system’s initial conditions may affect the actual speed [2]. By guaranteeing convergence within
a specified time limit irrespective of the initial state, Fixed-time Sliding Mode Control (FT-SMC) removes
this reliance [41]. However, the actual settling time for the actual systems may sometimes be equal to this
predefined bound. Moreover, since some systems rely on design characteristics, achieving the planned
performance based on this bound can be time-consuming and require lots of effort. The predefined-time
control strategy has been devised to improve the control of convergence and get around these restrictions
[30]. This approach is more flexible and can offer faster convergence than fixed-time approaches, allowing
the designer to designate a desired settling time bound in advance. Consequently, a number of predefined
time control schemes have been developed for nonlinear systems. For example, Xue et al. [37] investigate
the predefined-time synchronization of multi-input-multi-output chaotic systems and present a novel
scheme based on fast TSM controllers and predefined time convergence parameters. Another example
is the work by Yang et al. [26], who introduce a novel sigmoid function-based sliding surface design
that guarantees robust predefined-time convergence for second-order nonlinear systems with matched
disturbances. They establish stability properties through the Lyapunov theorem and propose a robust
controller for robotic manipulators to track a predefined contour within a set time, demonstrating precise
predefined-time contour tracking without requiring exact knowledge of robot parameters [27].

Since SMC offers a robust approach to controlling systems with known dynamics, its effectiveness
can be diminished when systems are subject to unknown dynamics or external disturbances. Adaptive
control schemes have emerged as a powerful tool to address these uncertainties. Adaptive control can
dynamically adjust to these external influences and system variations, thereby mitigating their impact
and improving closed-loop tracking performance [7, 22, 34]. This characteristic has made it a prominent
choice for robotic applications. Several researchers have explored and successfully implemented various
adaptive control algorithms for a wide range of robotic systems [1, 14, 15, 17]. These studies showcase the
effectiveness of this integrated approach in diverse systems, including robotic manipulators, spacecraft,
lower-limb exoskeletons, and wind turbines.

This research investigates predefined-time convergence control for robotic manipulators subject to un-
certainties and disturbances. We propose a novel adaptive predefined-time fractional-order proportional-
derivative sliding mode control (APtFoSMC) scheme. The proposed APtFoSMC offers following. 1.
Combining predefined-time SMC with fractional order ensures accurate trajectory tracking and improved
closed-loop system response. 2. An adaptive strategy within the PtFoSMC framework tackles unknown
dynamics and disturbances, enhancing overall system robustness. 3. Lyapunov stability analysis guaran-
tees predefined-time convergence of the closed-loop system.
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The remaining portion of the paper is structured as follows. The preliminaries are given in Section
2. Section 3 covers the robot model and its dynamics. The control design PtFoSMC, APtFoSMC, and
their stability investigations using Lyapunov theory are given in Sections 4 and 5, respectively. Section 6
provides simulations to verify our approach. Section 7 expresses discussion and analysis, and Section 8
summarizes the work.

2. Preliminaries
The important preliminaries are given in this section.

Lemma 2.1 ([27]). The predefined stability is computed for the Lyapunov function £(t) with an initial condition
£(0), as £(t) < —B1L ()2 — BoL(t)' 2, where By > 0 and 0 < < 1. The predefined-time T is formulated as

7T
N/ 6162.

Lemma 2.2 ([3]). The key inequalities for x; can be presented as follows

T=

n n HT“ n n n
3l > (Z w) when0<n<1, 3 hal' s (Z w)  whenn > 1.
= o1 im1 i—1

Definition 2.3. The Riemann-Liouville definition is often utilized in fractional calculus, which defines
fractional-order derivatives and integrals as follows [19, 29]:

TR = 1 Jt h(T) o O o fJ ((7) T
(U—7)©

BRI T A S A e e R e N E

where q—1 <y < q, q € Nand I'(-) is Gamma function, and this is given as I'(y) = [” e~ *tY~!dt, where
JY is the fractional-order integral and DY is the fractional-order derivative of h( )

Definition 2.4. The fractional-order derivative b@fh(t) = r(% I b = ‘;r -dTwithh(t) e R,0< v <1,

then we can have [39]:
v . >0, whenh(t) >0and t >0,
vDysign(h{t) { <0, whenh(t)<0Oandt > 0.

3. Robot dynamics

The model presented herein describes the dynamic equation of the robotic manipulator utilized in this
study [3]:

M(x)% + €(x, %)% + G(x) = u(t) +uqg(t) +ue(t), (3.1)
where x € R™, x € R™, and X € R" are angular position, velocity, and acceleration, respectively.
M(x) € R™*™ > 0 symbolizes inertia matrix with 0 < % (M(x)) < [[M(x)]| < %2(M(x)) , where X; and
X, are the small and large eigenvalues of matrix M(x), respectively. C(x,%) € R™*™ is the coriolis and
centripetal forces, and G(x) € R™ represents the gravitational force. Moreover, u¢(t) € R™ are uncertain
dynamics. u(t) € R™ is the control torque input, and uq4(t) € R™ is the unknown external disturbances.
Equation (3.1), as mentioned above, is provided as follows:

M(x)% = ult) +ua(t) +ue(t) = C(x, %)% = G(x), % =M1 (x)(u(t) +ualt) +ur(t) — €(x, X% — §(x)).
The definition of the tracking error is as follows:
g2 = M () (u(t) +ua(t) +ug(t) — Clx, %)% — §(x)) —Xa, (3.2)

where 1 = x —xq, & = €3 is tracking error, and x4 is desired reference input.
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4. PtFoSMC design

In this section, a novel control strategy for robotic manipulators subjected to exogenous disturbances
and uncertainty is developed. First, the main features of the proposed predefined-time fractional-order
proportional-derivative sliding mode control (PtFoSMC) are reviewed.

4.1. Predefined-time fractional-order sliding surface design

Inspired by SMC’s intrinsic fast convergence and robustness, researchers have explored various sliding
surfaces to enhance control performance. In this case, the proposed sliding surface’s ability to provide ac-
curate and fast predefined-time control for n-DOF robotic manipulators will make it even more desirable.
Therefore, driven by the above discussion, the fractional-order-based proposed sliding surface is devised
as

C(t) = Kales]"" T sign(er) + kaler]' T sign(er) + kaDYsign(er) + kuez, (4.1)

where ((t) € R™ denotes the sliding variable, k1, Ky, k3, ks € RT, and 0 < o,y < 1. Afterwards, ((t) can
be calculated as

() =k (14 = )|81| 2ey+Kp(1— *)|81| Te,+ k3DY sign(er) + Kaés. (4.2)
The substitution of (3.2) into (4.2) yields

) =rxi(1+ = )|€1| 2e+ Kko(1— *)|€1| Tep+ k3D Y sign(eq)

4.3)
+ Ky (M Yo (ult) +wa(t) +ue(t) — C(x, %)% — §(x)) — %a) -

We can express equation (4.3) as

St Tez 4150 sign(er) s
) ( ))+O(XIX/X)_Xd)/

i) =ki(1+ )|€1|2€2+K2(1*
+ Ky (M L) (ult) — C(x,

where O(x,%,%) = M71(x)(us(t) +ug(t)). We now design the PtFoSMC method for n-DOF robotic ma-
nipulators using the provided sliding surface. This control law is designed to be robust against unknown
disturbances and uncertainties.

Assumption 4.1. The bounds of the unknown uncertainties and external disturbances affecting the dynamical
system are expressed under equation (4.5):

10(x, %, %) < O1 + Oz [[x]| + O3%|I%, (4.5)
where 01, Oy, and O3 are unknown positive constants.

4.2. PtFoSMC control design

The PtFoSMC control law is created in the following way to ensure that robotic manipulators operate
reliably in the face of external disturbances and bounded uncertainties:

M*l(x)(:(x,x)wm (x )G( )+xd—(01+ozHxll+03||>'<\|2 Jsign(((t))
u(t) = M0 | kg a1+ Sl e — kg Tl = Sl e~k T sign(e) ;49
i el T (DI B sign( (1) — kg gl (1)1 gslgn(C( t)) — Ky k7D sign(C(t)

where |£I*% = 0if ¢ = 0, k,, K, Ky are positive constants, and 3 is constant satisfying 0 < 3 < 1. By
substituting u(t) into (4.4), ((t) can be computed as
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C(t) =k (1+ %)|€1|%€2 +Ko(1— %)|€1|7%€2 + k3D Hsign(eg)

M (x)C(x, %)% + M1 (x)G(x) + X4

—(O1+ Oz |[x|| + 03]|%||*)sign(¢(t))
_ —k Tk (1+ D)lerl T ea — kp Tk (1 — S)leal 2 ey 47

¥ Ky M 1(X) M(X) —Kjfl K3®y+125ign(81) 4 2 ( )

—y Ll E sign((t)) — kg kglC(t)' Esign((t))

—lq1 k7D Ysign(((t))

“MIx)C(x, %)% — M 1(x)G(x)) + O(x, %, %) — Xq

Simplification of (4.7), {(t) can be obtained as

((t) = —ka(O1 + Oz ||x|| + O3]|%||*)sign(L(t)) + kaO(x, %, %) s)
— ka0 Esign(C(t)) — kelC(1)' Zsign(C(t)) — kDY sign(C(t)). '

The control scheme and sliding surface have been designed, and we will proceed with the stability anal-
yses.

4.3. Stability analyses

An analysis of the stability of the closed-loop system is conducted in this section, utilizing the Lya-
punov theorem. Equation (3.1) is employed to represent the system dynamics. When ((t) = 0 from (4.1),
we can have

e = —k1/Kaler]" T Zsign(er) — ka/Kaler|'” Zsign(er) — k3/kaDYsign(eq). (4.9)

To establish the stability of the tracking error, we carefully select a Lyapunov function candidate as follows:
1 n
L) =52 en(V). (410)
i=1
The derivative of (4.10) is computed, and it can be expressed as
n
Le(t) =) enilt)eai(t). (4.11)
i=1
By substituting equation (4.9) into equation (4.11), we can obtain
n o4 o4
Lelt) = Y eni(t) (—wi/xalesl" Fsign(er) — ka/kalel' ¥ sign(er) — ka/keD7sign(er)).
i=1

Following simplification using Definition 2.4, the equation transforms into:

Lot <~/ Y (lentOf) /i (ko) ©
i=1 i=1

By utilizing Lemma 2.2, we can express the above equation more concisely.

4+ 4—«

Le(t) < —xp/kgn 3 (Z |€1i(t)|2) — K2/Ky (Z |811(t)|2>
i=1 i1

It can be represented as

. dtoa o« 4to 4—o 4—o - & _x _x
Le(t) < —ki/ka2 T n 9L, & —kp/Kg2 7 Lg & = —kq /a2 an 0L 1T —kp /g2 9L T
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By applying Lemma 2.1, we can illustrate that the sliding surface, as defined in equation (4.1), converges
to zero within a predetermined time frame
21 U’
Tg - = .
oy /21521 kKo /Ka2 oc\/|<1|<2Tf%/|<42

Theorem 4.2. By employing the model of an n-DOF robotic manipulator (3.1), utilizing the designed sliding
surface (4.1), and implementing the PtFoSMC control method (4.6), we can confidently ensure that the system
trajectory of the manipulator will converge to zero within a predefined time. This convergence is guaranteed under
the condition for bounded uncertainties and disturbances specified in Equation (4.5).

Proof. The Lyapunov function candidate has been chosen as shown below:
Lo(t) =5 &b (4.12)
Taking derivative of (4.12), L¢(t) can be obtained as follows:
n
Lo(t) = Z Gi(t)Gi(t). (4.13)
i=1
After substituting equation (4.8) into equation (4.13), we can derive as

ch [_K4 01+ 03 || + Os[x|*)sign(C(t)) + k4O x, %, %) ] (4.14)

—kslC (D) Esign(C(t) — kglC(t)]' T sign(g(t)) — kD Vsign(C (1))

We can then solve equation (4.14) based on Assumption 4.1 as

n

< Gl [~xslc(O Esign(C(t) — kelc(v)]' Zsign(c(t))]

i=1

Then it can be expressed as

S (lwR) - . (1cop)
i=1 i=1

Utilizing Lemma 2.2, we can express the resulting equation

4B 4P
Lo(t) < —ksnf (Z Gt ) — kg (Z |ci(t)|2> . (4.15)
i=1

And subsequently, equation (4.15) can be obtained as
Lo(t) < —ksn 5278 Le(t) 5 —kg2 3 Le(t) 7 (4.16)

This analysis validates that the system trajectory converges to the sliding surface ((t) in a predefined
time. Lemma 2.1 proves that the following is a mathematical expression for this convergence time:

T, = 2m LI 4.17)

B\/K5K6n*%2”%21** B/ M~ § KsKg
Now, the total setting time can be estimated considering Te and T¢ to justify the predefined time conver-
gence of the presented methodology and to illustrate its adaptability within PtFoSMC principles. O
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5. APtFoSMC control design

An effective new APtFoSMC architecture is developed in this section to hold robustness against un-
known system dynamics by estimating them. In doing so, this new approach eliminates the problem of
unknown system dynamics by proposing an adaptation mechanism for the first time within this frame-
work. The proposed scheme is, therefore, designed to achieve robustness to compensate for unknown
dynamics:

M—l(x)e(x,x)wqxvt—l(x)g(x) +x%q— (64 + Oy [Ix]| + Os]|%]1*)sign(¢(t))
u(t) = M(x) —K4_1K1(1+%)|B£1|752—K4_1|<2(1—%)|51|_752—|<4_1|<3©V+151gn(s1) , (6.1
i kgl sign (1)) — Ky kgl QD)1 2 sign((t) — Ky kyD Vsign( (1))

where 01, ©,, and O3 represent the estimates of unknown constants 01, Oz, and O3, respectively. Upon
substituting u(t) (5.1) into (4.4), the expression (5.2) can be formulated as

{0 = a1+ Slerl ez + ka1 = Dlerl Fea + k3 Hsign(er)

M (x)C(x, %)% + M~ ( 1G(x) + Xq
(01+02HXH+O3HXH Slgn ¢(t)) X
_ —ky 'k(1+ § Y12 3 — ki k(1 — E)lerl 2 ey 5.2
¥ Ky M 1(7() M(X) 7Ki—1K3@V—|—151gn(81) 4 2 ( )
—; kslC (0 Esign (1)) — kg Kkl (1)1 Esign(c (1)
—KgleﬁDVsign(C(t))

“MEx)C(x, %)% — M 1(x)G(x)) + O(x, %, %) — Xq
Then it can be simplified as
E(t) = —ka (01 + Oy ||x]| + Os|%||*)sign(C(t)) + k4O (x, %, %) 53
— wsle () E sign(c(t)) — kelo (1) Esign(E(t)) — kD Ysign(C(t). '

Adaptive laws are developed to counteract the uncertain dynamics effectively

=

(5.4)

~ kapi|IC(D] X, for [|C(t)]| > a,
10, for ||C(V)|| < q,

where X = {1, %Il HXH2:|, a > 0, and p; > 0 are positive constants. The designed block diagram is
presented in Figure 1.
APtFoSMC is based on the condition (4.5) for the uncertain manipulator dynamics to be robustly

stable. Therefore, this theorem is very important in the proof of stability analysis of any predefined time
control scheme.

Theorem 5.1. This theorem establishes the predefined-time stability of the uncertain system (3.1) in the presence
of unknown external disturbances. It ensures that the system trajectory converges to the desired equilibrium point
within a predefined time frame when utilizing the proposed surface (4.1) and the APtFoSMC control law (5.1) with
the adaptive laws defined in (5.4). This convergence is guaranteed under the conditions outlined in Assumption 4.1.

Proof. We appropriately select the Lyapunov function candidate as follows

ZCZ A02 AO§+AO§
202 2p3

7
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where AO; = O, — 0, represents the adaptive error. To compute the derivative of Ly (t), we can use the
following approach:
n
AO; » A0,z A0, 4
LO; + —20,+ —20s.

Lo(t) =Y GG+ =10, +

55
— P1 P2 P3 55
i=1

Substituting the expression for ((t) (5.3) into equation (5.5) results in:

—

)+ k4O(x, %, %)

ZC —Ky ol+oz||x||+oaux|| sign({(t
' sign({(t)) — kyDYsign((t))

—kslC () 2 sign(E(t) — kglo (1)
AO A AO A AO A
1(91 + 202 + 303.
P1 P2 P3

N\m

By utilizing equations (5.4), (4.5), and Definition 2.4, we can effectively solve

;(m ?) —K6Z(|c1 N

Lo(t)

//\

In line with Lemma 2.2, we obtain equation (5.6):

448 B

Lo(t) < 7% (Z ICi(t ) — Kg (Z |Ci(’t)|2> . (5.6)
im1

To ascertain the predefined time, we can compute equation (5.7) as follows:

. B 4B p
Lo(t) < —ksn™ 1 (2[Lo(t) = V]) * —ke(2[Lo(t) —V]) *, (5.7)
AO?
where V = 1 + 05 03 +5 3 . It can be rewritten as
Lo(t) < —Kg,zTB Lo -V — k24 (Lo(t) - W) F
44p B AVARRNPEN 44 p 4 p V a5 4 p
<—Kke2 i ni(l— Lo(t) & —k2 3 (1— T Lo(t) T

The following text can now be presented in a simplified form:

Lo(t) < —U1Lo(0)FF — Lo ()5,

B 4p —p .
where U; = K524Zﬁn*4 (1— %) , O, = |<62 T (1— %)47. By utilizing Lemma 2.1, we can calcu-
late the predefined time Ty, ensuring that the state trajectories converge to zero within this predetermined
time frame

4+[3

27
[3\/6162.

Adding Ty and T, allows us to calculate the total predefined time convergence, which guarantees precise
and swift control performance. For a graphical representation of the complete structure of the proposed
APtFoSMC scheme, please see Figure 1. O

To =
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u, (r)l J u; (1)

i M1(x)C(x, %)% + M~1(x)G(x) + Xq
C(t) = kiler ‘“9”(51)} 40 ~(O1+ Oz Ix]l + O3lIxP)sign(c(1) u

B

+roler|'” T sign(er) w(®) =M | gt Dlalfe gl - %”.\E‘rg"z
—k; kDY Hsign(er) — k3 kglC(1)[ 2 sign((t)
:
—y gl (01 Esign(e(t) — koD sign(¢(1))

|

Xd
&
—~O
A

+r3D7sign(er) + kaca

o

A <
Oi = kapi IC(0)]| x

A

Figure 1: Block diagram of the designed method.

Remark 5.2. When the suggested scheme is implemented on the dynamics of the robotic model (3.1), uti-

lizing the sliding manifold (4.1) and the control law (5.1) updated by the adaptive laws (5.4), it effectively

achieves the desired tracking error outcomes tIm} €(t) — 0. The subsequent step will involve presenting a
%

numerical simulation to further illustrate these results, which will be explored in the following section.

6. Numerical results

A simulation study assesses the effectiveness of the proposed adaptive predefined-time proportional-
derivative terminal sliding mode control (APtFoSMC) scheme applied to the uncertain dynamics of 3-DOF
PUMA 560 robot under external disturbances [8]. This study compares the performance of APtFoSMC
with the adaptive finite-time terminal SMC (AFtSMC) approach [4] and adaptive time delay estimation
high-order SMC (ATDEHSMC) [5] in the presence of external disturbances and uncertainties. The desired
trajectories, external disturbances, and uncertain dynamics are described as:

cos(0.27tt) —1 0.5%1 + sin(3x1) 0.5sin(x1)
X4 = cos(0.27tt + 0.57) , ur= | 1.3% —18sin(2xy) |, ug=| 1.1sin(x;)
sin(0.27tt +0.57) — 1 —0.1%3 — 0.5 sin(x3) 0.15sin(x3)

Following that, a detailed analysis of the dynamics and parameters of the robot has been taken from [8].
Furthermore, the suitable parameters for the developed APtFoSMC scheme are detailed in Table 1.

The simulation results compared, such as angular position tracking, tracking error, control torques,
and adaptive parameter estimations of the proposed scheme with the AFtSMC and ATDEHSMC methods
applied to the 3-DOF robotic manipulator under unknown uncertain dynamics, are given in Figures 2-5,
respectively.

From the numerical simulations in the figures, the proposed APtFoSMC scheme’s performance is
compared to the AFtSMC and ATDEHSMC controllers under well-defined conditions. This evaluation in-
cludes a comprehensive analysis of their performance depicted in Figures 2-5, particularly when handling
unknown system dynamics. For a clear comparison in performance, Figures 2-4 depict the APtFoSMC
controller’s performance under uncertain dynamics with AFtSMC and ATDEHSMC. Figure 2 shows how
the controller tracks the desired trajectory precisely. Then, Figure 3 confirms the effectiveness of the con-
troller due to a very minute value of the tracking error. Figure 4 presents the control inputs that drive the
system state onto and maintain it on the desired surfaces for the desired dynamics, thereby showing the
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controller’s effort in achieving the tracking. Furthermore, the proposed approach yields smooth control
torques. Afterwards, Figure 5 shows the simulations of the adaptive parameters of the proposed and
compared schemes. The summary of the collective results, as depicted in Figures 2-5, shows that the
APtFoSMC scheme achieves effective position tracking in the presence of unknown uncertain dynamics.

Table 1: Proposed control parameters.
Control parameter  Value

K1 6
Ko 6
K3 0.0001
K4 1
K5 30
Ke 30
K7 0.0003
x 0.3
&} 0.1
Y 0.1
x1(0) -0.2
x5(0) -0.2
7f3 (0) -0.2
01(0) 0.001
9,(0) 0.001
O5(0) 0.001
P1 0.01
P2 0.01
P3 0.01
a 1

) (rad)
9(rad)

time (sec) time (sec)

time (sec)

Figure 2: Position tracking under unknown dynamics.
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U4

€12 (rad)

—AFtSMC —--ATDEHSMC — -APtFoSMC

-0.2

time (sec)

time (sec)

£13 (rad)

-0.2

‘— AFtSMC —--ATDEHSMC — - APtFoSMC‘

Figure 3:

time (sec)

Tracking error under unknown dynamics.

—AFtSMC
—--ATDEHSMC
— =APtFoSMC |

—AFtSMC
—--ATDEHSMC
— -APtFoSMC

Figure 4:

Control input under unknown dynamics.
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Figure 5: Adaptive gains.

7. Discussion and analysis

We evaluated how well the APtFoSMC scheme performs compared to AFtSMC and ATDEHSMC
when dealing with unknown dynamics in Figures 2-5. We focused on how well it tracks position, track-
ing error, and control torque. Therefore, Figure 2 shows that the APtFoSMC scheme stayed close to the
desired path despite uncertainties. This shows it can handle uncertainties and maintain better tracking
accuracy than AFtSMC and ATDEHSMC schemes. Moreover, Figure 3 shows that when there are un-
known dynamics, the tracking errors for the two schemes are quite different. Compared to AFtSMC and
ATDEHSMC, the proposed controller is better at reducing the effect of uncertainties on tracking accu-
racy. Figure 4 demonstrated that the control torque for APtFoSMC had a small increase in amplitude
to preserve tracking precision. However, it stayed within reasonable limits, showing that the controller
balanced tracking efficiency and control effort well. Moreover, Figure 5 shows the simulation results for
the adaptive parameters used in the suggested scheme and the other comparative schemes. This shows
that the proposed scheme has no adaptive parameter drifting.

The simulation results showed that the suggested APtFoSMC scheme works well for accurate tracking
control of the joint position with smooth control torque. Compared to AFtSMC and ATDEHSMC, the
proposed controller shows notable robustness, even with unknown dynamics. Based on the given range,
we chose specific controller parameters to ensure optimal performance: k; > 0, k2 > 0, k3 > 0, kg > 0,
ks >0,k >0,k >0,a>0p; >0,and 0 < &, 3,y < 1. We must carefully choose these parameters
to ensure the stability of the closed-loop system. Choosing the wrong parameters can lead to instability.
Fortunately, we know the acceptable ranges for each parameter, which makes choosing the right values
simpler for the proposed control scheme.
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8. Conclusion

The research examines the control of trajectory tracking for robotic manipulators in the presence of
uncertainties and external disturbances. An adaptive predefined-time fractional-order sliding mode con-
trol scheme is proposed as a solution. APtFoSMC adopts an adaptive mechanism that compensates for
the unknown bounds of uncertainties and external disturbances, allowing the system state to converge
to the desired trajectory within a predefined time and enhancing tracking performance. The efficacy of
the proposed APtFoSMC is confirmed through simulations on a 3-DOF PUMA robot with uncertain dy-
namics. In comparison, APtfoSMC has a faster convergence, less tracking error, and greater uncertainties
and disturbance mitigation compared to AFtSMC and ATDEHSMC controllers. The future work related
to the proposed scheme can be extended with learning control methods.
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