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Abstract

This research investigates novel synchronization criteria for uncertain mixed-delay complex-valued neural networks (CVNNs)
using distributed delayed flexible impulsive control (DDFIC). To cope with the mixed delays, we offer a novel distributed de-
layed flexible impulsive differential inequality that incorporates the average impulsive distributed delay and average impulsive
interval. In addition, new synchronization requirements for linear matrix inequalities (LMIs) are developed for the proposed
CVNNs using the Lyapunov function and Jensen’s inequality. The DDFIC gains are also determined by solving the LMIs. Lastly,
we include simulation examples to exemplify the proposed criteria, and to illustrate the effectiveness of the DDFIC through
diagrammatic representations.
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1. Introduction

Neural networks (NNs) have gained extensive acknowledgment from the global scientific community
due to its substantial applications in diverse domains including image processing, computing parallelism,
pattern recognition, signal processing, and associative memory. CVNNs possess more sophisticated at-
tributes due to its complex-valued states, weights of connections, output values, and activation functions.
Furthermore, CVNNs could solve various problems that real-valued NNs cannot, including the symmetry
detection problem, so highlighting their improved computational capacity and performance [4, 5, 9, 13].
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1.1. Background

The chaos in networks is marked by their unpredictable and highly sensitive behavior, where small
changes in initial conditions can produce dramatically different outcomes. Certain parameters and time
delays in CVNNs can create chaos, causing the system to behave in a complicated and unpredictable way,
making synchronization a challenging task [7, 8, 30, 40, 46]. Synchronization is essential for neural net-
works, as numerous CVNNs depend on synchronous behavior to function efficiently. As a consequence,
the scientific community has given considerable attention to research on the synchronization of delayed
CVNNs [27, 56].

To establish an accurate and obvious synchronization criteria for CVNNs, proper control mechanisms
should be chosen. In general, various popular control strategies are employed to synchronize two related
or dissimilar chaotic systems, including adaptive control [1, 21, 50], pinning control [45, 51], coupling
control [22], feedback control [2, 34], sample-data control [19], impulsive control [23, 38], event-triggered
control [3, 12, 57], and so on. Because of its desirable properties, like simplicity, effectiveness, and flexi-
bility, the impulsive control technique has been thoroughly and widely analyzed by various experts from
various domains. For instance, in [11], the authors conducted an investigation into the fixed-time synchro-
nization results for delayed CVNNs under impulsive control, as well as its application in image encryp-
tion. In [37], the authors analyzed stability criteria for discrete-time distributed delayed CVNNs based
on impulsive effects. In [16], the authors analyzed synchronization criteria for delayed CVNNs based on
hybrid impulses effects. The synchronization results for delayed CVNNs systems with impulsive control
were discussed in [6, 25, 33], while exponential synchronization (ES) of delayed memristor-based CVNNs
under impulsive control was investigated in [20].

On the other hand, time delays in impulses are unavoidable, as evidenced by the NNs’ dependency on
both the past and present states, as well as the restricted sampling speed and communication of impulsive
information. Basically, delayed impulses are of two kinds: synchronizing impulses and de-synchronizing
impulses [28, 48, 59]. The majority of current efforts on the control problem of impulsive dynamical
NNs solely consider how impulses rely on the current positions of the NNs. Nonetheless, there are
numerous real-world uses for delayed impulses, such as in financial systems, communication security, and
population dynamics. Consequently, when investigating impulsive systems, delayed impulses should be
considered. For example, the authors of [15, 35, 47, 55] analyzed the exponential stability (ES) of delayed
chaotic NNs and CVNNs based on delayed impulsive control. In [17, 36, 39, 52, 58], the authors analyzed
ES exponential stability for mixed delay CVNNs based on delayed impulses. However, the impulsive
delays considered in the previous studies are assumed to occur at fixed times. In [24, 32, 41–44], the
authors examined the ES results of delayed NNs at random time points.

1.2. Motivation and the key contributions

The delayed impulsive control mentioned above involves specific past states, but it can also happen as
distributed ones. Distributed delayed impulsive control is yet another kind of delayed impulsive control,
could be used to synchronize the NNs effectively. Few studies have used distributed delayed impulsive
control, such as [14, 29, 49], which examined ES and lag synchronization of delayed NNs using this
method. In the preceding discussions, the distributed time delays in impulses are regarded as fixed and
have restricted upper bounds. However, these distributed time delays may also be flexible. In [18, 31], the
authors examined synchronization results for delayed real-valued and complex-valued NNs using flexible
impulsive control and delay-dependent flexible impulsive control, respectively, without accounting for
distributed delayed impulses. In this research, we concentrate on the distributed delayed impulsive
control in which the distributed delay is taken as flexible. To the best of the authors’ knowledge, the
distributed delayed flexible impulsive control (DDFIC) has not been examined for the proposed networks.
Consequently, this study addresses these research gaps and summarizes its major achievements as follows.

(1) Considering mixed-delay CVNNs in which mixed delay includes bounded transmission delay, discrete
distributed delay, and flexible impulsive delay.
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(2) Developing a new delay differential inequality based on DDFIC with average impulsive distributed
delay (AIDD) and average impulsive interval (AII) concepts.

(3) Deriving new LMI-based criteria for robust exponential synchronization (RES) and ES for the pro-
posed unstable chaotic CVNNs, utilizing a Lyapunov function approach combined with Jensen’s in-
equality, and obtaining the corresponding controller gains by solving the resulting LMIs.

(4) Examining a distributed delay in impulsive control, which is not necessarily dependent upon the
transmission delays inherent in the network. Further, rendering the impulsive distributed delay flexi-
ble with a substantial upper bound.

Taking the aforementioned primary distinctions into account, it is crucial to note that this work differs
from prior research [10, 14, 18, 26, 29, 31, 39, 49, 53, 54] and presents novel findings by using distinct
perspectives.

1.3. Structure of the paper

The following is an overview of this paper. The preliminary knowledge, which encompasses the
model outline, lemmas, and definitions, is outlined in Section 2. The primary findings are delineated in
Section 3. The criteria that were obtained are illustrated in Section 4 through visual representations and
numerical depictions. Finally, the conclusion is presented in Section 5.

1.4. Notations

Let C, Cn, Cn×n, Rn×n indicate sets of complex numbers, complex vectors in n-dimension, n× n

complex-valued, and real matrices, respectively, Z+ is a set of positive integers, and R+ = [0,+∞). For
any vector w ∈ Cn, we define the norm ∥w∥ =

√∑n
i=1 |wi|2. For any A ∈ Cn×n, we have ∥A∥ =

max1⩽j⩽n

∑n
i=1 |aij| and for q1, q2 ∈ C, q1 ⩽ q2 if and only if Re(q1) ⩽ Re(q2) and Im(q1) ⩽ Im(q2),

λmax(P) and λmin(P) are maximum and minimum eigen values of a hermitian matrix P, respectively,
C([−ρ, 0], Cn) shows set of all continuous complex-valued functions, ω (s) : [−ρ, 0] → Cn, then define the

norm ∥ω(s)∥ = sups∈[−ρ,0]

√∑n
j=1 |ωj(s)|2.

2. Model description and preliminary concepts

Consider the following uncertain mixed delayed CVNNs as the master system
ṗ(t) = −(A+∆A)p(t) + (B+∆B)f(p(t)) + (C+∆C)f(p(t− τ(t)))

+ (D+∆D)

∫t
t−µ(t)

f(p(s))ds+ Je, t > 0,

p(t) = ϕ(t), ∀t ∈ [−ρ1, 0],

(2.1)

where, neuron state vector p(t) = [p1(t),p2(t), . . . ,pn(t)]
T ∈ Cn, A = diag{a1,a2, . . . ,an};ai > 0 ∈

Rn×n, B,C,D ∈ Cn×n, activation function f; f(p(·)) = [f1(p(·)), f2(p(·)), . . . , fn(p(·))]T ∈ Cn, τ(t), µ(t)
are transmission delays, the initial condition ϕ(t) = [ϕ1(t),ϕ2(t), . . . ,ϕn(t)]

T ∈ C([−ρ1, 0], Cn), ρ1 =
max{τ,µ}, and external input Je = [J1, J2, . . . , Jn] ∈ Cn. The corresponding slave system takes the form of

u̇(t) = −(A+∆A)u(t) + (B+∆B)f(u(t)) + (C+∆C)f(u(t− τ(t)))

+ (D+∆D)

∫t
t−µ(t)

f(u(s))ds+U(t) + Je, t > 0,

u(t) = χ(t), ∀t ∈ [−ρ, 0],

(2.2)

where, u(t) = [u1(t),u2(t), . . . ,un(t)]
T ∈ Cn, f(u(·)) = [f1(u(·)), f2(u(·)), . . . , fn(u(·))]T ∈ Cn, U(t) is the

impulsive control, and initial condition χ(t) = [χ1(t),χ2(t), . . . ,χn(t)]T ∈ C([−ρ, 0], Cn); ρ = max{ρ1, ε}.
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Define the error function w(t) = u(t) − p(t), then error CVNNs between slave CVNNs (2.2) and master
CVNNs (2.1) is expressed as

ẇ(t) = −(A+∆A)w(t) + (B+∆B)h(w(t)) + (C+∆C)h(w(t− τ(t)))

+ (D+∆D)

∫t
t−µ(t)

h(w(s))ds+U(t), t > 0,

w(t) = ψ(t), ∀t ∈ [−ρ, 0],

(2.3)

with h(w(·)) = (h1(w(·)),h2(w(·)), . . . ,hn(w(·)))T ∈ Cn, h(w(·)) = f(w(·) + p(·)) − f(p(·)), and ψ(t) =
[χ(t) −ϕ(t)] ∈ C([−ρ, 0], Cn). The proposed DDFIC is structured as

U(t) =

∞∑
k=1

(Ck

∫t
t−τk

w(s)ds−w(t−k )) δ(t− tk),

with the impulsive strength Ck ∈ Cn×n at impulsive instant tk, impulsive instant sequence {tk}k∈Z+ ;
0 = t0 < t1 < t2 < · · · < tk−1 < tk < · · · , with limk→+∞ tk = +∞, impulsive distributed delay
τk; 0 < τk ⩽ ε, ε is any positive constant, Dirac function δ(t), and let w(t+k ) = w(tk). Further, the
solutions to CVNNs (2.3) are assumed to be piecewise right continuous at t = tk and exhibit first-kind
discontinuities at t = tk. For t ̸= tk, U(t) = 0. As t = tk, we obtain, U(t) = Ck

∫tk
tk−τk

w(s)ds. Thus, the
error CVNNs (2.3) becomes

ẇ(t) = −(A+∆A)w(t) + (B+∆B)h(w(t)) + (C+∆C)h(w(t− τ(t)))

+ (D+∆D)

∫t
t−µ(t)

h(w(s))ds, t ̸= tk, t > 0,

w(tk) = Ck

∫tk
tk−τk

w(s)ds, t = tk, k ∈ Z+,

w(t) = ψ(t), ∀t ∈ [−ρ, 0].

(2.4)

Assume that solution w(t) of CVNNs (2.4) exists and is unique.
Throughout this work, we make use of the following hypotheses

(H1) For uncertain matrices ∆A, ∆B, ∆C, ∆D ∈ Cn×n, there exists constants a,b, c,d > 0, that satisfies

∥∆A∥ ⩽ a, ∥∆B∥ ⩽ b, ∥∆C∥ ⩽ c, ∥∆D∥ ⩽ d.

(H2) For any w1(·),w2(·) ∈ C, activation functions h(wj(·)); j = 1, 2, satisfy

|h(w1(·)) − h(w2(·))| ⩽ L |w1(·) −w2(·)|,

where L > 0 is a diagonal matrix.
(H3) The transmission delays τ(t), µ(t) and impulsive delay τk satisfy

0 ⩽ τ(t) ⩽ τ, 0 ⩽ τ < ∞, 0 ⩽ µ(t) ⩽ µ, 0 ⩽ µ < ∞, τ0 = 0, τk ⩽ tk − tk−1.

Lemma 2.1 ([31]). For any matrices G, ∆H ∈ Cn×n, ∥∆H∥ ⩽ v; v > 0, k1, k2 ∈ Cn, and for any ϵ > 0, there
exists hermitian matrix W > 0 that satisfies

1. k∗1k2 + k
∗
2k1 ⩽ k∗1Wk1 + k

∗
2W

−1k2;
2. ±2k∗1G

∗(∆H)k2 ⩽ ϵk∗1G
∗Gk1 + ϵ−1v2k∗2k2.

Lemma 2.2 ([39]). For all vectors g : [m1,m2] → Cn with scalars m1 < m2, positive hermitian matrix P ∈ Cn×n,
such that ( ∫m2

m1

g(s) ds

)∗
P

( ∫m2

m1

g(s) ds

)
⩽ (m2 −m1)

∫m2

m1

g∗(s) P g(s) ds.
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Definition 2.3 ([15]). The AIDD τ̄ and AII Ta of impulsive distributed delay sequence {τk} and impulsive
instant sequence {tk}, respectively, are described by:

τ̄ = lim
t→+∞ inf

τ1 + τ2 + · · ·+ τN(t,t0)

N(t, t0)
, Ta = lim

t→+∞ sup
t− t0

N(t, t0)
,

in which, N(t, t0) is the number of impulsive instants in {tk}k∈Z+ on (t0, t].

Lemma 2.4. Suppose r(·) ∈ PC([t0 − ρ,+∞)× C, R+) and if there exist α ∈ R, η ∈ R+, γ ∈ (0, 1) that satisfy
following inequality:

ṙ(t) ⩽ αr(t) + η sup
s∈[t−ρ1,t]

r(s), t ̸= tk, t > t0,

r(tk) ⩽ γ

∫tk
tk−τk

r(s)ds, t = tk, r(t0) = r(s), s ∈ [t0 − ρ, t0].

Moreover, we define

Q(t) =

{
r(t)e−λ(t−tk), t ∈ [tk, tk+1), k ∈ Z+,
r(t), t ∈ [t0 − ρ, t0],

(2.5)

such that λ > α+ η > 0, and α+ η
γe

−λρ − λ < 0. Then the condition

r(t) ⩽ r̄(t0)γ
ke−λ

∑k
j=1 τjeλ(t−t0), t ∈ [tk, tk+1), k ∈ Z+, (2.6)

is satisfied with r̄(t0) = sups∈[t0−ρ,t0]
r(s).

Proof. First, we prove D+Q(t) < 0, for any t∗ ∈ [tk, tk+1), which satisfies

Q(s) ⩽ Q(t∗), tk ⩽ s ⩽ t∗, (2.7)

Q(s) ⩽
Q(t∗)

γ
, tk−1 ⩽ s ⩽ tk. (2.8)

To prove the above results, construct the function, for any ξ > 0,

Qξ(t) =

{
r(t)e−(λ+ξ)(t−tk), t ∈ [tk, tk+1),
r(t), t ∈ [t0 − ρ, t0].

Let δ ∈ [0, ρ], and if t∗ − δ ⩾ tk, utilizing (2.7),

eξ(t
∗−tk)D+Qξ(t

∗) = D+

(
r(t∗)e−(λ+ξ)(t∗−tk)

)
⩽ (α− λ− ξ)r(t∗)e−λ(t∗−tk) + ηr(t∗ − δ)e−λ(t∗−tk)

⩽ (α− λ− ξ)Q(t∗) + ηQ(t∗ − ρ)eλ(t
∗−ρ−tk)e−λ(t∗−tk)

⩽ (α− λ− ξ)Q(t∗) + ηQ(t∗ − ρ)e−λρ ⩽ (α− λ− ξ+ ηe−λρ)Q(t∗) < −ξQ(t∗).

Besides, if t∗ − δ < tk, by using (2.8),

eξ(t
∗−tk−1)D+Qξ(t

∗) ⩽ (α− λ− ξ)Q(t∗) + ηQ(t∗ − ρ)eλ(t
∗−ρ−tk−1)e−λ(t∗−tk−1)

= (α− λ− ξ+
η

γ
e−λρ)Q(t∗) < −ξQ(t∗).
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Hence, based on the above conclusions, we can notice

D+Q(t) = eξ(t
∗−tk)D+Qξ(t

∗) + ξeξ(t
∗−tk)Qξ(t

∗) < −ξQ(t∗) + ξeξ(t
∗−tk)Qξ(t

∗) = 0.

Following this, we will show that

r(t) ⩽ r̄(t0)γ
ke−λ

∑k
j=1 τjeλ(t−t0), t ∈ [tk, tk+1). (2.9)

Using (2.5), proof of (2.9) is transformed into the proof of

Q(t) ⩽ r̄(t0)γ
ke−λ

∑k
j=1 τjeλ(tk−t0), t ∈ [tk, tk+1). (2.10)

Firstly, we prove (2.10) valid for k = 0, that is, Q(t) ⩽ r̄(t0), t ∈ [t0, t1). Note that Q(t0) = r(t0) ⩽ r̄(t0).
Assume that this is not valid, thus is a t∗ ∈ [t0, t1) with

Q(t∗) = r̄(t0), Q(t) ⩽ r̄(t0), t ∈ [t0, t∗), D+Q(t∗) < 0,

which leads to contradiction that D+Q(t∗) ⩾ 0. Thus, for k = 0, (2.10) holds. Next suppose (2.10) valid
for k ⩽ n, and using mathematical induction method,

Q(t) ⩽ r̄(t0)γ
ke−λ

∑k
j=1 τjeλ(tk−t0), ∀t ∈ [tk, tk+1),

which gives

Q(t) ⩽ r̄(t0)γ
ne−λ

∑n
j=1 τjeλ(tn−t0), t ∈ [tn, tn+1).

Next, we will prove

Q(t) ⩽ r̄(t0)γ
n+1e−λ

∑n+1
j=1 τjeλ(tn+1−t0), ∀t ∈ [tn+1, tn+2). (2.11)

We obtain,

Q(tn+1) ⩽ γ

∫tn+1

tn+1−τn+1

r̄(t0)γ
ne−λ

∑n
j=1 τjeλ(s−t0)ds

⩽ γn+1r̄(t0)e
−λ

∑n
j=1 τj

∫tn+1

tn+1−τn+1

eλ(s−t0)ds ⩽ γn+1r̄(t0)e
−λ

∑n+1
j=1 τjeλ(tn+1−t0).

So, for t = tn+1, (2.11) holds. Now assume there is a t∗ ∈ [tn+1, tn+2) with

Q(t∗) = r̄(t0)γ
n+1e−λ

∑n+1
j=1 τjeλ(tn+1−t0), Q(t) ⩽ Q(t∗), t ∈ [tn+1, t∗),

and D+Q(t∗) ⩾ 0. And while s ∈ [tn, tn+1), and τn+1 ⩽ (tn+1 − tn), we have

Q(s) ⩽ γnr̄(t0)e
−λ

∑n
j=1 τjeλ(tn−t0)

=
γn+1

γ
r̄(t0)e

−λ
∑n

j=1 τjeλ(tn+1−t0)e−λ(tn+1−tn)

=
γn+1

γ
r̄(t0)e

−λ
∑n+1

j=1 τjeλτn+1eλ(tn+1−t0)e−λ(tn+1−tn)

⩽
Q(t∗)

γ
e−λ(tn+1−τn+1−tn) ⩽

Q(t∗)

γ
, s ∈ [tn, tn+1),

which gives D+Q(t∗) < 0 that contradicts D+Q(t∗) ⩾ 0. Hence, we have deduced

Q(t) ⩽ γkr̄(t0)e
−λ

∑k
j=1 τjeλ(tk−t0), t ∈ [tk, tk+1),

showing that (2.9) is valid.
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Remark 2.5. In Lemma 2.4, the requirement (2.6) indicates that the distributed delay τk is crucial for en-
abling the synchronization of the proposed system. Current literature [10, 14, 26, 29, 39, 49, 53, 54] imposes
the constraint that tk − tk−1 ⩽ σ; σ > 0, and the impulsive distributed delay must be contingent upon the
time delay present within the networks. However, in our findings, we have mitigated these constraints by
employing distributed delay τk in conjunction with AII and AIDD, hence enhancing flexibility.

Definition 2.6. The solution w(t) of CVNNs (2.4) is said to achieve RES, if there exists M > 0, ϑ > 0 with

∥w(t)∥ ⩽ M sup
s∈[t0−ρ,t0]

∥w(s)∥e−ϑ(t−t0).

Specifically, when ∆A = ∆B = ∆C = ∆D = 0, the CVNNs (2.4) becomes ES.

3. Synchronization criteria for mixed delay CVNNs

Within this section, some novel sufficient synchronization criteria for uncertain mixed delayed CVNNs
(2.4) is presented associated with DDFIC, formulating by LMIs.

Theorem 3.1. Suppose (H2) holds. Let α ∈ R, q,γ ∈ (0, 1), η ∈ R+, and positive constants ϵ1, ϵ2, ϵ3, ϵ4, a, b,
c, d, µ, τ̄, Ta. If there exists positive diagonal matrices W1,W2,W3 ∈ Rn×n, positive matrix Q ∈ Cn×n, positive
hermitian matrix P, with λ∗ = max

{
α+ η

γe
−λρ, 0

}
, and the following inequalities

−AP− PA+ a2ϵ1I+ b2ϵ2L
2 + LW1L−αP P P P P PB PC PD

⋆ −ϵ1I 0 0 0 0 0 0
⋆ ⋆ −ϵ2I 0 0 0 0 0
⋆ ⋆ ⋆ −ϵ3I 0 0 0 0
⋆ ⋆ ⋆ ⋆ −ϵ4I 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −W1 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −W2 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −W3


< 0, (3.1)

[
c2ϵ3L

2 − qηP LW2
⋆ −W2

]
< 0, (3.2)[

d2ϵ4L
2 − (1 − q)ηP µLW3

⋆ −W3

]
< 0, (3.3)[

−γP Q

⋆ −P

]
< 0, (3.4)

lnγ+ λ∗(Ta − τ̄)

Ta
< 0, (3.5)

are satisfied, then the uncertain CVNNs (2.4) is said to achieve RES with DDFIC gain Ck = P−1Q∗.

Proof. Define the Lyapunov function be r(t,w(t)) = r(t), and r(t) = w∗(t)Pw(t). Calculating derivative
along solution of CVNNs (2.4), we get

ṙ(t) = 2w∗(t)Pẇ(t) = 2w∗(t)P

[
− (A+∆A)w(t) + (B+∆B)h(w(t))

+ (C+∆C)h(w(t− τ(t))) + (D+∆D)

∫t
t−µ(t)

h(w(s))ds

]
.

(3.6)

Utilizing hypothesis (H2) and Lemmas 2.1 and 2.2, then (3.6) becomes

ṙ(t) ⩽ w∗(t)(−AP− PA)w(t) + ϵ−1
1 w

∗(t)P2w(t) + a2ϵ1w
∗(t)w(t) +w∗(t)LW1Lw(t)
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+w∗(t)PBW−1
1 B∗Pw(t) + ϵ−1

2 w
∗(t)P2w(t) + b2ϵ2w

∗(t)L2w(t)

+w∗(t− τ(t))LW2Lw(t− τ(t)) +w∗(t)PCW−1
2 C∗Pw(t) + ϵ−1

3 w
∗(t)P2w(t)

+ c2ϵ3w
∗(t− τ(t))L2w(t− τ(t)) + µ(t)

∫t
t−µ(t)

w∗(s)LW3Lw(s)ds+w∗(t)PDW−1
3 D∗Pw(t)

+ ϵ−1
4 w

∗(t)P2w(t) + d2ϵ4µ(t)

∫t
t−µ(t)

w∗(s)L2w(s)ds

⩽ w∗(t)

(
−AP− PA+ (ϵ−1

1 + ϵ−1
2 + ϵ−1

3 + ϵ−1
4 )P2 + a2ϵ1 + LW1L+ PBW−1

1 B∗P

+ b2ϵ2L
2 + PCW−1

2 C∗P+ PDW−1
3 D∗P

)
w(t) +w∗(t− τ(t))(LW2L+ c2ϵ3L

2)w(t− τ(t))

+ µ(t)

∫t
t−µ(t)

w∗(s)(LW3L+ d2ϵ4L
2)w(s)ds.

By using (3.1), we get

ṙ(t) ⩽ w∗(t)(αP)w(t) +w∗(t− τ(t))(LW2L+ c2ϵ3L
2)w(t− τ(t))

+ µ(t) max
t−µ⩽s⩽t

w∗(s)(LW3L+ d2ϵ4L
2)w(s)

∫t
t−µ(t)

ds

= αw∗(t)Pw(t) +w∗(t− τ(t))(LW2L+ c2ϵ3L
2)w(t− τ(t))

+ µ2(t) max
t−µ⩽s⩽t

w∗(s)(LW3L+ d2ϵ4L
2)w(s)

⩽ αw∗(t)Pw(t) + max
t−τ⩽s⩽t

w∗(s)(LW2L+ c2ϵ3L
2)w(s) + µ2 max

t−µ⩽s⩽t
w∗(s)(LW3L+ d2ϵ4L

2)w(s)

⩽ αw∗(t)Pw(t) + max
t−ρ1⩽s⩽t

w∗(s)(LW2L+ c2ϵ3L
2)w(s) + µ2 max

t−ρ1⩽s⩽t
w∗(s)(LW3L+ d2ϵ4L

2)w(s).

Using (3.2) and (3.3), then

ṙ(t) ⩽ αw∗(t)Pw(t) + qη max
t−ρ1⩽s⩽t

w∗(s)Pw(s) + (1 − q)η max
t−ρ1⩽s⩽t

w∗(s)Pw(s)

⩽ αw∗(t)Pw(t) + η max
t−ρ1⩽s⩽t

w∗(s)Pw(s) ⩽ αr(t) + η max
s∈[t−ρ1,t]

r(s).
(3.7)

If t = tk, we get

r(tk) = w
∗(tk)Pw(tk) ⩽ [Ck

∫tk
tk−τk

w(s)ds]∗P[Ck

∫tk
tk−τk

w(s)ds]

=

∫tk
tk−τk

w∗(s)ds(C∗
kPCk)

∫tk
tk−τk

w(s)ds.

Employing (3.4), we obtain

r(tk) ⩽
∫tk
tk−τk

w∗(s)ds(γP)

∫tk
tk−τk

w(s)ds = γ

∫tk
tk−τk

r(s)ds. (3.8)

Combining (3.7) and (3.8), and employing Lemma 2.4, we obtain

r(t) ⩽ r̄(t0)γ
ke−λ

∑k
j=1 τjeλ(t−t0),

with r̄(t0) = sups∈[t0−ρ,t0]
r(s). Moreover {tk}, {τk} ∈ N(t, t0), and if N(t, t0) impulses be affected on

(t0, t], thus above inequality transforms to

r(t) ⩽ r̄(t0)γ
N(t,t0)e−λ

∑N(t,t0)
j=1 τjeλ(t−t0) = r̄(t0)e

[(

N(t,t0) lnγ

N(t,t0)
−

λ
∑N(t,t0)

j=1 τj

N(t,t0)
t−t0

N(t,t0)

)+λ](t−t0)

.
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Using Definition 2.3, and supposing t → +∞, we get

r(t) ⩽ r̄(t0)e
[ lnγ−λτ̄

Ta
+λ](t−t0) = r̄(t0)e

[
lnγ+λ(Ta−τ̄)

Ta
](t−t0).

As w(t) holds λmin(P)∥w(t)∥ ⩽ r(t) ⩽ λmax(P)∥w(t)∥, it follows that λmin(P)∥w(t)∥ ⩽ r(t), and

r̄(t0) ⩽ λmax(P) sup
s∈[t0−ρ,t0]

∥w(s)∥.

Then,

λmin(P)∥w(t)∥ ⩽ λmax(P) sup
s∈[t0−ρ,t0]

∥w(s)∥e(
lnγ+λ∗(Ta−τ̄)

Ta
)(t−t0),

∥w(t)∥ ⩽
λmax(P)

λmin(P)
sup

s∈[t0−ρ,t0]

∥w(s)∥e
lnγ+λ∗(Ta−τ̄)

Ta
(t−t0) ⩽ M sup

s∈[t0−ρ,t0]

∥w(s)∥eκ(t−t0),

where M =
λmax(P)
λmin(P)

> 0, and κ =
lnγ+λ∗(Ta−τ̄)

Ta
< 0; λ∗ = max{α+ η

γe
−λρ, 0}. Then, ∥w(t)∥ tends to 0, as

t → +∞. Thus, the uncertain mixed delay CVNNs (2.4) is RES.

Corollary 3.2. Under (H2), let α ∈ R, η ∈ R+, µ, Ta, τ̄ > 0, and q,γ ∈ (0, 1). If there exists positive
diagonal matrices W1,W2,W3 ∈ Rn×n, positive matrix Q ∈ Cn×n, positive hermitian matrix P, with λ∗ =

max
{
α+ η

γe
−λρ, 0

}
, and the following inequalities:

−AP− PA+ LW1L−αP PB PC PD

⋆ −W1 0 0
⋆ ⋆ −W2 0
⋆ ⋆ ⋆ −W3

 < 0, (3.9)

[
−qηP LW2

⋆ −W2

]
< 0, (3.10)[

−(1 − q)ηP µLW3
⋆ −W3

]
< 0, (3.11)[

−γP Q

⋆ −P

]
< 0, (3.12)

lnγ+ λ∗(Ta − τ̄)

Ta
< 0, (3.13)

are satisfied, then the CVNNs (2.4) achieves ES with DDFIC gain Ck = P−1Q∗.

Proof. Same as proof of Theorem 3.1, under the condition ∆A = ∆B = ∆C = ∆D = 0.

Corollary 3.3. Assume (H2) holds and let α ∈ R, γ ∈ (0, 1), and η ∈ R+, τ̄, Ta > 0. If there exist positive
matrix Q ∈ Cn×n, W1, W2 ∈ Rn×n are positive diagonal matrices, positive hermitian matrix P, with λ∗ =

max
{
α+ η

γe
−λρ, 0

}
, and the following inequalities:−AP− PA+ LW1L−αP PB PC

⋆ −W1 0
⋆ ⋆ −W2

 < 0,
[
−ηP LW2
⋆ −W2

]
< 0,

[
−γP Q

⋆ −P

]
< 0,

lnγ+ λ∗(Ta − τ̄)

Ta
< 0,

are fulfilled, then the CVNNs (2.4) achieves ES with DDFIC gain Ck = P−1Q∗.
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Proof. Same as proof of Corollary 3.2, when
∫t
t−µ(t) h(w(s))ds = 0.

Remark 3.4. In [17, 35, 36, 39, 52, 55], the criteria for stability and synchronization were discussed of
CVNNs including both transmission delays and delayed impulsive effects, but these impulsive delays
were considered as fixed times. In [14, 49], synchronization results were investigated for delayed NNs
under distributed delayed impulsive control, but impulsive delays were taken as fixed along with the
restriction of smaller upper bounds. However, in our studies, we relaxed those restrictions that made
impulsive distributed delay as flexible and has large upper bounds. Further, we assert that we considered
the comprehensive model of CVNNs with uncertainties, transmission delay, discrete distributed delay,
and DDFIC. Thus, our proposed results are different, new and general from these existing literature
[14, 29, 49].

4. Numerical examples

The following section offers a discussion of numerical examples and its graphical depictions, aiming
at demonstrating the efficacy of DDFIC in achieving proposed criteria.

Example 4.1. Consider the 2-neuron uncertain master CVNNs (2.1) and the slave CVNNs (2.2) with
following parameters

A =

[
8 0
0 8

]
, B =

[
2 + 2i 0.1 − 0.1i
4 − 4i 3 + 3i

]
, C =

[
1.5 − 3i −0.1 − 0.1i

−0.1 − 0.1i −10.5 − i

]
,

D =

[
−1.5 − 1.5i 5 + 5i
0.1 + 0.1i −1.5 − 1.5i

]
, ∆A =

[
0.1 + 0.1i 0

0 0.1 + 0.1i

]
, ∆B =

[
0.08 + 0.1i 0

0 0.08 + 0.1i

]
,

∆C =

[
0.2 + 0.03i 0

0 0.2 + 0.03i

]
, ∆D =

[
0.25 + 0.05i 0

0 0.25 + 0.05i

]
, h(·) = tanh(·),

τ(t) =
et

et + 1
, τk = 1.99 +

1
100k

, µ(t) = 0.5|sin(t)|,

L = diag{0.1, 0.1}, Je = (0, 0)T .

Then τ = 0.25, µ = 0.5, and so ρ = 2. Let a = 0.15, b = 0.13, c = 0.3, d = 0.35, ϵ1 = ϵ2 = ϵ3 = ϵ4 = 0.1,
and with initial conditions for master CVNNs (2.1) are p1(t) = −1 + 3i, p2(t) = 2 − 4i, ∀t ∈ [−0.5, 0], and
for slave CVNNs (2.2) is taken as u1(t) = 2 + i, u2(t) = 3 − 3.5i, ∀t ∈ [−2, 0]. The behavior of real and
imaginary parts of trajectories for CVNNs (2.4) absence of control is given by Figure 1 (A) and (B). To
synchronize the proposed CVNNs, let α = 0.16, η = 0.26, γ = 0.01, q = 0.9, λ = 3, τ̄ = 2, Ta = 3, and
λ∗ = 0.224.

Employing LMI toolbox, we got the feasible solution matrices for the LMIs (3.1), (3.2), (3.3), (3.4), and
(3.5) are

P =

[
0.1864 0.0215 − 0.0029i

0.0215 + 0.0029i 0.2153

]
, Q =

[
0.0057 + 0.0056i 0.0061 + 0.0059i
0.0060 + 0.0061i 0.0064 + 0.0064i

]
,

W1 =

[
19.5322 0

0 12.5002

]
, W2 =

[
2.7001 0

0 4.4428

]
, W3 =

[
1.0579 0

0 1.6263

]
,

and the DDFIC gain is

Ck =

[
0.0279 − 0.0270i 0.0293 − 0.0294i
0.0253 − 0.0252i 0.0265 − 0.0274i

]
.

Under the given initial conditions, real part and imaginary part of trajectories of CVNNs (2.4) based on
DDFIC is depicted by Figure 1 (C) and (D). Hence, the CVNNs (2.4) achieves RES, by Theorem 3.1. Next,
we validate the results to synchronize the mixed delay CVNNs (2.1) and CVNNs (2.2) with ∆A = ∆B =
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∆C = ∆D = 0. Consider the other parametric values same as of Example 4.1. The behavior of real part
and imaginary part of paths for mixed delayed CVNNs (2.4) in the absence of the effect of control are
given by Figure 2 (A) and (B).

Employing LMI toolbox, the feasible solutions obtained for LMIs (3.9), (3.10), (3.11), (3.12), and (3.13)
of Corollary 3.2 and there exist the matrices

P =

[
0.8380 0.1436 − 0.0722i

0.1436 + 0.0722i 0.7443

]
, Q =

[
0.0316 + 0.0313i 0.0321 + 0.0277i
0.0267 + 0.0312i 0.0272 + 0.0275i

]
,

W1 =

[
8.6623 0

0 6.5479

]
, W2 =

[
4.0693 0

0 9.0208

]
, W3 =

[
2.8757 0

0 4.5438

]
,

and the DDFIC gain is

Ck =

[
0.0350 − 0.0284i 0.0300 − 0.0289i
0.0336 − 0.0352i 0.0280 − 0.0343i

]
.

According to the provided initial conditions, real part and imaginary part of trajectories of CVNNs (2.4)
based on DDFIC are given by Figure 2 (C) and (D). Hence, CVNNs (2.4) achieves ES, by Corollary 3.2.
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Figure 1: Real and imaginary parts of paths to CVNNs (2.4) with uncertainties, transmission delay and discrete distributed
delay; (A) and (B) show without impulses; (C) and (D) prove the efficiency of DDFIC.
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Figure 2: Real and imaginary parts of paths to CVNNs (2.4) in absence of uncertainties; (A) and (B) show without impulsive
effect; (C) and (D) prove the efficiency of DDFIC.

5. Conclusion

This paper addresses the RES and ES criteria for uncertain mixed delayed CVNNs with DDFIC. Before
introducing the main findings, we presented the novel distributed delayed flexible impulsive differential
inequality employing the ideas of AII and AIDD. Subsequently, we developed innovative RES and ES
criteria utilizing LMIs by the use of Lyapunov functions and Jensen’s inequality for the suggested uncer-
tain mixed delayed CVNNs. Moreover, DDFIC gains were formulated by LMI solutions. Finally, some
numerical illustrations were presented to substantiate the obtained results, and the efficiency of DDFIC is
depicted with diagrammatic representations.

It is important to note that the findings that were reported in this study are original and completely
unique, as noted in both Remarks 2.5 and 3.4. This research has a positive outlook for the future, which
is a very promising factor. Under the effect of adaptive impulsive control, our primary target for the
foreseeable future is to explore the behavior of CVNNs that have unbounded transmission delay and
unlimited distribution delay settings. This will include both the transmission delay and the distribution
delay.
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