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Abstract

This study explores a novel category of bi-univalent functions within the open unit disk, defined through subordination
principles and linked to Jacobi polynomials. By utilizing the structural properties of these classical orthogonal polynomials,
we derive sharp bounds for the initial Taylor-Maclaurin coefficients, specifically |τ2| and |τ3|, for functions within this subclass.
Furthermore, we establish a Fekete-Szegö type inequality involving the functional

∣∣τ3 − ρτ2
2

∣∣, where ρ is a real parameter. The
results obtained generalize and extend various known results in the context of bi-univalent function theory. Notably, this
framework has potential applications in image enhancement, where the derived function classes contribute to improved edge
detection, feature preservation, and contrast adjustment. Incorporating Jacobi polynomials enhances the theoretical framework
while showcasing the method’s strength and versatility in processing and improving various image types.

Keywords: Bi-univalent functions, Jacobi polynomials, image enhancement, Jacobi polynomial convolution enhancement
algorithm (JPCEA).
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1. Introduction and preliminary

We define the set of all normalized analytic functions as A. These functions, represented as f(z), have
the form

f(z) = z+

∞∑
j=2

τjz
j, (z ∈ D), (1.1)
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where D := {z ∈ C : |z| < 1}. We define S as the subclass of A that consists of univalent functions. For h1(z)
and h2(z) in A, h1(z) is considered subordinate to h2(z) if there exists a function ζ(z) such that ζ(0) = 0,
|ζ(z)| < 1 in D, and h1(z) = h2(ζ(z)). This relationship is expressed as h1(z) ≺ h2(z).

A function f(z) belonging to S is classified as bi-univalent if its inverse, f−1(w), can be analytically
continued within the region |w| < 1 in the w-plane. The set of all bi-univalent functions in D is denoted
by σ. If f−1(w) is of the form

f−1(w) = w+

∞∑
j=2

υjw
j, (w ∈ D),

then we have

f−1(w) = w− τ2w
2 + (2τ2

2 − τ3)w
3 − (5τ3

2 − 5τ2τ3 + τ4)w
4 + · · · , w ∈ D.

The concept of bi-univalent functions was first proposed by Lewin [8] in 1967, who derived an upper
bound for the second Taylor-Maclaurin coefficient in this class, showing that |τ2| < 1.51. Subsequently,
Brannan and Clunie refined this estimate [5], who demonstrated that |τ2| ⩽

√
2. Since then, numerous

studies have focused on deriving coefficient bounds for bi-univalent functions (see [4, 12–17, 19] for related
developments).

The Fekete-Szegö functional addresses the problem of determining the sharp bounds for expressions
of the form |τ3 − ρτ2

2| within a compact class of analytic functions. In particular, when ρ = 1, this expres-
sion corresponds to the Schwarzian derivative, a quantity of fundamental importance in the geometric
theory of analytic functions. For non-negative j, j+ ϵ, j+ η, (j ∈ N ∪ {0}), a generating function of Jacobi
polynomials is defined by

Jj(y, z) =
2ϵ+η

M(1 − y+ M)ϵ(1 + y+ M)η
,

where M = M(y, z) =
(
1 − 2yz+ z2

) 1
2 , ϵ > −1, η > −1, y ∈ [−1, 1] (see [6, 7]). For a fixed y, the function

Jj(y, z) is analytic in D and is represented by the Taylor series expansion as follows:

Jj(y, z) =
∞∑
j=0

N
(ϵ,η)
j (y)zj,

where N
(ϵ,η)
j (y) is the Jacobi polynomial of degree j. The Jacobi polynomial N(ϵ,η)

j (y) satisfies a second-
order linear homogeneous differential equation:

(1 − y2)χ ′′ + (η− ϵ− (ϵ+ η+ 2)y)χ ′ + j(j+ ϵ+ η+ 1)χ = 0.

Jacobi polynomials can alternatively be characterized by the following recursive relationships:

N
(ϵ,η)
j+1 (y) = (cjy+ dj)N

(ϵ,η)
j (y) + ejN

(ϵ,η)
j−1 (y), j ⩾ 1,

where

cj =
(2j+ ϵ+ η+ 2)(2j+ ϵ+ η+ 1)

2(j+ 1)(j+ ϵ+ η+ 1)
,

dj =
(2j+ ϵ+ η+ 1)(ϵ2 − η2)

2(j+ 1)(j+ ϵ+ η+ 1)(2j+ ϵ+ η)
,

ej = −
(2j+ ϵ+ η+ 2)(j+ ϵ)(j+ η)

(j+ 1)(j+ ϵ+ η+ 1)(2j+ ϵ+ η)

with the initial values

N
(ϵ,η)
0 (y) =1,
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N
(ϵ,η)
1 (y) =

1
2
(ϵ− η+ (ϵ+ η+ 2)y) , (1.2)

N
(ϵ,η)
2 (y) =

1
8
(
(ϵ− η)2 − (ϵ− η) − 4 + 2(ϵ− η)(ϵ+ η+ 3)y+ (ϵ+ η+ 3)(ϵ+ η+ 4)y2) .

Table 1 shows the special cases of N(ϵ,η)
j (y) and Figure 1 shows the Image of D under Jj(y, z).

Table 1: Special forms derived from Jacobi polynomials
S. No. Condition Corresponding Special Polynomial

1 ϵ = η = 0 Legendre polynomials
2 ϵ = η = −0.5 Chebyshev polynomials (first kind)
3 ϵ = η = 0.5 Chebyshev polynomials (second kind)
4 ϵ = η Gegenbauer polynomials (with ϵ− 0.5 substitution)
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Figure 1: Image of D under Jj(y, z).

Throughout this paper, unless otherwise mentioned, we assume that

κj := 1 + (j− 1) (v+ t) +
(
j2 + 1

)
vt, j ∈ N,

where v ⩾ 0 and t ∈ [0, 1]. It is evident that κj is a real number such that κj ⩾ 1, and

κj+1 − κj =
(
1 + (2j+ 1) t

)
v+ t ⩾ 0.

For every h ∈ A, we define

Λv,t (h(z)) := (1 − v)(1 − t)
h(z)
z

+ (t+ v(1 + t)) h ′(z) + vt(zh ′′(z) − 2).

If h ∈ A is of the form h(z) = z+
∞∑
j=2

ujz
j, we have

Λv,t (h(z)) = 1 +

∞∑
j=2

κjujz
j−1.

With the aid of Jacobi polynomials, we define the subclasses of σ using the notion of subordination.

Definition 1.1. A function f ∈ σ is said to be in the class A
(ϵ,η)
σ (v, t;y), if

Λv,t (f(z)) ≺ Jj(y, z), (z ∈ D), and Λv,t
(
f−1(w)

)
≺ Jj(y,w), (w ∈ D),

where f−1(w) = w+
∞∑
j=2

υjw
j.
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Remark 1.2. For t = 0 and v ⩾ 1, f ∈ σ is in the class A
(ϵ,η)
σ (v, 0;y), if

Λv,0 (f(z)) ≺ Jj(y, z) and Λv,0
(
f−1(w)

)
≺ Jj(y, z).

Remark 1.3. For t = 0 and v = 1, f ∈ σ is in the class A
(ϵ,η)
σ (1, 0;y), if

Λ1,0 (f(z)) ≺ Jj(y, z) and Λ1,0
(
f−1(w)

)
≺ Jj(y, z).

2. The coefficient bounds

Theorem 2.1. If f(z), given by (1.1), is in A
(ϵ,η)
σ (v, t;y), then

|τ2| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣ 3
2√∣∣∣∣(N(ϵ,η)

1 (y)
)2

κ3 −N
(ϵ,η)
2 (y)κ2

2

∣∣∣∣
and |τ3| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣
κ3

+

∣∣∣N(ϵ,η)
1 (y)

∣∣∣2
κ2

2
,

where N(ϵ,η)
j (y), j = 1, 2 are as in (1.2).

Proof. Since f ∈ A
(ϵ,η)
σ (v, t;y), there exist two analytic functions γ, δ : D → D given by

γ(z) =

∞∑
j=1

γjz
j and δ(w) =

∞∑
j=1

δjw
j

with γ(0) = δ(0) = 0, |γ(z)| < 1, |δ(w)| < 1 for all z,w ∈ D such that

Λv,t (f(z)) = Jj(y,γ(z)) and Λv,t
(
f−1(w)

)
= Jj(y, δ(w)).

Or equivalently

1 +

∞∑
j=2

κjτjz
j−1 = 1 +N

(ϵ,η)
1 (y)γ1z1 +

[
N

(ϵ,η)
1 (y)γ2 +N

(ϵ,η)
2 (y)γ2

1

]
z2

×
[
N

(ϵ,η)
2 (y)γ1γ2 +N

(ϵ,η)
1 (y)γ3 +N

(ϵ,η)
3 γ3

1

]
z3 + · · ·

(2.1)

and

1 +

∞∑
j=2

κjτjw
j−1 = 1 +N

(ϵ,η)
1 (y)δ1w1 +

[
N

(ϵ,η)
1 (y)δ2 +N

(ϵ,η)
2 (y)δ2

1

]
w2

×
[
N

(ϵ,η)
2 (y)δ1δ2 +N

(ϵ,η)
1 (y)δ3 +N

(ϵ,η)
3 δ3

1

]
w3 + · · · .

(2.2)

Since |γ(z)| < 1 and |δ(w)| < 1, it is clear that |γj| ⩽ 1, |δj| ⩽ 1, for j = 1, 2, . . .. From (2.1) and (2.2), we
have

κ2τ2 = N
(ϵ,η)
1 (y)γ1, (2.3)

κ3τ3 = N
(ϵ,η)
1 (y)γ2 +N

(ϵ,η)
2 (y)γ2

1, (2.4)

−κ2τ2 = N
(ϵ,η)
1 (y)δ1, (2.5)

and
κ3(2τ2

2 − τ3) = N
(ϵ,η)
1 (y)δ2 +N

(ϵ,η)
2 (y)δ2

1. (2.6)
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From (2.3) and (2.5), we can easily see that

γ1 = −δ1, (2.7)

2κ2
2τ

2
2 = [N

(ϵ,η)
1 (y)]2[γ2

1 + δ2
1]. (2.8)

Upon adding (2.4) and (2.6), we get

2κ3τ
2
2 = N

(ϵ,η)
1 (y)(γ2 + δ2) +N

(ϵ,η)
2 (y)(γ2

1 + δ2
1). (2.9)

By using (2.8) in (2.9), we have

2
[
κ3

(
N

(ϵ,η)
1 (y)

)2
− κ2

2N
(ϵ,η)
2 (y)

]
τ2

2 =
(
N

(ϵ,η)
1 (y)

)3
(γ2 + δ2), (2.10)

which implies

|τ2| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣ 3
2√∣∣∣∣(N(ϵ,η)

1 (y)
)2

κ3 −N
(ϵ,η)
2 (y)κ2

2

∣∣∣∣
.

Upon subtracting (2.6) from (2.4) and using (2.7), we get

τ3 − τ2
2 =

N
(ϵ,η)
1 (y)(γ2 − δ2)

2κ3
. (2.11)

Then, in aid of (2.8), we get

τ3 =
N

(ϵ,η)
1 (y)(γ2 − δ2)

2κ3
+

[N
(ϵ,η)
1 (y)]2(γ2

1 + δ2
1)

2κ2
2

.

Thus

|τ3| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣
κ3

+

∣∣∣N(ϵ,η)
1 (y)

∣∣∣2
κ2

2
.

Corollary 2.2. If f(z), given by (1.1), is in A
(ϵ,η)
σ (v, 0;y), then

|τ2| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣ 3
2√∣∣∣∣(N(ϵ,η)

1 (y)
)2

(1 + 2v) −N
(ϵ,η)
2 (y) (1 + v)2

∣∣∣∣
and |τ3| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣
1 + 2v

+

∣∣∣N(ϵ,η)
1 (y)

∣∣∣2
(1 + v)2 ,

where N(ϵ,η)
j (y), j = 1, 2 are as in (1.2).

Corollary 2.3. If f(z), given by (1.1), is in A
(ϵ,η)
σ (1, 0;y), then

|τ2| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣ 3
2√∣∣∣∣3(N(ϵ,η)

1 (y)
)2

− 4N(ϵ,η)
2 (y)

∣∣∣∣
and |τ3| ⩽

∣∣∣N(ϵ,η)
1 (y)

∣∣∣
3

+

∣∣∣N(ϵ,η)
1 (y)

∣∣∣2
4

,

where N(ϵ,η)
j (y), j = 1, 2 are as in (1.2).



B. Sudharsanan, et al., J. Math. Computer Sci., 41 (2026), 322–333 327

3. Fekete-Szegö inequalities

Theorem 3.1. If f(z), given by (1.1), is in A
(ϵ,η)
σ (v, t;y) and ρ ∈ R, then

|τ3 − ρτ2
2| ⩽

 |N
(ϵ,η)
1 (y)|
κ3

, 0 ⩽ |Ξ(v, t)| ⩽ 1
2κ3

,

2|N(ϵ,η)
1 (y)Ξ(v, t)|, |Ξ(v, t)| ⩾ 1

2κ3
.

Proof. For ρ ∈ R and from (2.11), we have

τ3 − ρτ2
2 =

N
(ϵ,η)
1 (y)(γ2 − δ2)

2κ3
+ (1 − ρ)τ2

2.

By using (2.10), we get

τ3 − ρτ2
2 =

N
(ϵ,η)
1 (y)(γ2 − δ2)

2κ3
+ (1 − ρ)


(
N

(ϵ,η)
1 (y)

)3
(γ2 + δ2)

2[κ3

(
N

(ϵ,η)
1 (y)

)2
− κ2

2N
(ϵ,η)
2 (y)]


= N

(ϵ,η)
1 (y)

[(
1

2κ3
+ Ξ(v, t)

)
γ2 +

(
−1
2κ3

+ Ξ(v, t)
)
δ2

]
,

where Ξ(v, t) =
(1 − ρ)[N

(ϵ,η)
1 (y)]2

2[κ3

(
N

(ϵ,η)
1 (y)

)2
− κ2

2N
(ϵ,η)
2 (y)]

. Thus

|τ3 − ρτ2
2| ⩽

 |N
(ϵ,η)
1 (y)|
κ3

, 0 ⩽ |Ξ(v, t)| ⩽ 1
2κ3

,

2|N(ϵ,η)
1 (y)Ξ(v, t)|, |Ξ(v, t)| ⩾ 1

2κ3
.

Corollary 3.2. If f(z), given by (1.1), is in A
(ϵ,η)
σ (v, 0;y) and ρ ∈ R, then

|τ3 − ρτ2
2| ⩽

 |N
(ϵ,η)
1 (y)|
1+2v , 0 ⩽ |Ξ(v, 0)| ⩽ 1

2(1+2v) ,

2|N(ϵ,η)
1 (y)Ξ(v, 0)|, |Ξ(v, 0)| ⩾ 1

2(1+2v) .

where Ξ(v, 0) =
(1 − ρ)[N

(ϵ,η)
1 (y)]2

2[(1 + 2v)
(
N

(ϵ,η)
1 (y)

)2
− (1 + v)2

N
(ϵ,η)
2 (y)]

.

Corollary 3.3. If f(z), given by (1.1), is in A
(ϵ,η)
σ (1, 0;y) and ρ ∈ R, then

|τ3 − ρτ2
2| ⩽

 |N
(ϵ,η)
1 (y)|

3 , 0 ⩽ |Ξ(1, 0)| ⩽ 1
6 ,

2|N(ϵ,η)
1 (y)Ξ(1, 0)|, |Ξ(1, 0)| ⩾ 1

6 .

where Ξ(1, 0) =
(1 − ρ)[N

(ϵ,η)
1 (y)]2

2[3
(
N

(ϵ,η)
1 (y)

)2
− 4N(ϵ,η)

2 (y)]

.
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4. Applications

Image enhancement is a systematic process aimed at improving the visual quality and interpretability
of digital images. The procedure typically begins with image acquisition, followed by preprocessing steps
designed to prepare the image for enhancement. Based on the image’s characteristics and the desired
outcome, an appropriate enhancement technique is selected. These methods can operate in the spatial
domain, frequency domain, or leverage a hybrid approach that combines elements of both.

In this study, the primary focus is on Spatial Domain Techniques, where an image is often modeled
as a 2 × 2 matrix, with each element representing the intensity of an individual pixel. These techniques
are mathematically formulated as: v(x,y) = T [u(x,y)], where u(x,y) denotes the original input image,
v(x,y) represents the enhanced image, and T is an operator applied to the neighborhood of pixel (x,y).
This operator may act on a single image or multiple images depending on the specific enhancement task.

A fundamental operation in spatial domain enhancement is convolution, a core mathematical process
widely used in image processing. Convolution integrates a small filter (or kernel) with the image to
produce a transformed output, where each pixel in the resulting image is a linear combination of neigh-
boring pixel values from the input, weighted by the kernel. This mechanism forms the basis for various
enhancement tasks, such as blurring, sharpening, and edge detection.

In critical domains such as medical imaging and computer vision, particularly in applications like
retinal image analysis or edge detection, image enhancement plays a pivotal role in improving diagnostic
accuracy and visual clarity. This work proposes a novel enhancement technique grounded in a mathemat-
ical framework inspired by Geometric Function Theory (GFT). Specifically, it utilizes coefficient bounds
derived from GFT and applies them through convolution to the input image. This method aims to achieve
significant improvements in contrast, brightness, and structural fidelity.

To rigorously evaluate the performance of the proposed enhancement method, several established
image quality metrics are employed. These include following.

• Peak Signal-to-Noise Ratio (PSNR): Quantifies the fidelity of the enhanced image relative to the original,
with higher values indicating better quality.

• Structural Similarity Index Measure (SSIM): Assesses the perceptual similarity between the original and
enhanced images by evaluating luminance, contrast, and structural information.

• Pearson Correlation Coefficient (PCC): Measures the linear correlation between pixel intensities of the
original and enhanced images, indicating the strength and direction of association.

The integration of GFT-based convolution with these performance metrics ensures that the proposed
method not only improves visual aesthetics but also maintains essential structural and diagnostic in-
formation, making it highly suitable for analytical and interpretive tasks in both research and clinical
contexts.

Recent research in geometric function theory (GFT) highlights its growing significance in advancing
image enhancement techniques, complementing established approaches like deep learning, fractional
methods, and fuzzy logic (see [1, 11]. Notable studies demonstrate GFT’s potential in this domain.
Nithiyanandham et al. [10] introduced the class p− ξS∗(t,µ,ν, J,K), derived from a Mittag-Leffler-type
Poisson distribution, to analyze coefficient bounds, achieving significant improvements in retinal image
enhancement. Nandhini et al. [9] enhanced image quality using a subclass of analytic functions inte-
grating the Mittag-Leffler-type Poisson distribution with starlike functions. Their approach was validated
on the Flower Image Dataset and the Brain-Stroke-Prediction CT Scan Image Dataset, demonstrating ro-
bust performance. Sivagami Sundari et al. [18] utilized a Sakaguchi-type function subordinated with
Gegenbauer polynomials for low-light image enhancement. However, this method faces challenges with
unevenly illuminated images, often resulting in over-enhancement in brighter regions.

These studies emphasize the critical role of coefficient bounds in optimizing image enhancement
outcomes. Despite these advancements, the application of Jacobi polynomials within GFT for image
enhancement remains underexplored. Only a few researchers [2, 3] have combined bi-univalent functions
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with Jacobi polynomials to explore their theoretical aspects. In this work, we introduce a novel subclass
of bi-univalent functions associated with Jacobi polynomials, marking a pioneering contribution to the
literature. Our proposed subclass exhibits superior properties compared to existing methods, enhancing
the efficacy of image processing techniques.

Our research focuses on developing image enhancement algorithms based on the convolution of coef-
ficient bounds derived from this novel subclass of bi-univalent functions. These algorithms demonstrate
significant potential in digital image processing applications, achieving optimal results as detailed in our
findings.

4.1. Jacobi polynomial convolution enhancement algorithm (JPCEA)
In this section, we present a rigorous mathematical formulation based on the coefficients derived for

the function class defined as A
(ϵ,η)
σ (v, t;y). As we proved in Section 2, these coefficients, denoted by τn,

were calculated using the Jacobi polynomials and serve as the foundation for the image enhancement
process.

The image enhancement is performed through a convolutional operation in which the original image
is processed using the set of derived coefficients. Let the enhanced image be represented as IE(m, n). It
is obtained via the following convolution formula: IE(m, n) = M ∗ I(m, n), where M is the mask window
in 3 × 3 matrix, I(m, n) represents the coefficients of the original image, and IE(m, n) represents the
coefficients of the enhanced image. The mask window coefficients τ1, τ2, τ3 are represented in the 3 × 3
matrices as follows:

0◦ =

0 0 0
τ1 τ2 τ3
0 0 0

90◦ =

τ3 0 0
0 τ2 0
0 0 τ1

45◦ =

τ3 0 0
τ2 0 0
τ1 0 0

135◦ =

τ3 0 0
0 τ2 0
0 0 τ1

For v = 0, t = 1, the coefficients are defined as:

τ1 = 1, τ2 =

∣∣∣N(ϵ,η)
1 (y)

∣∣∣ 3
2√∣∣∣∣3(N(ϵ,η)

1 (y)
)2

− 4N(ϵ,η)
2 (y)

∣∣∣∣
, τ3 =

∣∣∣N(ϵ,η)
1 (y)

∣∣∣
3

+

∣∣∣N(ϵ,η)
1 (y)

∣∣∣2
4

.

We will enhance the images for the above values of the coefficients with suitable parameters (y = 1, ϵ =
−0.7, and η = −0.51). The outputs for image enhancement using the bi-univalent function are obtained
from the following algorithm.

1. Read an image from the specified file path.
2. Convert the image to grayscale.
3. Define functions to create convolution masks for different angles 0◦, 45◦, 90◦, and 135◦.
4. Define the coefficients for the masks (τ1, τ2, τ3).
5. Apply each mask to the grayscale image using the convolution operation.
6. Calculate the average of the resulting images obtained from different angles.
7. Visualize the original grayscale image, the edge-detected images at different angles, and the average

of the edge-detected images.

5. Experimental findings and analysis

The effectiveness of image enhancement is shown below for various images. For this purpose, we
used RGB images "Albert" of size 500 × 460, "Foot X-ray" of dimensions 1077 × 2029, "Covid19" of pixel
size 649× 520, and "Bee Hummingbird " of dimension 1024× 576, respectively. The following RGB images
are converted to grayscale. Subsequently, these images were further enhanced using a subclass of analytic
functions.
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Figure 2: RGB image of "Albert Einstein". Figure 3: RGB image of "Foot X-ray".

Figure 4: RGB image of "Covid19" Figure 5: RGB image of "Bee Hummingbird "

Figure 6: Enhanced image of Albert Einstein at different mask angles.

Figure 7: Enhanced image of Foot at different mask angles.
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Figure 8: Enhanced image of Covid19 at different mask angles.

Figure 9: Enhanced image of Bee Hummingbird at different mask angles.

Table 2: The quality metric values (PSNR, SSIM, PCC) of the test images (Albert Einstein, Foot X-ray, Covid19, and Bee Hum-
mingbird).

Image name PSNR SSIM PCC
Albert Einstein (2) 24.91017212 0.92853638 0.99311384
Foot X-ray (3) 23.77993325 0.92661368 0.98775379
Covid19 (4) 23.68038280 0.97003575 0.99784904
Bee Hummingbird (5) 18.24548058 0.94618020 0.97281660

Table 3: Comparison of obtained PCC values and histogram equalization PCC values of the test images (Albert Einstein, Foot
X-ray, Covid19, and Bee Hummingbird).

Image Name PCC (JPCEA) PCC (HISTOGRAM)
Albert Einstein (2) 0.99311384 0.90013822
Foot X-ray (3) 0.98775379 0.96064637
Covid19 (4) 0.99784904 0.91977654
Bee Hummingbird (5) 0.97281660 0.91041941
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6. Data availability

The following sources were used for the data in this research work: the source image of Albert Ein-
stein, the source image of COVID-19, the source image of Foot X-ray, and the source image of Bee
Hummingbird.

7. Conclusion

We have estimated the bounds for |τ2| and |τ3|, and the Fekete-Szegö inequality for subclasses of
bi-univalent functions subordinated to Jacobi polynomials. In this research work, our objective was to
improve image quality through specific enhancements such as increasing brightness, contrast, and sharp-
ness. We utilized Python OpenCV, an open-source library for performing various image enhancement
techniques. The outcomes highlight the efficiency of this method in enhancing diverse images, proving
its stability and flexibility. Through modifications of the parameters ϵ, η, and y within the analytical
framework, we expect our findings to have practical utility in areas such as image sharpening, edge
detection, and advancing image resolution.
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