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Abstract
This work introduces a novel analytical framework for analyzing the stability of Caputo fractional dynamic equations

on time scales (CFDET) using a two-measure approach combined with comparison principle. By applying paired measures
(m0,m) and vector Lyapunov functions, we derive sufficient conditions for both (m0,m)-stability and asymptotic stability. The
method simplifies analysis by relating the system to a well-understood comparison system, reducing the task to verifying
quasimonotonicity and avoiding the need for explicit solutions. The framework’s effectiveness is demonstrated through two
biological models, an immune response system and a 3D hypothalamic-pituitary-adrenal (HPA) axis, highlighting its ability to
handle nonlinearities, hybrid time scales, and varying system dimensions. This study bridges theoretical stability analysis with
practical biomedical applications, advancing the understanding of fractional-order hybrid dynamics.

Keywords: Immune response model, neuro-endocrine regulation model, two measure stabilization, fractional calculus, time
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1. Introduction

Time scale calculus offers a unified methodology for investigating dynamical systems, encompassing
purely continuous, purely discrete, and mixed-type behaviors within a single theoretical framework.
Introduced in [8], the theory of time scales provides a comprehensive mathematical structure to unify and
extend the theories of differential equations [2] and difference equations [21]. This approach has found
widespread applications in various fields, including biology, economics, engineering, and physics, where
processes evolve over time in a manner that is neither purely continuous nor purely discrete.
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Stability analysis is a cornerstone of dynamical systems theory as it provides critical insights into the
long term behavior of solutions to dynamic equations [15, 24, 25]. Understanding the stability properties
of a system is essential for predicting its behavior under perturbations, designing control strategies, and
ensuring the reliability of mathematical models. Although significant work has been done on the stability
of integer-order dynamic equations on time scales, recent trends have shifted toward fractional-order dy-
namic equations, which offer a more generalized framework for modeling physical phenomena [14, 17].
Fractional calculus, particularly the Caputo fractional derivative, has gained prominence due to its ability
to capture memory effects and hereditary properties, making it a powerful tool for describing complex
systems [1, 4, 5]. Several stability approaches for fractional dynamic equations have been recently ex-
plored, including stability, uniform stability, eventual stability, practical stability, and asymptotic stability
[18, 22, 23].

Among the various methods developed for stability analysis, the comparison principle is an elegant
and effective tool [13]. This method leverages the properties of auxiliary comparison equations to de-
termine the stability of the original system, often simplifying complex analyses and providing clear and
interpretable results. By employing Lyapunov methods and vector Lyapunov functions, the comparison
principle enables the reduction of stability analysis to checking the quasimonotonicity property of the
comparison system [27]. This approach not only broadens the scope of stability analysis but also provides
a unified framework applicable to a wide range of time scales. Consider the Caputo fractional dynamic
system for 0 < ג < 1 as

C∆ג℘ = R(t,℘), t ∈ T, ℘(t0) = ℘0, t0 ⩾ 0, (1.1)

where R ∈ Crd[T × RN, RN] with R(t, 0) ≡ 0, T is known as the time scale (any close subset of R) and
C∆ג℘ denotes the Caputo fractional delta derivative (Fr∆D) of ℘ ∈ RN of order .ג Let ℘(t) = ℘(t, t0,℘0) ∈
Cג
rd[T, RN] be the unique solution of (1.1)-existence and uniqueness results can be found in [3, 7, 11].

In this work, we explore two-measure stability analysis of the CFrDET (1.1) using the comparison
principle approach. By employing two measures (m0,m), we establish sufficient conditions for (m0,m)-
stability and (m0,m)-asymptotic stability of solutions using vector Lyapunov functions. To achieve this
using our comparison approach, we consider a comparison system of the form

C∆גs = G(t, s), s(t0) = s0 ⩾ 0, (1.2)

where G : T × Rn
+ → Rn

+ with G(t, 0) ≡ 0, n ⩽ N. Assuming a unique solution s(t) = s(t; t0, s0) ∈
Cג
rd[T, Rn

+] exists (see [9, 20, 26]).
The assumptions on (1.2) are that it represents a simpler system whose qualitative properties, in-

cluding the existence of a unique solution and stability, are either already established or can be easily
determined, as demonstrated in [19]. This allows us to draw parallels between the behavior of the main
system (1.1) and that of the well-understood comparison system (1.2), enabling us to infer stability prop-
erties without directly solving (1.1). This approach not only simplifies the analysis but also unifies various
stability concepts under a single framework through the use of our two measures (m0,m). The practi-
cal utility of this methodology is demonstrated through applications in a nonlinear immune response
model, describing T-cell-pathogen interactions, and a 3D neuro-endocrine HPA axis model both of which
highlights the framework’s adaptability to varying dimensions, nonlinearities, and biological contexts.
By bridging theoretical criteria with biomedical systems, this work advances stability analysis of Caputo
fractional dynamics on time scales.

This work is arranged as follows. In Section 2, we provide the necessary preliminaries on time scales
calculus, Fr∆D, and two-measure stability and also introduce the comparison lemma. In Section 3, we
then present our main results, including sufficient conditions for (m0,m)-stability and (m0,m)-asymptotic
stability. In Section 4, we illustrate the theoretical findings with concrete examples which is then applied
in Section 5 to two real world applications in bio-medicines.
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2. Methods

Dynamic equations on time scales represent a class of differential equations that provide a unified and
flexible framework for analyzing system behavior across both continuous and discrete time domains, as
highlighted in [10]. For a given time scale (any closed subset of real numbers) T, we present the following
key definitions.

Definition 2.1 ([6]). For a time scale T and t ∈ T, the forward jump operator is defined as p(t) = inf{a ∈ T |

a > t}, while the backward jump operator is given by ϖ(t) = sup{a ∈ T | a < t}. A point t ∈ T is classified
as:
• right-dense (rd) if p(t) = t;
• right-scattered (rs) if p(t) > t;
• left-dense (ld) if ϖ(t) = t;
• left-scattered (ls) if ϖ(t) < t.

Additionally, the graininess function ω(t) is defined as ω(t) = p(t) − t.

Definition 2.2 ([6]). We define the following class of functions:

K = {ψ ∈ [[0, r], [0,∞)]} : ψ(t) is strictly increasing on [0, r] and ψ(0) = 0,
CK = {a ∈ Crd[T × R+, R+] : a(t, s) ∈ K for each t},
Λ = {m ∈ Crd[T × Rn, R+] : inf

t,℘
m(t,℘) = 0}.

Definition 2.3. We define the Caputo Fr∆DiD of the Lyapunov function, ℵ(t,℘) ∈ Crd[T×RN, RN
+ ] with

respect to the solutions of system (1.1) given as:

C∆ג
+ℵ(t,℘) = lim sup

ω→0+

1
ωג

[ [
t−t0
ω

]∑
p=0

(−1)p
(
ג
p

)[
ℵ(p(t) − pω,℘(p(t)) −ωגR(t,℘(t)) −ℵ(t0,℘0)

]]
,

and can be expanded as

C∆ג
+ℵ(t,℘) = lim sup

ω→0+

1
ωג

{
ℵ(p(t),℘(p(t)) −ℵ(t0,℘0)

−

[
t−t0
ω

]∑
p=1

(−1)p+1
(
ג
p

)[
ℵ(p(t) − pω,℘(p(t)) −ωגR(t,℘(t)) −ℵ(t0,℘0)

]}
,

(2.1)

where t ∈ T, ℘,℘0 ∈ RN, ω = p(t) − t, and ℘(p(t)) −ωגR(t,℘) ∈ RN. Applying (2.3) to (2.1), we obtain

C∆ג
+ℵ(t,℘) = lim sup

ω→0+

1
ωג

{
ℵ(y(t),℘(p(t))

+

[
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)[
ℵ(p(t) − pω,℘(p(t)) −ωגR(t,℘(t))

]}
−

ℵ(t0,℘0)(t− t0)
ג−

Γ(1 − (ג
.

Remark 2.4. In [12, 16], it has been established that

lim
ω→0+

[
(t−t0)

ω ]∑
p=1

(−1)p
(
ג
p

)
= −1, (2.2)

and

lim sup
ω→0+

1
ωג

[
(t−t0)

ω ]∑
p=0

(−1)p
(
ג
p

)
=RL (1)ג∆ =

(t− t0)
ג−

Γ(1 − (ג
, t ⩾ t0. (2.3)
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Definition 2.5. Let ℘(t) = ℘(t; t0,℘0) be any solution of (1.1), then the fractional dynamic system (1.1) is
said to be

(M1) (m0,m)-stable if, for each ϵ > 0, t0 ∈ T, ∃ a positive function δ = δ(t0, ϵ) that is rd-continuous in t0
for each ϵ such that m0(t0,℘) < δ =⇒ m(t,℘(t)) < ϵ, t ⩾ t0;

(M2) (m0,m)-asymptotically stable if, it is stable and there exist positive functions δ0 = δ0(t0, ϵ) and
T = T(t0, ϵ) that are rd-continuous in t0 for each ϵ: for t ⩾ t0 + T , the inequality m0(t0,℘) < δ

implies m(t,℘(t)) < ϵ.

Definition 2.6. Let m0,m ∈ Λ. Then we say that

(i) m0 is finer than m if there exists a γ > 0 and a function τ ∈ CK such that m0(t,℘) < γ implies
m(t,℘) ⩽ τ(t,m0(t,℘));

(ii) m0 is uniformly finer than m if there exists a γ > 0 and a function τ ∈ CK such that m0(t,℘) < γ
implies m(t,℘) ⩽ τ(m0(t,℘)).

Definition 2.7. The Lyapunov function ℵ ∈ Crd[T × RN, RN
+ ] is said to be

(i) m-positive definite if there exists a γ > 0 and a function ϕ ∈ K such that ϕ(m(t,℘)) ⩽ ℵ(t,℘)
whenever m(t,℘) < γ;

(ii) m-decrescent if there exists a γ > 0 and a function χ ∈ K such that ℵ(t,℘) ⩽ χ(m(t,℘)) whenever
m(t,℘) < γ;

(iii) m-weakly decrescent if there exists a γ > 0 and a function χ ∈ CK such that ℵ(t,℘) ⩽ χ(m(t,℘))
whenever m(t,℘) < γ.

Lemma 2.8 ([16]). Assume that

(i) G ∈ Crd[T × Rn
+, Rn

+] with G(t, s)ω being non-decreasing with respect to s;
(ii) ℵ ∈ Crd[T × RN, RN

+ ] is locally Lipschitz continuous in its second argument, satisfying

C∆ג
+ℵ(t,℘) ⩽ G(t,ℵ(t,℘)), ∀(t,℘) ∈ T × RN;

(iii) the maximal solution ϖ(t) = ϖ(t; t0, s0) of system (1.2) exists on T.

Then, the inequality
ℵ(t,℘(t)) ⩽ ϖ(t), ∀t ⩾ t0, (2.4)

holds whenever ℵ(t0,℘0) ⩽ s0, where ℘(t) = ℘(t; t0,℘0) denotes any solution of (1.1) defined for t ∈ T with
t ⩾ t0.

3. Results

Theorem 3.1. Suppose the following hypotheses hold.

(1) For ℵ(t,℘(t)) ∈ Crd[T × RN, RN
+ ]:

(i) ℵ satisfies a local Lipschitz condition in ℘ and vanishes at zero (ℵ(t, 0) ≡ 0);
(ii) there exists ϕ ∈ K such that ϕ(m(t,℘)) ⩽ ℵ0(t,℘), where ℵ0(t,℘) =

∑N
j=1 ℵj(t,℘(t));

(2) for the measures m0,m ∈ Λ:
(i) m0 is uniformly finer than m;

(ii) ℵ(t,℘) exhibits m0-decrescent behavior;
(3) the function G ∈ Crd[T × Rn

+, Rn
+] is:

(i) quasimonotone nondecreasing in its second argument ∀ t ∈ T;
(ii) vanishes at zero (G(t, 0) ≡ 0);

(iii) satisfies the differential inequality: C∆ג
+ℵ(t,℘(t)) ⩽ G(t,ℵ(t,℘(t)));

(4) stability holds for the trivial solution of comparison equation (1.2).
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Then, system (1.1) achieves (m0,m)-stability.

Proof. Consider an arbitrary ϵ > 0. The stability of the trivial solution s = 0 of system (1.2) guarantees
that for any ϕ(ϵ) > 0 and initial time t0 ∈ T, there exists λ = λ(t0, ϵ) > 0 satisfying

n∑
j=1

sj(t; t0, s0) < ϕ(ϵ), ∀t ⩾ t0, (3.1)

provided that
∑n

j=1 s0j < λ, where s(t) = s(t, t0, s0) represents an arbitrary solution of the comparison
system (1.2). By the m0-decrescent property of ℵ(t,℘(t)) and since m0 is uniformly finer that m, then we
can find a positive number γ and functions χ ∈ K and β ∈ CK, such that

ℵ0(t0,℘0) ⩽ χ(m0(t0,℘0)) if m0(t0,℘0) < γ, and m(t0,℘0) ⩽ β(m0(t0,℘0)). (3.2)

Combining (3.2) and assumption 1 (ii) above for (t0,℘0) ∈ (T, RN), we obtain

ϕ(m(t0,℘0)) ⩽ ℵ0(t0,℘0) ⩽ χ(m0(t0,℘0)),

whenever m0(t0,℘0) < γ. Now, we claim that for any solution ℘(t) = ℘(t; t0,℘0), and functions δ =
δ(t0, ϵ) ∈ (0,γ], χ(δ) < λ, such that

m(t,℘(t)) < ϵ, whenever m0(t0,℘0) < δ. (3.3)

If this assertion is invalid, we could find a time instant t1 > t0 satisfying:{
m(t1,℘(t1)) ⩾ ϵ,
m(t,℘(t)) < ϵ, for all t ∈ [t0, t1).

(3.4)

However, from Lemma 2.8, we have that

ℵ(t,℘(t)) ⩽ ϖ(t), (3.5)

for t ∈ [t0, t1), where ϖ(t) = ϖ(t; t0, s0) is the maximal solution of (1.2). Combining assumption 1 (ii),
(3.5), (3.4), and (3.1), at time t1, we get

ϕ(ϵ) ⩽ ℵ0(t1,℘(t1)) ⩽ ϖ0(t1) < ϕ(ϵ), where, ϖ0(t1) =

n∑
j=1

ϖi(t1),

which is a contradiction so the claim (3.3) is true, and therefore, (1.1) is (m0,m)-stable.

Theorem 3.2. Let the following assumptions hold.

(1) For the function ℵ(t,℘(t)) is Crd in [T × RN, RN
+ ]:

(i) ℵ satisfies local Lipschitz condition in ℘ and vanishes identically at zero;
(ii) there exists ϕ ∈ K such that ϕ(m(t,℘)) ⩽ ℵ0(t,℘), with ℵ0(t,℘) =

∑N
j=1 ℵj(t,℘(t)).

(2) Concerning the measures m0,m ∈ Λ:
(a) m0 is uniformly finner than m;
(b) ℵ(t,℘) exhibits m0-decrescent behavior.

(3) The mapping G ∈ Crd[T × Rn
+, Rn

+] is:
(a) quasimonotone nondecreasing in s for all t ∈ T;
(b) identically zero at the origin;
(c) satisfies the differential inequality: C∆ג

+ℵ(t,℘(t)) ⩽ 0, where 0 = (0, 0, . . . , 0)T .
(4) The trivial solution of (1.2) is asymptotically stable.
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Then, the system (1.1) achieves (m0,m)-asymptotic stability.

Proof. By the assumption of the asymptotic stability of the zero solution of system (1.2), we deduce that
for ϕ(ϵ) > 0, we can find positive numbers λ1 = λ1(t0) and T = T(t0, ϵ) > 0 such that

n∑
j=1

s0j < λ1 =⇒
n∑
j=1

sj(t) < ϕ(ϵ) for t ⩾ t0 + T , (3.6)

where s(t) = s(t; t0, s0) is any solution of (1.2). To show that (1.1) is (m0,m)-asymptotically stable, it
suffices to show that it is (m0,m)-stable and (m0,m)-attractive, that is given ϵ > 0, and for some positive
functions δ∗0 = δ∗0 ∈ (0,γ] and T = T(ϵ), we can find a sequence {ti}, ti ⩾ t0 + T , ti → ∞ as i → ∞ such
that

m(ti,℘(ti)) < ϵ, (3.7)

whenever m0(t0,℘0) < δ0, where ℘(t) = ℘(t; t0,℘0) is any solution of (1.1). If this is false, then the
sequence of time {ti}, would be such that

m(ti,℘i(ti)) ⩾ ϵ, (3.8)

whenever m0(t0,℘0) < δ0. However, by the m-positive definite property of ℵ(t,℘), (2.4) of Lemma 2.8,
and (3.6) we obtain

ϕ(m(t,℘(t))) ⩽ ℵ0(t,℘) ⩽ ϖ0(t) < ϕ(ϵ), (3.9)

where ϖ0(t) =
∑n

j=1ϖi(t) is the maximal solution of (1.2), which is a solution of (1.2) and so will satisfy
(3.6). Now, from (3.8), (3.9) becomes ϕ(ϵ) ⩽ ℵ0(t,℘) ⩽ ϖ0(t) < ϕ(ϵ), which is a contradiction and
concertizing that (3.7) is indeed correct and so system (1.1) is (m0,m)-asymptotically stable.

4. Illustrations

4.1. Illustration 1

Consider the Caputo fractional dynamic system

C∆α℘1(t) = −6℘1 − ℘2 cos 2℘1 − 2℘2 sin2 ℘1, C∆α℘2(t) = −℘2 cos 2℘1 − 2℘2 cos2 ℘1, (4.1)

for t ⩾ t0, with initial conditions ℘1(t0) = ℘10 and ℘2(t0) = ℘20, where ℘ = (℘1,℘2) and R = (R1,R2). We
can also choose a vector Lyapunov candidate function ℵ = (ℵ1,ℵ2)

T , where ℵ1 = |℘1| and ℵ2 = |℘2|, for
t ∈ T and (℘1,℘2) ∈ R2. So that

ℵ0(℘1,℘2) =

2∑
i=1

ℵi(℘1,℘2) = |℘1|+ |℘2|.

The Caputo Fr∆DiD of ℵ1 = |℘1| is obtained as follows:

C∆ג
+ℵ1(t,℘1) = lim sup

ω→0+

1
ωג

{
ℵ1(p(t),℘1(p(t)))

+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)[
ℵ1(p(t) − pω,℘1(p(t)) −ω

(R1(t,℘1(t))ג
]}

−
ℵ1(t0,℘10)(t− t0)

ג−

Γ(1 − (ג

⩽ lim sup
ω→0+

1
ωג

|℘1(p(t))|+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
[|℘1(p(t))|+ |ωגR1(t,℘1)|]

−
|℘10|(t− t0)

ג−

Γ(1 − (ג
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⩽ lim sup
ω→0+

1
ωג

{
|℘1(p(t))|+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
|℘1(p(t))|

+

[
t−t0
ω ]∑

p=1

(−1)p(גCp)|ω
|R1(t,℘1)ג

}
−

|℘10|(t− t0)
ג−

Γ(1 − (ג

⩽ |℘1(p(t))| lim sup
ω→0+

1
ωג

[
t−t0
ω ]∑

p=0

(−1)p
(
ג
p

)
+ |R1(t,℘1)| lim sup

ω→0+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
−

|℘10|(t− t0)
ג−

Γ(1 − (ג
.

Using (2.2) and (2.3), we get

C∆ג
+ℵ1(t,℘1) =

|℘1(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |R1(t;℘1)|−

|℘10|(t− t0)
ג−

Γ(1 − (ג
,

C∆ג
+ℵ1 ⩽

|℘1(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |R1(t;℘1)|.

when t→ ∞, |℘1(p(t))|(t−t0)
ג−

Γ(1−ג) → 0, so that

C∆ג
+ℵ1 ⩽ −|R1(t;℘1)| = −

∣∣−6℘1 − ℘2 cos 2℘1 − 2℘2 sin2 ℘1
∣∣

⩽ − [|6℘1|] + ℘2
[
|1 − 2 sin2 ℘1 + 2 sin2 ℘1|

]
⩽ −6|℘1|− |℘2|,

C∆ג
+ℵ1 ⩽ −6ℵ1 +ℵ2.

(4.2)

We also compute the Caputo Fr∆DiD of ℵ2 = |℘| as follows:

C∆ג
+ℵ2(t,℘2) = lim sup

ω→0+

1
ωג

{
ℵ2(p(t),℘2(p(t))

+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)[
ℵ2(p(t) − pω,℘2(p(t)) −ω

(R2(t,℘2(t))ג
]}

−
ℵ2(t0,℘2,0)(t− t0)

ג−

Γ(1 − (ג

= lim sup
ω→0+

1
ωג

|℘2(p(t))|+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
[|℘2(p(t)) −ω

[|R2(t,℘2)ג

−
|℘2,0|(t− t0)

ג−

Γ(1 − (ג

⩽ lim sup
ω→0+

1
ωג

|℘2(p(t))|+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
[|℘2(p(t))|+ |ωגR2(t,℘2)|]

−
|℘2,0|(t− t0)

ג−

Γ(1 − (ג

⩽ lim sup
ω→0+

1
ωג

{
|℘2(p(t))|+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
|℘2(p(t))|

+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
|ωגR2(t,℘2)|

}
−

|℘2,0|(t− t0)
ג−

Γ(1 − (ג

⩽ |℘2(p(t))| lim sup
ω→0+

1
ωג

[
t−t0
ω ]∑

p=0

(−1)p
(
ג
p

)
+ |R2(t,℘2)| lim sup

ω→0+

[
t−t0
ω ]∑

p=1

(−1)p
(
ג
p

)
−

|℘2,0|(t− t0)
ג−

Γ(1 − (ג
.

Using (2.2) and (2.3) we obtain

C∆ג
+ℵ2 =

|℘2(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |R2(t;℘2)|−

|℘2,0|(t− t0)
ג−

Γ(1 − (ג
,
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C∆ג
+ℵ2 ⩽

|℘2(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |R2(t;℘2)|,

when t→ ∞, |℘2(p(t))|(t−t0)
ג−

Γ(1−ג) → 0, obtaining

C∆ג
+ℵ2 ⩽ −|R2(t;℘2)| = −

[
|− ℘2 cos 2℘1 − 2℘2 cos2 ℘1|

]
⩽ −

[
|− ℘2(2 cos2 ℘1 − 1 − 2 cos2 ℘1)|

]
⩽ −|℘2|.

Therefore,

C∆ג
+ℵ2 ⩽ 0ℵ1 −ℵ2. (4.3)

From (4.2) and (4.3), we obtain

C∆ג
+ℵ ⩽

(
−6 1
0 −1

)(
ℵ1
ℵ2

)
= G(t,ℵ).

Choosing comparison system, such that

C∆ג
+s = G(t, s) = As, (4.4)

where A =

(
−6 1
0 −1

)
, since the eigen values of A are −6 and −2, then the comparison system (4.4) is

stable and by Theorem 3.1, we can immediately infer the (m0,m)-stability of (4.1).

Figure 1: Time response of the comparison system: decay of state variables s1(t) and s2(t) demonstrating (m0,m)-stability.

Figure 1 depicts the time response of the comparison system (4.4) defined by the matrix A, with state
variables s1(t) and s2(t). Both curves decay to zero over time, confirming the (m0,m)-stability of the
system. This behavior arises because the eigenvalues of A are −6 and −2, both of which have negative
real parts. The plot visually demonstrates that the system asymptotically returns to equilibrium after any
initial disturbance, highlighting its stability properties in a clean and intuitive manner.

4.2. Illustration 2
Consider the Caputo fractional dynamic system

C∆גℑ1(t) = 6ℑ1 −
2ℑ2

2
ℑ1

, C∆גℑ2(t) = −
2ℑ2

1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2
, C∆גℑ3(t) = −

2ℑ2
2

ℑ3
+ 2ℑ3, (4.5)

for t ⩾ t0, with initial conditions ℑ1(t0) = ℑ10, ℑ2(t0) = ℑ20, and ℑ3(t0) = ℑ30, where ℑ = (ℑ1, ℑ2, ℑ3), and
the right hand side is given as R = (R1,R2,R3). We also consider a vector Lyapunov candidate function
ℵ = (ℵ1,ℵ2,ℵ3)

T , where ℵ1 = ℑ2
1, ℵ2 = ℑ2

2, and ℵ3 = ℑ2
3, for (ℑ1, ℑ2, ℑ3) ∈ R3. Then we compute the

Caputo Fr∆DiD for ℵ1 = ℑ2
1 as follows:

C∆ג
+ℵ1 = lim sup

ω→0+

1
ωג

{ [
(ℑ1(p(t)))

2]− [
(ℑ10)

2]+
[
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[(ℑ1(p(t)) −ω

,R1(tג ℑ))2] − [((ℑ10)
2]

}
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= lim sup
ω→0+

1
ωג

{ [
(ℑ1(p(t)))

2]− [
(ℑ10)

2]+
[
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[(ℑ1(p(t)))

2 − 2ℑ1(p(t))ω
,R1(tג ℑ1, ℑ2, ℑ3)

+ω2ג(R1(t, ℑ1, ℑ2, ℑ3))
2] −

[
(ℑ10)

2]}

= − lim sup
ω→0+

1
ωג


[
t−t0
ω

]∑
p=0

(−1)p
(
ג
p

)[
(ℑ10)

2]
+ lim sup

ω→0+

1
ωג


[
t−t0
ω

]∑
p=0

(−1)p
(
ג
p

)[
(ℑ1(p(t)))

2]


− lim sup
ω→0+

{ [
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[2ℑ1(p(t))ω

,R1(tג ℑ1, ℑ2, ℑ3)]

}
.

Using (2.2) and (2.3), we obtain

⩽
(t− t0)

ג−

Γ(1 − (ג
[
(ℑ1(p(t)))

2]− [2ℑ1(p(t))R1(t, ℑ1, ℑ2, ℑ3)].

When t→ ∞, (t−t0)
ג−

Γ(1−ג)
[
(ℑ1(p(t)))

2
]
→ 0, so that

C∆ג
+ℵ1 ⩽ −2[ℑ1(p(t))R1(t, ℑ1, ℑ2, ℑ3)].

Using the fact that ℑ(p(t)) ⩽ ωC∆גℑ(t) + ℑ(t),

C∆ג
+ℵ1 = −2

[
ω(t)R2

1(t, ℑ1, ℑ2, ℑ3) + ℑ1(t)R1(t, ℑ1, ℑ2, ℑ3)

]
= −2

[
ω(t)

(
6ℑ1 −

2ℑ2
2

ℑ1

)2

+ ℑ1

(
5ℑ1 −

ℑ2
2

ℑ1

)]
= −2ω(t)

[(
6ℑ1 −

2ℑ2
2

ℑ1

)2]
− 2ℑ1

[
6ℑ1 −

2ℑ2
2

ℑ1

]
.

(4.6)

Setting T = R, then ω = 0, so that (4.6) becomes:

C∆ג
+ℵ1 = −2ℑ1

[
6ℑ1 −

2ℑ2
2

ℑ1

]
= −12ℑ2

1 + 4ℑ2
2 + 0ℑ2

3 = (−12 4 0) · (ℵ1 ℵ2 ℵ3)
T . (4.7)

Setting T = N0, then ω = 1, so that (4.6) becomes:

C∆ג
+ℵ1 = −2

[(
5ℑ1 −

ℑ2
2

ℑ1

)2]
− 2ℑ1

[
5ℑ1 −

ℑ2
2

ℑ1

]
⩽ −2ℑ1

[
5ℑ1 −

ℑ2
2

ℑ1

]
.

This likewise results in the same conclusion as (4.11). Evidently, this approach remains valid for any other
discrete time instance. Also, we compute the Caputo Fr∆DiD for ℵ2(ℑ) = ℑ2

2 as follows:

C∆ג
+ℵ2(ℑ) = lim sup

ω→0+

1
ωג

{ [
(ℑ2(p(t)))

2]− [
(ℑ20)

2]+
[
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[(ℑ2(p(t)) −ω

,R2(tג ℑ))2] − [((ℑ20)
2]

}

= lim sup
ω→0+

1
ωג

{ [
(ℑ2(p(t)))

2]− [
(ℑ20)

2]+
[
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[(ℑ2(p(t)))

2

− 2ℑ2(p(t))ω
,R2(tג ℑ1, ℑ2, ℑ3) +ω

,R2(t)ג2 ℑ1, ℑ2, ℑ3))
2] −

[
(ℑ20)

2]}
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= − lim sup
ω→0+

1
ωג


[
t−t0
ω

]∑
p=0

(−1)p
(
ג
p

)[
(ℑ20)

2]
+ lim sup

ω→0+

1
ωג


[
t−t0
ω

]∑
p=0

(−1)p
(
ג
p

)[
(ℑ2(p(t)))

2]


− lim sup
ω→0+

{ [
t−t0
ω

]∑
p=1

(−1)p
(
ג
p

)
[2ℑ2(p(t))ω

,R2(tג ℑ1, ℑ2, ℑ3)]

}
.

From (2.2) and (2.3) we obtain

C∆ג
+ℵ2 ⩽

(t− t0)
ג−

Γ(1 − (ג
[
(ℑ2(p(t)))

2]− [2ℑ2(p(t))R2(t, ℑ1, ℑ2, ℑ3)].

When t→ ∞, (t−t0)
ג−

Γ(1−ג)
[
(ℑ2(p(t)))

2
]
→ 0, and

C∆ג
+ℵ2 ⩽ −2[ℑ2(p(t))R2(t, ℑ1, ℑ2, ℑ3)].

Using ℑ(p(t)) ⩽ ωC∆גℑ(t) + ℑ(t),

C∆ג
+ℵ2 = −2

[
ω(t)R2

2(t, ℑ1, ℑ2, ℑ3) + ℑ2(t)R2(t, ℑ1, ℑ2, ℑ3)

]
= −2

[
ω(t)

(
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

)2

+ ℑ2

(
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

)]
= −2ω(t)

[(
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

)2]
− 2ℑ2

[
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

]
.

(4.8)

For T = R, then ω = 0, then from (4.8) we obtain

C∆ג
+ℵ2 = −2ℑ2

[
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

]
= 4ℑ2

1 − 8ℑ2
2 + 4ℑ2

3 = (4 − 8 4) · (ℵ1 ℵ2 ℵ3)
T . (4.9)

For T = N0, then ω = 1, then from (4.6) we obtain:

C∆ג
+ℵ2 = −2

[(
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

)2]
− 2ℑ2

[
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

]
⩽ −2ℑ2

[
−

2ℑ2
1+

ℑ2
+ 4ℑ2 −

2ℑ2
3

ℑ2

]
.

This likewise results in the same conclusion as (4.11). Evidently, this approach remains valid for any
other discrete time instance. Finally, we determine the Caputo Fr∆DiD for ℵ3 = ℑ2

3 using the following
computation:

C∆ג
+ℵ3 = lim sup

ω→0+

1
ωג

{ [
(ℑ3(p(t)))

2]− [
(ℑ30)

2]+
[
t−t0
ω

]∑
r=1

(−1)r
(
ג
r

)
[(ℑ3(p(t)) −ω

,R3(tג ℑ))2] − [((ℑ30)
2]

}

= lim sup
ω→0+

1
ωג

{ [
(ℑ3(p(t)))

2]− [
(ℑ30)

2]+
[
t−t0
ω

]∑
r=1

(−1)r
(
ג
r

)
[(ℑ3(p(t)))

2 − 2ℑ3(p(t))ω
,R3(tג ℑ1, ℑ2, ℑ3)

+ω2ג(R3(t, ℑ1, ℑ2, ℑ3))
2] −

[
(ℑ30)

2]}

= − lim sup
ω→0+

1
ωג


[
t−t0
ω

]∑
r=0

(−1)r
(
ג
r

)[
(ℑ30)

2]
+ lim sup

ω→0+

1
ωג


[
t−t0
ω

]∑
r=0

(−1)r
(
ג
r

)[
(ℑ3(p(t)))

2]




I. Alraddadi, M. P. Ineh, D. K. Igobi, U. Ishtiaq, I. Popa, J. Math. Computer Sci., 41 (2026), 406–420 416

− lim sup
ω→0+

{ [
t−t0
ω

]∑
r=1

(−1)r
(
ג
r

)
[2ℑ3(p(t))ω

,R3(tג ℑ1, ℑ2, ℑ3)]

}
.

From (2.2) and (2.3), we obtain

C∆ג
+ℵ3 ⩽

(t− t0)
ג−

Γ(1 − (ג
[
(ℑ3(p(t)))

2]− [2ℑ1(p(t))R3(t, ℑ1, ℑ2, ℑ3)].

When t→ ∞, (t−t0)
ג−

Γ(1−ג)
[
(ℑ3(p(t)))

2
]
→ 0, then

C∆ג
+ℵ3 ⩽ −2[ℑ3(p(t))R3(t, ℑ1, ℑ2, ℑ3)].

Using ℑ(p(t)) ⩽ ωC∆גℑ(t) + ℑ(t),

C∆ג
+ℵ3 = −2

[
ω(t)R2

3(t, ℑ3, ℑ2, ℑ3) + ℑ3(t)R3(t, ℑ1, ℑ2, ℑ3)

]
= −2

[
ω(t)

(
−
ℑ2

1 + ℑ2
2

ℑ3
+ 3ℑ3

)2

+ ℑ3

(
−
ℑ2

1 + ℑ2
2

ℑ3
+ 3ℑ3

)]
= −2ω(t)

[(
−
ℑ2

1 + ℑ2
2

ℑ3
+ 3ℑ3

)2]
− 2ℑ3

[
−
ℑ2

1 + ℑ2
2

ℑ3
+ 3ℑ3

]
.

(4.10)

Set T = R, then ω = 0, and (4.10) becomes

C∆ג
+ℵ3 = −2ℑ3

[
−

2ℑ2
2

ℑ3
+ 2ℑ3

]
= 4ℑ2

2 − 4ℑ2
3 = (0 4 − 4) · (ℵ1 ℵ2 ℵ3)

T . (4.11)

Set T = N0, then ω = 1, and (4.6) becomes:

C∆ג
+ℵ3 = −2

[(
−

2ℑ2
2

ℑ3
+ 2ℑ3

)2]
− 2ℑ3

[
−

2ℑ2
2

ℑ3
+ 2ℑ3

]
⩽ −2ℑ3

[
−

2ℑ2
2

ℑ3
+ 2ℑ3

]
.

This likewise results in the same conclusion as (4.11). Evidently, this approach remains valid for any other
discrete time instance. From (4.7), (4.9), and (4.11), we obtain

C∆ג
+ℵ ⩽

−10 2 0
4 −6 4
0 4 −4

ℵ1
ℵ2
ℵ3

 = G(t,ℵ). (4.12)

Set the comparison system for (4.12) to be

C∆ג
+s = G(t, s) = As, (4.13)

where A =

−10 2 0
4 −6 4
0 4 −4

. Since A has negative real eigen-values; ζ1 = −4(2 +
√

3), ζ2 = −8, ζ3 =

4(
√

3 − 2), then the comparison system (4.4) is asymptotically stable, inferring the (m0,m)-asymptotic
stability of the main system (4.5).

The Figure 2 above shows the time response of system (4.13) defined by the matrix A, with state
variables s1(t), s2(t), and s3(t) plotted over time. All three curves decay to zero as time progresses,
demonstrating the asymptotic stability of the system. This behavior confirms that the system, governed
by eigenvalues with negative real parts, returns to equilibrium after any initial disturbance.
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Figure 2: Time response of the system: decay of state variables s1(t), s2(t), and s3(t) demonstrating asymptotic stability.

5. Applications in Bio-medicines

Application 5.1. Consider a Caputo fractional-order Delta model of order ג ∈ (0, 1) describing the inter-
action between cytotoxic T-cells (T(t)) and a viral pathogen (P(t)) during infection clearance

C∆גT(t) = aP︸︷︷︸
T-cell activation

− bT︸︷︷︸
T-cell death

, T(t0) = T0,

C∆גP(t) = −cP︸︷︷︸
Pathogen decay

− dTP︸︷︷︸
Pathogen elimination

, P(t0) = P0,
(5.1)

where a,b, c,d > 0. Here, T0 ⩾ 0 and P0 ⩾ 0 are initial T-cell and pathogen concentrations. Choose a
vector Lyapunov function to be ℵ(t,T,P) = (ℵ1,ℵ2)

T , where ℵ1(t,T) = |T|, ℵ2(t,P) = |P|. Following
through with the computation as in (4.1) and applying the definition of the Caputo Fr∆DiD as given in
Definition 2.3 we immediately obtain following. For ℵ1 = |T|:

C∆ג
+ℵ1 ⩽

|T(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |aP− bT|−

|T0|(t− t0)
ג−

Γ(1 − (ג
.

As t→ ∞, the fractional terms vanish, leaving:

C∆ג
+ℵ1 ⩽ −b|T|+ a|P| = −bℵ1 + aℵ2. (5.2)

Also, for ℵ2 = |P|:

C∆ג
+ℵ2 ⩽

|P(p(t))|(t− t0)
ג−

Γ(1 − (ג
− |− cP− dTP|−

|P0|(t− t0)
ג−

Γ(1 − (ג
.

Since −d|T||P| ⩽ 0, asymptotically:
C∆ג

+ℵ2 ⩽ −c|P| = −cℵ2. (5.3)

Combining (5.2) and (5.3) we obtain:

C∆ג
+ℵ ⩽

(
−b a

0 −c

)(
ℵ1
ℵ2

)
= Gs. (5.4)

Set the comparison system for (5.4) to be

C∆ג
+ℵ = G(t,ℵ) = As, (5.5)

where A =

(
−b a

0 −c

)
. Clearly the eigenvalues λ of A are λ1 = −b, λ2 = −c. Both eigenvalues are strictly

negative for b, c > 0, confirming asymptotic stability of the comparison system (5.5) and by Theorems 3.1
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and 3.2, we infer the (m0,m)-stability and (m0,m)-asymptotic stability of the zero solution (T,P) = (0, 0)
of the immune system (5.1). This means that despite initial pathogen load P0, the system dynamics drive
both T-cell activity and pathogen concentration to zero, reflecting successful immune clearance. This
result aligns with biological expectations where resolved infections exhibit damped immune responses
and pathogen eradication. Also, |T0|(t−t0)

ג−

Γ(1−ג) and |P0|(t−t0)
ג−

Γ(1−ג) decay to zero as t → ∞, ensuring stability is
independent of initial concentrations.

Application 5.2. Consider a 3D Caputo fractional-order Delta model of order ג ∈ (0, 1) describing the
interaction between corticotropin-releasing hormone (x1), adrenocorticotropic hormone (x2), and cortisol
(x3) in the hypothalamic-pituitary-adrenal (HPA) axis. The Caputo fractional dynamic system is:

C∆גx1(t) = a1 − b1x1 − c1x3, x1(t0) = x10,
C∆גx2(t) = a2x1 − b2x2 − c2x3, x2(t0) = x20,
C∆גx3(t) = a3x2 − b3x3, x3(t0) = x30,

with Initial conditions x10, x20, x30 ⩾ 0 which represent fasting hormone levels, where ai,bi, ci > 0, a1 are
the Basal CRH secretion rates, b1,b2,b3 are the hormone degradation rates, c1, c2 are the cortisol-mediated
inhibition coefficients, and a2,a3 are the stimulatory feedback gains. Set the vector the Lyapunov function
to be ℵ(t, x1, x2, x3) = (ℵ1,ℵ2,ℵ3)

T , where ℵ1 = x2
1, ℵ2 = x2

2, ℵ3 = x2
3. Applying Definition 2.3 and

following through the simplifications done for (4.5), then we obtain: for ℵ1 = x2
1,

C∆ג
+ℵ1 ⩽ 2x1(a1 − b1x1 − c1x3) −

x2
10(t− t0)

ג−

Γ(1 − (ג
.

As t→ ∞, the transient term vanishes. Assuming a1 ⩽ ϵ (small basal rate):

C∆ג
+ℵ1 ⩽ −2b1x

2
1 − 2c1x1x3 = −2b1ℵ1 − 2c1

√
ℵ1ℵ3. (5.6)

Also, for ℵ2 = x2
2:

C∆ג
+ℵ2 ⩽ 2x2(a2x1 − b2x2 − c2x3) −

x2
20(t− t0)

ג−

Γ(1 − (ג
.

As t→ ∞:
C∆ג

+ℵ2 ⩽ 2a2x1x2 − 2b2x
2
2 − 2c2x2x3 = a2(ℵ1 +ℵ2) − 2b2ℵ2 − c2(ℵ2 +ℵ3). (5.7)

Finally, for ℵ3 = x2
3:

C∆ג
+ℵ3 ⩽ 2x3(a3x2 − b3x3) −

x2
30(t− t0)

ג−

Γ(1 − (ג
.

As t→ ∞:
C∆ג

+ℵ3 ⩽ 2a3x2x3 − 2b3x
2
3 = a3(ℵ2 +ℵ3) − 2b3ℵ3. (5.8)

So that combining (5.6), (5.7), and (5.8), we obtain

C∆ג
+V ⩽

 −2b1 −c1 −c1
a2 − c2 −2b2 − c2 0

0 a3 −2b3

ℵ1
ℵ2
ℵ3

 = Gs.

Setting the comparison system to be
C∆ג

+ℵ = G(t,ℵ) = As, (5.9)

where A =

 −2b1 −c1 −c1
a2 − c2 −2b2 − c2 0

0 a3 −2b3

. Now, the eigenvalues λ of A satisfy:

det(A− λI) = (−λ− 2b1)(−λ− 2b2 − c2)(−λ− 2b3).
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For a2,a3 ≪ bi, ci (physiological damping), all eigenvalues have negative real parts, leading to the conclu-
sion of the asymptotic stability of the comparison system (5.9) and by Theorems 3.1 and 3.2, we can con-
clude the (m0,m)-stability and (m0,m)-asymptotic stability of the equlibrum point (x1, x2, x3) = (0, 0, 0)
under physiological damping conditions. This reflects the HPA axis’s homeostatic regulation, where corti-
sol feedback suppresses CRH/ACTH activity, stabilizing hormone levels. The result aligns with endocrine
system dynamics during stress recovery.

6. Conclusion

In this work, we investigated the stability of FrDET using a comparison principle approach within
a two-measure framework. By employing two measures (m0,m) and vector Lyapunov functions, we
established new sufficient conditions for (m0,m)-stability and (m0,m)-asymptotic stability, thereby uni-
fying stability concepts across continuous and discrete domains. This framework simplifies the analysis
by reducing the stability assessment to verifying the quasimonotonicity of a related comparison system,
enhancing both computational efficiency and practical accessibility. Theoretical results were validated
through two biologically relevant examples: an immune response model, illustrating stability in a non-
linear T-cell–pathogen interaction system, and a Neuro-Endocrine Regulation Model, demonstrating the
scalability of the approach through a three-dimensional HPA axis system. These examples highlight the
practical applicability of the proposed method in biomedical contexts and emphasize its ability to bridge
theoretical stability analysis with complex, real-world biological systems. Moreover, by incorporating the
Caputo fractional delta Dini derivative, the framework naturally accommodates hybrid time scales and
discontinuous interventions. Overall, this study advances the understanding of fractional dynamic sys-
tems on time scales and offers a unified, robust tool for stability analysis across diverse fields, including
pharmacokinetics and neuroendocrinology.
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