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Abstract
This paper studies a new notion of Jaggi-type hybrid (θ-ϕ)-contraction and demonstrates its roles in proving fixed point

theorems within the context of a generalized metric space. We prove, using comparative examples that under special instances,
the ideas presented herein can be reduced to some known results in the existing literature. To show a possible application of
our main contractive inequality, iterative methods are developed for addressing the existence of solutions to a class of mixed
nonlinear fixed point problems involving Volterra-Fredholm integral equation.
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1. Introduction

The fixed point theorem (FPT) commonly referred to as the Banach contraction principle [7] is based
on the solution of a simple (fixed point) equation: S̃(u) = u, for a self-mapping S̃ on a nonempty set X.
Inherently, a FP equation S̃(u) − u = 0 can be reformulated as H(u) = S̃(u) − u, where H is also a self-
mapping on X. Over the years, several generalizations of the idea of Banach contraction principle have
been made. In some generalizations, the contractiveness of the map is lessened (e.g., see [27, 29] and the
reference therein). In other generalizations, the structure is lessened (e.g., see [11, 28] and the reference
therein). Not long ago, Tijjani et al. [2] introduced the concept of C∗-algebra-valued perturbed metric
spaces as an extension of perturbed metric spaces. On a related development, Ahmad et al. [3] presented
the idea of C∗-algebra-valued modular metric spaces and proved some new fixed point theorems in such
spaces.

Branciari [9] introduced the idea of generalized metric spaces, where the triangle inequality is substi-
tuted by the inequality σ(u, v) ⩽ σ(u,a) + σ(a,b) + σ(b, v) for all pairs of distinct points u, v,a,b ∈ X.
Since then, a number of FP conclusions on such spaces have been developed; Kirk and Shahzad [20] said a

∗Corresponding author
Email addresses: shagaris@ymail.com (Mohammed Shehu Shagari), oloche@gmail.com (Paul Oloche), mnorwali@kau.edu.sa
(Maha Noorwali), iayoub@psu.edu.sa (Irshad Ayoob), nmlaiki2012@gmail.com (Nabil Mlaiki)

doi: 10.22436/jmcs.041.03.04

Received: 2025-04-02 Revised: 2025-08-17 Accepted: 2025-09-05

http://dx.doi.org/10.22436/jmcs.041.03.04
http://dx.doi.org/10.22436/jmcs.041.03.04
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.041.03.04&domain=pdf


M. S. Shagari, et al., J. Math. Computer Sci., 41 (2026), 334–346 335

‘generalized metric space’ is a semimetric space which does not satisfy the triangle inequality, but satisfies
a weaker assumption. Samet [24] also talked about exposing incorrect property of the generalized metric
space as introduced by Branciari. Aydi et al. [6] studied the concept of generalized (α,ψ)-contractive
mappings and proved some fixed point theorems, by taking note of the weakness of the topology of gen-
eralized metrics. On similar development, Shatanawi [26] examined new conditions for the existence of
unique fixed points for mappings satisfying generalized weak contractions in the setting of a generalized
metric space of Branciari-type. For other related discussions, see [5, 23] and some references therein.

In the last decades, a number of FP results have been published to extend the Banach FP theorem.
Among them are following. Jaggi [15] proved a FP theorem in which the rational expression was consid-
ered for the first time. Karapinar [18] introduced the notion of Kannan-type interpolative contraction that
maximizes the rate of convergence. Yelsilkaya [30] presented an example on interpolative Hardy-Rogers
contractive of the Suzuki-type mapping. Not long ago, motivated by the outcome in [18], Mitrović et
al. [21] introduced and investigated a hybrid contraction that combines a Reich-type contraction and
interpolative-type contraction, while Karapinar and Fulga [19] provided a new hybrid contraction by
combining Jaggi-type contraction and interpolative-type contraction.

In spite of the significant generality of the ideas of θ-contraction and the corresponding fixed point
theorems, in certain situations (e.g., connected with problems from existence results of differential and
integral equations), the concept of θ-contractions on generalized spaces or spaces with an additional
metric structure has not been adequately examined. Therefore, inspired by the ideas of θ-contraction
introduced by Jleli and Samet [17] and the work of Karapinar and Fulga [19] in metric space, the aim of
this paper is to present a hybrid version of (θ-ϕ) contraction of Jaggi-type and establish various FP results
for such map in the setting of complete generalized metric space. One of our obtained results is further
applied to discuss some techniques of solving a mixed-type integral equations.

The organisation of this article is as follows. The introduction and a summary of relevant literary
works are provided in Section 1. Section 2 compiles the fundamental ideas, such as definitions and lem-
mas, that are required for this work. The main findings and some implications of the FP theorem are
presented in Section 3. The existence and uniqueness of a solution to a nonlinear Volterra-Fredholm inte-
gral equation are investigated as an application in Section 4, with the aid of one of the results found here.
In Section 5, a numerical example is developed to substantiate the conclusions made therein. Deductions,
suggestions, and conclusions are provided in Section 6.

2. Preliminaries

In this section, some fundamental definitions, terminology and notations that will be deployed sub-
sequently are recalled. In this work, each set of X is considered nonempty and N is the set of natural
numbers.

Bianciari [9] introduced the concept of generalized metric space, where the triangular inequality is
replaced with rectangular inequality. The definition is as follows.

Definition 2.1 ([9]). Let X be a nonempty set and σ : X× X −→ [0,∞) be a mapping such that for all
u, v ∈ X and for all distinct points a,b ∈ X, each of them different from u and v, we have

i. σ(u, v) = 0 ⇔ u = v;
ii. σ(u, v) = σ(v,u);

iii. σ(u, v) ⩽ σ(u,a) + σ(a,b) + σ(b, v).

Then, (X,σ) is referred to as a generalized metric space.

Recently, Jleli and Samet [17] presented a novel kind of contraction known as θ-contraction and es-
tablished some new FP theorems for such contraction in the context of generalized metric spaces as
introduced by Bianciari [9]. Let Θ be the set of functions θ : (0,∞) −→ (1,∞) satisfying the following
conditions:
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(Θ1) θ is non-decreasing;
(Θ2) for each sequence {tι} ⊂ (0,∞), limι→∞ θ(tι) = 1 if and only if limι→∞(tι) = 0+;
(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+

θ(t)−1
tr = ℓ.

Definition 2.2 ([17]). Let (X,σ) be a generalized metric space. A mapping S̃ : X −→ X is called θ-
contraction if there exist θ ∈ Θ and r ∈ (0, 1) so that for every u, v ∈ X,

σ(S̃u, S̃v) ̸= 0 ⇒ θ(σ(S̃u, S̃v)) ⩽ [θ(σ(u, v))]r.

The main theorem of Jleli and Samet [17] is as follows.

Theorem 2.3 ([17]). Let (X,σ) be a complete generalized metric space and S̃ : X −→ X be a θ-contraction. Then S̃
has a unique FP in X.

They showed that the Banach contraction is a particular case of θ-contraction while there are θ-
contractions which are not Banach contraction.

Example 2.4 ([17]). Let Θ : (0,∞) −→ (1,∞) be defined by

(1) θ(t) := e
√
t;

(2) θ(t) := e
√
tet ;

(3) θ(t) := 2 − 2
π arctan( 1

tα ), 0 < α < 1, t > 0.

Then (1)-(3) satisfy all the properties of Θ.

In 1977, Jaggi[15] defined a new concept of a generalized Banach contraction principle, now called
Jaggi contraction, which is one of the first known rational contractive inequalities.

Definition 2.5 ([13]). Suppose we have a metric space (X,σ). Jaggi contraction describes a continuous
self-mapping S̃ : X −→ X if, for any u, v ∈ X, u ̸= v, there exist α1,α2 ∈ [0, 1) with α1 +α2 < 1 such that

σ(S̃u, S̃v) ⩽ α1
σ(u, S̃u).σ(v, S̃v)

σ(u, v)
+α2σ(u, v).

Definition 2.6 ([4]). A mapping ϕ : [0,∞) −→ [0,∞) is called a (c)-comparison function if the following
requirements are met:

(a) ϕ is nondecreasing;
(b) the series

∑∞
ι=1ϕ

ι(z) is convergent for z ⩾ 0.

Lemma 2.7 ([8]). Let ϕ ∈ Φ and Φ be the family of (c)-comparison functions. Then, the following conditions
apply:

(i) ϕι(z) −→ 0 as ι −→ ∞ for all z ⩾ 0;
(ii) ϕ(z) < z for all z > 0;

(iii) ϕ is continuous;
(iv) ϕ(z) = 0 ⇐⇒ z = 0;
(v) the series

∑∞
ι=1ϕ

ι(z) ⩾ 0.

Definition 2.8 ([19]). A self-mapping S̃ on a metric space (X,σ) referred to as a Jaggi-type hybrid contrac-
tion if there is ϕ ∈ Φ such that for all distinct u, v ∈ X,

σ(S̃u, S̃v) ⩽ ϕ(Mαi
(u, v, s, S̃)), (2.1)

where αi ⩾ 0, i = 1, 2, such that α1 +α2 = 1 and

Mαi
(u, v, s, S̃) =


[
α1

(
σ(u,S̃u).σ(v,S̃v)

σ(u,v)

)s
+α2(σ(u, v))s

] 1
s

, for s > 0,

(σ(u, S̃u))α1 .(σ(v, S̃v))α2 , for s = 0, u, v ∈ X\fix(S̃).

Here, fix(S̃) = {u ∈ X : u = S̃u}.
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3. Main results

In this section, the idea of Jaggi-type hybrid (θ-ϕ)-contraction in the structure of a generalized metric
space is introduced, and new constraints for the existence and uniqueness of fixed points are discussed.
In this manner, several useful and classical results are generalized. Also, a concrete example is created to
furnish our results.

Definition 3.1. Let (X,σ) be a generalized metric space. A mapping S̃ : X −→ X is regarded as a Jaggi-type
hybrid (θ-ϕ)-contraction if there exist θ ∈ Θ, ϕ ∈ Φ and r ∈ (0, 1) such that for any u, v ∈ X\fix(S̃),

σ(S̃u, S̃v) ̸= 0 ⇒ θ(σ(S̃u, S̃v)) ⩽ [θ(ϕ(Mαi
(u, v, s, S̃)))]r, (3.1)

where Mαi
(u, v, s, S̃) is as defined in (2.1).

Theorem 3.2. Let (X,σ) be a complete generalized metric space and the mapping S̃ : X −→ X be a continuous
Jaggi-type hybrid (θ-ϕ)-contraction, then S̃ possesses a unique FP in X.

Proof. Suppose that u0 is an arbitrary fixed element in X. Define a sequence {uι}ι∈N in X by uι = S̃ιu0,
ι ⩾ 1. If we can find some ι0 ∈ N such that uι0+1 = uι0 , then, S̃ι+1u0 = S̃ιu0. This implies that S̃ιu0
is a FP of S̃ and the proof is complete. Now, suppose on the contrary that uι+1 ̸= uι for all ι ∈ N,
then σ(uι,uι+1) > 0 for all ι ∈ N. By examining two distinct cases, the theorem shall be proved in the
following manner.
Case 1. For s > 0, let u = uι−1 and v = uι for all ι ∈ N, then (3.1) becomes:

θ(σ(S̃uι−1, S̃uι)) = θ(σ(uι,uι+1)) ⩽ [θ(ϕ(Mαi
(uι−1,uι)))]r, (3.2)

where

Mαi
(uι−1,uι) =

[
α1

(
σ(uι−1, S̃uι−1).σ(uι, S̃uι)

σ(uι−1,uι)

)s

+α2(σ(uι−1,uι))s
] 1

s

=

[
α1

(
σ(uι−1,uι).σ(uι,uι+1)

σ(uι−1,uι)

)s

+α2(σ(uι−1,uι))s
] 1

s

=

[
α1(σ(uι,uι+1))

s +α2(σ(uι−1,uι))s
] 1

s

.

(3.3)

Assume that σ(uι,uι+1) ⩾ σ(uι−1,uι). Then, from (3.2) and (3.3), we have

θ(σ(uι,uι+1)) ⩽ [θ(ϕ(Mαi
(uι−1,uι)))]r

=
[
θ(ϕ((α1(σ(uι,uι+1))

s +α2(σ(uι−1,uι))s)
1
s ))

]r
⩽

[
θ(ϕ((α1(σ(uι,uι+1))

s +α2(σ(uι,uι+1))
s)

1
s ))

]r
= [θ(ϕ((α1 +α2)(σ(uι,uι+1))

s)
1
s ]r = [θ(ϕ(σ(uι,uι+1)))]

r < [θ(σ(uι,uι+1))]
r.

(3.4)

That is, θ(σ(uι,uι+1)) < [θ(σ(uι,uι+1))]
r, which is a contradiction for all r ∈ (0, 1). Therefore, max{σ(uι,

uι+1),σ(uι−1,uι)} = σ(uι−1,uι). Hence, (3.2) becomes:

θ(σ(uι,uι+1)) ⩽ [θ(ϕ(σ(uι−1,uι)))]r

⩽ [θ(ϕ(ϕ(σ(uι−2,uι−1))))]
r2

= [θ(ϕ2(σ(uι−2,uι−1)))]
r2

⩽ · · · ⩽ [θ(ϕι(σ(u0,u1)))]
rι for all ι ∈ N.

Thus, we have
1 ⩽ θ(σ(uι,uι+1)) ⩽ [θ(ϕι(σ(u0,u))]r

ι

. (3.5)
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Letting ι −→ ∞ in (3.5) and using Sandwich theorem, (3.5) becomes:

θ(σ(uι,uι+1)) → 1 as ι −→ ∞,

which implies from (Θ2) that limι→∞ σ(uι,uι+1) = 0. From condition (Θ3), there exist r ∈ (0, 1) and
ℓ ∈ (0,∞] such that

lim
ι→∞ θ(σ(uι,uι+1)) − 1

[σ(uι,uι+1)]r
= ℓ.

Suppose that ℓ < ∞. In this instance, let B = ℓ
2 > 0. As stated in the definition of the limit, there exists

ι0ıι such that ∣∣∣∣θ(σ(uι,uι+1)) − 1
[σ(uι,uι+1)]r

− ℓ

∣∣∣∣ ⩽ B, for all ι ⩾ ι0.

This implies that

θ(σ(uι,uι+1)) − 1
[σ(uι,uι+1)]r

⩾ ℓ−B = B, for all ι ⩾ ι0.

Then,

ι[σ(uι,uι+1)]
r ⩽ An[θ(σ(uι,uι+1)) − 1], for all ι ⩾ ι0,

A = 1
B in this case. Let us now assume that ℓ = ∞. Let an arbitrary positive value B > 0. According to

the limit’s definition, there is a ι0 ⩾ 1 such that

θ(σ(uι,uι+1)) − 1
(σ(uι,uι+1)]r

⩾ B, for all ι ⩾ ι0.

This implies that

ι[σ(uι,uι+1)]
r ⩽ An[θ(σ(uι,uι+1)) − 1], for all ι ⩾ ι0,

where A = 1
B . Thus, in all cases, there exists A > 0 such that

ι[σ(uι,uι+1)]
r ⩽ An[θ(σ(uι,uι+1)) − 1], for all ι ⩾ ι0.

Using (3.5), we obtain

ι[σ(uι,uι+1)]
r ⩽ An([θ(σ(uι,uι+1))]

rι − 1), for all ι ⩾ ι0. (3.6)

Letting ι→ ∞ in (3.6), we obtain limι→∞ ι[σ(uι,uι+1)]
r = 0. Consequently, there is ι1 ∈ N such that

σ(uι,uι+1) ⩽
1

ι
1
r

, for all ι ⩾ ι1. (3.7)

Now, we’ll show that there is a periodic point for S̃. If this isn’t the case, then for each ι,m ∈ N such that
ι ̸= m, uι ̸= um. Applying (3.4), we arrive at

1 ⩽ θ(σ(uι,uι+2)) ⩽ [θ(ϕ(Mαi
(uι−1,uι+1)))]

r ⩽ [θ(ϕ2(Mαi
(uι−2,uι)))]r

2
⩽ · · · ⩽ [θ(ϕι(σ(u0,u2)))]

rn .

Letting ι −→ ∞ in the above inequality and using (Θ2), we have limι→∞ σ(uι,uι+2) = 0. In a similar vein,
ι2 ∈ N exists from condition (Θ3) such that

σ(uι,uι+2) ⩽
1

ι
1
r

, for all ι ⩾ n2. (3.8)
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For H = max{ι0, ι1}, set it. We examine two cases.
(A) Writing m = 2l+ 1, l ⩾ 1, then applying (3.7) for all ι ⩾ H, if m > 2 is odd, yields

σ(uι,uι+m) ⩽ σ(uι,uι+1) + σ(uι+1x,uι+2) + · · ·+ σ(uι+2l,uι+2l+1)

⩽
1

ι
1
r

+
1

(ι+ 1)
1
r

+ · · ·+ 1

(ι+ 2l)
1
r

=

ι+2l∑
i=1

1

i
1
r

⩽
∞∑
i=ι

1

i
1
r

.

(B) If m > 2 is even, then writing m = 2l, l ⩾ 2 and using (3.7) and (3.8), yields

σ(uι,uι+m) ⩽ σ(uι,uι+2) + σ(uι+2,uι+3) + · · ·+ σ(uι+2l−1,uι+2l)

⩽
1

ι
1
r

+
1

(ι+ 2)
1
r

+ · · ·+ 1

(ι+ 2l− 1)
1
r

⩽
∞∑
i=ι

1

i
1
r

.

Thus, combining all the instances, leads to

σ(uι,uι+m) ⩽
∞∑
i=ι

1

i
1
r

for all ι ⩾ H, m ∈ N.

The series
∑∞

i=ι
1
i

1
r

converges since 1
r > 1, which shows that {uι} is a Cauchy sequence. From the com-

pleteness of the space, there exists z ∈ X such that uι −→ z as ι −→ ∞. Since S̃ is a continuous mapping,
it follows that

σ(z, S̃z) = lim
ι→∞σ(uι, S̃uι) = lim

ι→∞σ(uι,uι+1) = σ(z, z) = 0.

This implies that z = S̃z, which is a contradiction with the assumption S̃ does not have a periodic point.
Thus, S̃ has at least a periodic point. That is, the FP exists.
Case 2. For s = 0, we let u = uι−1 and v = uι in (3.1), for all ι ∈ N. Then,

θ(σ(S̃uι−1, S̃uι)) = θ(σ(uι,uι+1)) ⩽ [θ(ϕ(Mαi
(uι−1,uι)))]r,

where

Mαi
(uι−1,uι) = (σ(uι−1, S̃uι−1))

α1 .(σ(uι, S̃uι))α2 = (σ(uι−1,uι))α1 .(σ(uι,uι+1))
α2 .

It follows from (3.2) that

θ(σ(uι,uι+1)) ⩽ [θ(ϕ(σ(uι−1,uι))α1 .(σ(uι,uι+1))
α2 ]r. (3.9)

Assume that σ(uι,uι+1) ⩾ σ(uι−1,uι). Then, from (3.9), we have

θ(σ(uι,uι+1)) ⩽ [θ(ϕ(σ(uι,uι+1))
α1(σ(uι,uι+1))

α2)]r

= [θ(ϕ(σ(uι,uι+1))
α1+α2)]r = [θ(ϕ(σ(uι,uι+1)))]

r < [θ(σ(uι,uι+1))]
r,

which is a contradiction. This implies from (3.9) that

θ(σ(uι,uι+1)) ⩽ [θ(ϕ(σ(uι−1,uι)))]r

⩽ [θ(ϕ(ϕ(σ(uι−2,uι−1))))]
r2

= θ(ϕ2(σ(uι−2,uι−1)))]
r2

⩽ · · · ⩽ [θ(ϕι(σ(u0,u1)))]
rι for all ι ∈ N.

the identical tools as used in the instance of s > 0, we can establish the fact that {uι} forms a Cauchy
sequence. Since the metric is complete, limι→∞ uι = u, which is a point in X. Also, from the continuity
of S̃, it’s evident that this point is a FP of S̃.
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Suppose S̃ has more than one FP. Indeed, if u, v ∈ X are two FP of S̃ such that S̃u = u ̸= v = S̃v, then
σ(u, v) = σ(S̃u, S̃v) > 0. Using (3.1),

θ(σ(u, v)) = θ(σ(S̃u, S̃v)) ⩽ [θ(ϕ(Mαi
(u, v)))]r. (3.10)

Case 1. For s > 0,

Mαi
(u, v) =

[
α1

(
σ(u, S̃v).σ(u, S̃v)

σ(u, v)

)s

+α2(σ(u, v))s
] 1

s

=

[
α1

(
σ(u, v).σ(u, v)

σ(u, v)

)s

+α2(σ(u, v))s
] 1

s

= [α2(σ(u, v))s]
1
s = [α

1
s

2 (σ(u, v))] ⩽ σ(u, v).

Hence (3.10) becomes θ(σ(u, v)) ⩽ [θ(ϕ(σ(u, v)))]r < θ(σ(u, v)), which is a contradiction.
Case 2. For s = 0,

Mαi
(u, v) = (σ(u, S̃v))α1 .(σ(u, S̃v))α2 = (σ(u, v))α1 .(σ(u, v))α2 = 0.

Therefore, from (3.10), we have θ(σ(u, v)) ⩽ [θ(ϕ(0))]r ⩽ [θ(0)]r < θ(0), which is a contradiction. Hence,
the FP of S̃ is unique.

Listed below are some immediate consequences of Theorem 3.2.

Corollary 3.3. Let (X,σ) be a complete metric space and S̃ : X −→ X be a given map. Assume that there exist
θ ∈ Θ, ϕ ∈ Φ, and r ∈ (0, 1) such that for any u, v ∈ X\fix(S̃),

θ(σ(S̃u, S̃v)) ⩽ [θ(ϕ(Mαi
(u, v, s, S̃)))]r,

where Mαi
(u, v, s, S̃) is defined as in (2.1). Then S̃ has a unique FP in X.

Corollary 3.4. Let (X,σ) be a complete generalized metric space and S̃ : X −→ X be a continuous mapping
satisfying the condition:

θ(σ(S̃u, S̃v)) ⩽ [θ(µMαi
(u, v))]r for all u, v ∈ X and r ∈ (0, 1).

Then S̃ has a unique FP in X.

Proof. By taking ϕ(t) = µt, for all t ⩾ 0 and for some µ ∈ (0, 1), the proof follows from Theorem 3.2.

Corollary 3.5. Given (X,σ) to be a complete generalized metric space and S̃ : X −→ X a continuous mapping
satisfying the condition:

θ(σ(S̃u, S̃v)) ⩽ [θ(µ

√
σ(u, S̃u)(σ(v, S̃v)))]r for all u, v ∈ X,

then S̃ has a unique FP in X.

Proof. Consider Case 2 of Theorem 3.2 and by taking α1 = α2 = 1
2 , then the conclusion is immediate from

Corollary (3.4).

Corollary 3.6 ([17]). Let (X,σ) be a complete generalized metric space and S̃ : X −→ X be a given mapping.
Assume that there exit θ ∈ Θ and r ∈ (0, 1) such that

u, v ∈ X,σ(S̃u, S̃v) ̸= 0 ⇒ θ(σ(S̃u, S̃v)) ⩽ [θ(µσ(u, v))]r.

Then, S̃ has a unique FP in X.
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Proof. Consider the case where s > 0 in Theorem 3.2. Then by taking α1 = 0, α2 = 1 and ϕ(t) = µt, for all
t > 0 and some µ ∈ (0, 1), the conclusion follows.

The example that follows is created to assist the hypotheses of Corollary 3.3.

Example 3.7. Let X =
{
uι =

ι(ι+1)(2ι+1)
2 for all ι ∈ N

}
. If X is endowed with the standard metric σ(u, v) =

|u− v| for all u, v ∈ X, consider the mapping S̃ : X −→ X defined by S̃u1 = u1 and S̃uι = uι−1 if ι ⩾ 2.
Obviously, the Banach contraction is not satisfied, since

lim
ι→∞ σ(S̃uι, S̃u1)

σ(uι,u1)
= lim

ι→∞ 2ι3 − 3ι2 + ι− 6
2ι3 + 3ι2 + ι− 6

= 1.

To show that S̃ is a Jaggi-type hybrid (θ-ϕ)-contraction, it is sufficient to show that

θ(σ(S̃uι, S̃um)) ⩽ [θ(ϕ(Mαi
(uι,um)))]r, (3.11)

holds for some r ∈ (0, 1) and for all ι,m ∈ N. So, let θ(t) =
√
tet, t > 0, then (3.11) yields:

σ(S̃uι, S̃um)eσ(S̃uι,S̃um) ⩽ r2[ϕ(Mαi
(uι,um))eϕ(Mαi

(uι,um))] < r2(Mαi
(uι,um)eMαi

(uι,um). (3.12)

Let α1 = 0 and α2 = 1 for the case when s = 0 in Corollary (3.4). Then, Mαi
(uι,um) = σ(uι,um). This

implies that (3.12) can be written as

σ(S̃uι, S̃um)eσ(S̃uι,S̃um) ⩽ r2σ(uι,um)eσ(uι,um). (3.13)

Now, two cases are considered.
(A) ι = 1 and m ⩾ 2. From (3.13), we have

σ(S̃u1, S̃um)eσ(S̃u1,S̃um)−σ(u1,um)

σ(u1,um)
=

2m3 − 3m2 +m− 6
2m3 + 3m2 +m− 6

e−3m2
⩽ e−1.

(B) m > ι > 1. From (3.13), we have

σ(S̃uι, S̃um)eσ(S̃uι,S̃um)−σ(uι,um)

σ(uι,um)
=

(2m3 − 3m2 +m) − (2ι3 − 3ι2 + ι)
(2m3 + 3m2 +m) − (2ι3 + 3ι2 + ι)

e−3(m2−ι2) ⩽ e−1,

considering r = e−
1
2 . As such, S̃ has a unique FP in X and is a Jaggi-type hybrid (θ-ϕ)-contraction.

Therefore, every condition stated in Corollary 3.3 is met. Here, u1 represents the distinct FP of S̃. In
contrast, S̃ is not a hybrid contraction of the Jaggi type according to Karapinar and Fulga [15]. Define a
mapping ϕ ∈ Φ such that, for all t ⩾ 0, ϕ(t) = t

4 . Next, based on 3.11, we possess that

σ(S̃uι, S̃um)eσ(S̃uι,S̃um) ⩽ r2ϕ(Mαi
(uι,um))eϕ(Mαi

(uι,um))

= r2 1
4
(Mαi

(uι,um))e
1
4 (Mαi

(uι,um) < r2Mαi
(uι,um)eMαi

(uι,um).
(3.14)

Obviously, (3.13) and (3.14) coincide. Here, under the value of α1 = 0 and α2 = 1, it follows that the
mapping T is a Jaggi-type hybrid (θ-ϕ)-contraction. On the other hand, for all u, v ∈ X \ fix(T), where
(2.1) yields

σ(S̃u, S̃v) ⩽ ϕ(σ(u, v)) =
1
4
σ(u, v). (3.15)

Now, pick two points u = u1 and v = u3, then evidently, (3.15) becomes

4σ(S̃u1, S̃u3)

σ(u1,u3)
=

4σ(3, 15)
σ(3, 42)

=
4|3 − 15|
|3 − 42|

=
4(12)

39
=

48
39
> 1,

which shows that (2.1) fails.
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4. Applications to a nonlinear Volterra-Fredholm integral equation

Fixed point results of Lipschitze-type inequalities have been very useful in the existence theory of
both linear and nonlinear equations. Consequently, more than a handful of such applications have been
presented. Not long ago, Hammad and De le Sen [12] established a coupled fixed point theorem for
F-contraction mappings and applied the obtained result to analyzing new conditions for the existence
of a unique solution to a nonlinear integral equation. In [14], a graphic-type fixed point results was
employed to examine solvability criteria of a system of ordinary differential equations with infinite delay.
For some related applications of Lipschitz-type inequalities, we refer to [16, 22, 25]. In this section, one of
our obtained findings is used to investigate conditions for the existence and uniqueness of a solution to
nonlinear Volterra-Fredholm equation. To this effect, consider the nonlinear Volterra-Fredholm integral
equation of the first kind, given as

u(t) = λ1

∫t
0
k1(t, s,u(s))ds+ λ2

∫h
0
k2(t, s,u(s))ds, t ∈ [0,h], (4.1)

where u(t) is the unknown solution, ki(t, s,u(s)) are smooth functions, λi,h are constants. Assume that
the set of all continuous real valued functions defined on X with the supremum norm is X = C([0,h]).
The metric σ : X×X −→ R+, which is defined as σ(u, v) = sup{|u(t) − v(t)|, t ∈ [0,h]}, is equipped with
X, the completion of (X,σ) occurs. A mapping S̃ : X −→ X should be defined by

S̃u(t) = λ1

∫t
0
k1(t, s,u(s))ds+ λ2

∫h
0
k2(t, s,u(s))ds. (4.2)

Then, a point z s regarded as a FP of S̃ if and only if z is a solution to (4.1). Now, we study solvability
criteria of the nonlinear Volterra-Fredholm integral equation (4.1) under the following assumptions.

Theorem 4.1. Assume that the following conditions are satisfied:

(i) S̃ is a continuous mapping and ki : [0,h]× [0,h]× R −→ R;
(ii) for some constant Ai, there exist r,µ ∈ (0, 1) such that |ki(t, s,u(t)) − ki(t, s, v(u))| ⩽ Ai[rµ|u(s) − v(s)|],

where i = 1, 2;
(iii) suppose further that δt+ ηh < 1, where τ1A1 = δ, and τ2A2 = η.

Then, the integral equation (4.1) has a unique solution in X.

Proof. Note that that every u, v ∈ X, using (4.2) and the above hypotheses,

|S̃u(t) − S̃v(t)|

=

∣∣∣∣τ1

∫t
0
k1(t, s,u(s))ds+ τ2

∫h
0
k2(t, s,u(s))ds−

[
τ1

∫t
0
k1(t, s, v(s))ds+ τ2

∫h
0
k2(t, s, v(s))ds

]∣∣∣∣
=

∣∣∣∣τ1

[∫t
0
k1(t, s,u(s))ds− k1(t, s, v(s))ds

]
+ τ2

[∫h
0
k2(t, s,u(s))ds− k2(t, s, v(s))ds

]∣∣∣∣∣
⩽ τ1

∫t
0
A1

[
rµ|u(s) − v(s)|

]
ds+ τ2

∫h
0
A2

[
rµ|u(s) − v(s)|

]
ds

⩽ τ1A1[rµ∥u− v∥]t+ τ2A2[rµ∥u− v∥]h
= (τ1A1t+ τ2A2h)[rµ∥u− v∥] = (δt+ ηh)[rµ∥u− v∥] < [rµ∥u− v∥].

This yields that supt∈[0,h] |S̃u(t) − S̃v(t)| ⩽ [rµσ(u(t), v(t))]. Hence,

σ(S̃u, S̃v) ⩽ [rµσ(u, v)]. (4.3)
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Now, from Corollary 3.4, for the case when s = 0,α1 = 0,α2 = 1, and s = 1, Mαi
(u, v) = σ(u, v). This

implies that equation (4.3) becomes:

σ(S̃u, S̃v) ⩽ [rµ(Mαi
(u, v))]. (4.4)

Taking exponential of both sides of (4.4), produces

eσ(S̃u,S̃v) ⩽ [eµ(Mαi
(u,v))]r. (4.5)

Define a mapping θ : [0,∞) −→ [1,∞) by θ(t) = et, then (4.5) becomes

θ(σ(S̃u, S̃v)) ⩽ [θ(µ(Mαi
(u, v)))]r.

Thus, all of the theories of Corollary 3.4 are satisfied and so S̃ has a unique FP in X. This implies that
there is a unique solution to the nonlinear Volterra-Fredholm integral equation.

5. Numerical examples

This section establishes a numerical example to support the reliability of the given results, using a
class of integral equation. The ideas used in this section are motivated by [1]. Let X = C([0, 1], R) be the
set of all continuous real-valued functions, and S̃ : X −→ X be a mapping defined by

S̃u(t) = ψ(t) +

∫ 1

0
k(t, s)u(s)ds, t, s ∈ [0, 1]2. (5.1)

Let ψ(t) = t2 sin(t) and k(t, s)u(s) = t cos(u(s)). Then, by substitution, equation (5.1) becomes

S̃u(t) = t2 sin(t) +
∫ 1

0
t cos(u(s))ds.

Let ϕ : [0,∞) −→ [0,∞) be a mapping satisfying the condition.
(A) | cos(u(s)) − cos(v(s))| ⩽ r(ϕ|u(s) − v(s)|) for some r ∈ (0, 1). Note that for any u, v ∈ X and using
condition (A), we have∣∣S̃u(t) − S̃v(t)∣∣ = ∣∣∣∣t2 sin(t) +

∫ 1

0
t cos(u(t))ds− t2 sin(t) −

∫ 1

0
t cos(v(t))ds

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
t cos(u(t))ds−

∫ 1

0
t cos(v(t))ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
t[cos(u(t)) − cos(v(t))]ds

∣∣∣∣∣
⩽

∫ 1

0
|t|
[
| cos(u(t)) − cos(v(t))|

]
ds

⩽
∫ 1

0
r(ϕ|u(t) − v(t)|)ds = r(ϕ|u(s) − v(s)|)

∫ 1

0
ds = r(ϕ|u(s) − v(s)|).

This implies that
σ(S̃u, S̃v) ⩽ rϕ(σ(u, v)). (5.2)

Taking exponential of both sides of (5.2), yields

eσ(S̃u,S̃v) ⩽ erϕ(σ(u,v)) = eϕ(σ(u,v))r . (5.3)

Define a mapping θ : [0,∞) −→ [1,∞) by θ(t) = et. Then (5.3) becomes

θ(σ(S̃u, S̃v)) ⩽ [θ(ϕ(σ(u, v)))]r. (5.4)

Now from Theorem 3.2, considering the case when s > 0,α1 = 0,α2 = 1, and s = 1, Mαi
(u, v) = σ(u, v).
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Consequently, (5.4) becomes
θ(σ(S̃u, S̃v)) ⩽ [θ(ϕ(Mαi

(u, v)))]r.

Thus, every requirement of Theorem 3.2 are satisfied. As a result, the integral equation (5.1) has a unique
solution in X. It can be easily checked that u(t) = t is the exact solution of equation (5.1).

Next, the iterative method will be employed to examine the viability of our technique. Tables 1, 2, 3,
4, and 5 show the sequence of iteration of uι+1(t) = S̃uι(t) = t

2 sin(t) +
∫1

0 t cos(uι(s))ds. Let u0(t) = 1 be
an initial fixed solution.

Table 1: For t = 0.2.

n uι+1(0.2) Approximation Absolute Error
0 u1(0.2) 0.200109 1.09 × 10−4

1 u2(0.2) 0.200138 1.38×10−4

2 u3(0.2) 0.200138 1.38×10−4

3 u4(0.2) 0.200138 1.38×10−4

Table 2: For t = 0.4.

n uι+1(0.4) Approximation Absolute Error
0 u1(0.4) 0.401056 1.056 × 10−3

1 u2(0.4) 0.401107 1.107 × 10−3

2 u3(0.4) 0.401107 1.107 × 10−3

3 u4(0.4) 0.401107 1.107 × 10−3

Table 3: For t = 0.6.

n uι+1(0.6) Approximation Absolute Error
0 u1(0.6) 0.603678 3.678 × 10−3

1 u2(0.6) 0.603736 3.736 × 10−3

2 u3(0.6) 0.603736 3.736 × 10−3

3 u4(0.6) 0.603736 3.736 × 10−3

Table 4: For t = 0.8.

ι uι+1(0.8) Approximation Absolute Error
0 u1(0.8) 0.808813 8.08813 × 10−3

1 u2(0.8) 0.808856 8.08856 × 10−3

2 u3(0.8) 0.808856 8.08856 × 10−3

3 u4(0.8) 0.808856 8.08856 × 10−3

Table 5: For t = 1.

ι uι+1(1) Approximation Absolute Error
0 u1(1) 1.017300 1.173 × 10−2

1 u2(1) 1.017294 1.7294 × 10−2

2 u3(1) 1.017294 1.7294 × 10−2

3 u4(1) 1.017294 1.7294 × 10−2

Figures 1 and 2 illustrate the convergence behaviour of the sequence uι+1(t) = S̃uι(t) = t2 sin(t) +∫1
0 t cos(uι(s))ds.

Figure 1 Figure 2

The graph shows that the sequence uι+1(t) = S̃uι(t) = t2 sin(t) +
∫1

0 t cos(uι(s))ds converges to the
exact solution of t = 0.2.

The graph shows that the sequence uι+1(t) = S̃uι(t) = t2 sin(t) +
∫1

0 t cos(uι(s))ds converges to the
exact solution of t = 0.8.
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6. Conclusion

Jlelli and Samet [17] presented the idea of θ-contraction in an attempt to illustrate how the Banach
contraction principle was improved in terms of the existence of fixed points in generalized metric space.
In the context of complete metric space, Karapinar and Fulga [19] merged the concepts of interpolative
type contraction and Jaggi type contraction to create a novel hybrid contraction. A novel concept known
as Jaggi-type hybrid (θ-ϕ)-contraction has been established, in accordance with [17, 19]. Some fixed point
results for such mappings in the context of generalized metric space were reported in this work. In terms
of application, one of the inferred corollaries was used to prove the existence and uniqueness of solutions
to nonlinear Volterra-Fredholm integral equations.

The main idea of this paper being presented in the context of Branciari-type metric space is, indeed,
fundamental. Therefore, the proposed concepts herein can be extended to some other framework such
as multivalued mappings, fuzzy mappings, intuitionist fuzzy set-valued mappings, soft sets, and so on.
The underlying set can also be considered in some non-classical spaces such as fuzzy metric spaces with
related applications.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Funding

This research project is funded by Prince Sultan University, Riyadh, Saudi Arabia.

Authors’ contributions

Conceptualization: Mohammed Shehu Shagari, Maha Noorwali, and Irshad Ayoob; formal analysis:
Nabil Mlaiki and Paul Oloche; investigation: Maha Noorwali, Irshad Ayoob, and Mohammed Shehu
Shagari; Methodology: Nabil Mlaiki and Maha Noorwali; Writing-review and editing: Mohammed Shehu
Shagari, Paul Oloche, and Nabil Mlaiki.

Acknowledgement

The authors: I. Ayoob and N. Mlaiki would like to thank Prince Sultan University for paying the APC
and for the support through the TAS research lab.

References

[1] T. Abdeljawad, R. P. Agarwal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional
differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry,
11 (2019), 18 pages. 5

[2] Z. T. Ahmad, M. S. Shagari, T. Alotaibi, G. A. Basendwah, A. Saliu, A. A. Tijjani, C∗-algebra-valued perturbed metric
spaces and fixed point results, Res. Math., 12 (2025), 8 pages. 1

[3] Z. T. Ahmad, M. S. Shagari, M. Noorwali, A. A. Tijjani, A. Saliu, RLC-electric circuits and fixed point theorems in
C∗-algebra-valued modular metric-like space, J. Inequal. Appl., 2025 (2025), 18 pages. 1

[4] M. A. Alghamdi, E. Karapınar, G-β-ψ-contractive type mappings in G-metric spaces, Fixed Point Theory Appl., 2013
(2013), 17 pages. 2.6

[5] H. Aydi, E. Karapinar, H. Lakzian, Fixed point results on a class of generalized metric spaces, Math. Sci. (Springer), 6
(2012), 6 pages. 1

[6] H. Aydi, E. Karapınar, B. Samet, Fixed points for generalized (α,ψ)-contractions on generalized metric spaces, J. Inequal.
Appl., 2014 (2014), 16 pages. 1

[7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3
(1922), 133–181. 1

https://doi.org/10.3390/sym11050686
https://doi.org/10.3390/sym11050686
https://doi.org/10.3390/sym11050686
https://doi.org/10.1080/27684830.2025.2509403
https://doi.org/10.1080/27684830.2025.2509403
https://doi.org/10.1186/s13660-025-03282-x
https://doi.org/10.1186/s13660-025-03282-x
https://doi.org/10.1186/1687-1812-2013-123
https://doi.org/10.1186/1687-1812-2013-123
https://doi.org/10.1186/2251-7456-6-46
https://doi.org/10.1186/2251-7456-6-46
https://doi.org/10.1186/1029-242X-2014-229
https://doi.org/10.1186/1029-242X-2014-229
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.4064/fm-3-1-133-181


M. S. Shagari, et al., J. Math. Computer Sci., 41 (2026), 334–346 346

[8] V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, (2002). 2.7
[9] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debre-

cen, 57 (2000), 31–37. 1, 2, 2.1, 2
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[30] S. S. Yeşilkaya, On interpolative Hardy-Rogers contractive of Suzuki type mappings, Topol. Algebra Appl., 9 (2021),

13–19. 1

https://link.springer.com/content/pdf/10.1007/978-3-540-72234-2_2.pdf
https://doi.org/10.5486/pmd.2000.2133
https://doi.org/10.5486/pmd.2000.2133
https://doi.org/10.2478/s11533-010-0009-4
https://doi.org/10.1186/1687-1812-2012-13
https://doi.org/10.1186/1687-1812-2012-13
https://doi.org/10.3390/math7070634
https://doi.org/10.3390/math7070634
https://doi.org/10.3390/math8010063
https://doi.org/10.3390/math8010063
https://doi.org/10.3390/sym14071388
https://doi.org/10.3390/sym14071388
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_ylo=1977&as_yhi=1977&q=Some+unique+fixed+point+theorems+D.+S.+Jaggi&btnG=
https://doi.org/10.1016/j.heliyon.2024.e31269
https://doi.org/10.1016/j.heliyon.2024.e31269
https://doi.org/10.1186/1029-242X-2014-38
https://doi.org/10.31197/atnaa.431135
https://doi.org/10.31197/atnaa.431135
https://doi.org/10.3390/sym11050715
https://doi.org/10.1186/1687-1812-2013-129
http://dx.doi.org/10.22436/jmcs.019.01.07
http://dx.doi.org/10.22436/jmcs.019.01.07
https://doi.org/10.1186/s13660-020-02456-z
https://doi.org/10.22436/jnsa.002.03.06
https://doi.org/10.5486/pmd.2010.4595
https://doi.org/10.5486/pmd.2010.4595
https://doi.org/10.1016/j.heliyon.2025.e41905
https://doi.org/10.1016/j.heliyon.2025.e41905
https://doi.org/10.1155/2012/246085
https://doi.org/10.1155/2012/246085
https://doi.org/10.1016/j.na.2005.04.054
https://doi.org/10.1016/j.na.2005.04.054
https://doi.org/10.1016/j.aml.2010.02.011
https://doi.org/10.1186/1687-1812-2012-94
https://doi.org/10.1186/1687-1812-2012-94
https://doi.org/10.1515/taa-2020-0102
https://doi.org/10.1515/taa-2020-0102

	Introduction
	 Preliminaries
	Main results
	Applications to a nonlinear Volterra-Fredholm integral equation
	Numerical examples
	Conclusion

