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Abstract

The cosine trigonometric single valued neutrosophic number (CT-SVNN) is a suitable expansion of the standard neutro-
sophic number. Single-valued neutrosophic sets (SVNSs) may effectively overcome three components: degree of truth, indeter-
minacy, and falsity. In recent years, the aggregation operator (AO) and its applications have undergone development. This study
introduces a few new AOs for multi-attribute decision-making (MADM). We introduce a novel approach for cosine trigono-
metric SVNS (CT-SVNS) and CT-SVNS with normal (CT-SVNNS), which are SVNS extensions. It is also required to discuss
the CT-SVNNS method fundamental features in this communication, such as idempotency, boundedness, commutativity and
monotonicity. There are numerous CT-SVNNS operators that have been proposed, including CT-SVN normal weighted aver-
aging (CT-SVNNWA), CT-SVN normal weighted geometric (CT-SVNNWG), generalized CT-SVNNWA (GCT-SVNNWA) and
generalized CT-SVNNWG. A powerful strategy for solving the MADM problem is provided that makes use of new developed
generalized operators. Through a case study, the value of the suggested MADM approach is demonstrated. The new strategy
is shown using a market share problem, and the outcomes are contrasted and examined against an existing method. This com-
bination of generalized AO was rated successful based on expert preferences. As a result, a varied collection of experts may be
accepted.
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1. Introduction

The largest and most significant contributors to the expansion and development of the economy are
thought to be stock markets. To understanding of the elements impacting stock market decision-making
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(DM) process while making investments. The importance of stocks to the national economy is closely
linked to investment decision-making (IDM). Investors are now forced to switch from traditional meth-
ods to new, potent computer algorithms in order to maximize trading profits because of the growing
complexity of stock markets and the numerous interconnected elements that influence their behavior. In
order to facilitate the development of financial decision-making systems, efforts have been done for many
years to improve market prediction using advanced instruments and cutting edge techniques recently
found in the field of artificial intelligence. The business sector is complex, competitive and requires a
wide range of multitasking skills. Most business companies nowadays employ information technology
(IT) applications to improve both their operational efficiency and the quality of their goods and services.
It illustrates how IT has developed into an essential element of the business sector. A number of appli-
cations have been used by the business world. E-commerce has gained recognition as a breakthrough in
the business sector due to its ease of use and several advantages for individuals. It streamlines, acceler-
ates, streamlines and increases the efficiency of business procedures. Expanding the usage of IT to other
business areas, such as the stock market, is believed to offer an opportunity to look at this topic from
an alternative viewpoint. Real-world structures are becoming increasingly complicated, which makes
it harder for decision-makers to select the best option from a variety of possibilities. Consolidation is
difficult, yet achieving a single goal is not difficult. Many businesses struggle to establish boundaries,
objectives, and viewpoints. As a result, a committee or an individual must consider many objectives
simultaneously when making judgments. Each decision-maker is prevented from reaching the optimal
option, the optimum under all relevant criteria, by flexible responses to real-world problems. As a result,
the decision maker is more likely to make the best conclusion by using practical and efficient approaches.

1.1. Related work

Almost every situation in the real world involves some degree of uncertainty. The fuzzy set (FS), intu-
itionistic FS (IFS) and neutrosophic set (NSS) are among the uncertain theories. A collection of elements
in a given universal that have a grade or degree between 0 and 1 is called an FS, and it describes the
membership degree of a particular element in that universal. The idea of an IFS and it is characterized
by the sum of its MD and non-membership degree (NMD) values that do not exceed 1. We might have a
DM problem. The problem arises, if the total of MD and NMD exceeds 1. Consequently, the Pythagorean
FS (PFS) is an extension of IFS by [41]. It is defined by squared, where the sum of its MD and NMD does
not exceed 1. The use of Pythagorean fuzzy Dombi AOs by Khan et al. [15]. Pythagorean cubic fuzzy
Hamacher AOs by Abdullah et al. [2]. While "neutosophy” refers to knowledge of neutrality, FS and IFS
represent distinct ways to recognizing. A NS was first conceptualized by Smarandache [37]. The degree
of truth, indeterminacy and falsehood is represented by a number between 0 and 1. NS is a generalization
of FS, IFS and other classical sets. For instance, if an expert discusses a particular enrollment that they
believe to be true, the value is 0.75; if they say it is untrue, the value is 0.65; and if they are indeterminate,
the value is 0.45. One example demonstrates that 10 ballots are utilized in the procedure because of the
number pattern (0.75, 0.65, 0.45). In particular, because the pattern (0.6, 0.3, 0.1) is in NSS, 6 ballots had the
response "yes," 3 ballots had the answer "no," and 1 ballots had no answer. The most well known method,
Some of the problems listed can be resolved by NS. Deveci et al. [4] state that a number of aggregation
operators based on practical contexts. Real-world applications were realized as a result of the interaction
between the FSs in Memis et al. [23]. Mamis et al. [22] explored a number of similarity ideas for FSs
using soft set (FSS).

Various Pythagorean AOs based on DM and their practical uses by Akram et al. [3]. The single valued
NS (SVNS) is introduced by [39]. SVNSs are widely used and have many real-world applications [17].
Majumdar et al. [21] engage with the idea of SVNS using similarity and distance from one another. The
concept of correlation coefficients and DM models for SVNS by [42]. Stanujkic et al. [36] discussed the
WASPAS utilizing SVFNs and their real-world applications. To assess the transport service providers
[19] starts an SVNS with a DM trial using an assessment laboratory model (SVNN-DEMATEL). Deci-
sion makers in challenging DM might employ the concept of linguistic neutrosophic number proposed
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by [26], which is utilized in the combinative distance based assessment (CODAS) model. Pamucar [27]
presents the LNN CODAS and LNN MABAC (multi-attributive border approximation area comparison)
and introduces the challenge in the linguistic neutrosophic numbers weighted aggregate employed in
LNNWASPAS. SVNS is used in the domains of context analysis [35]. The many AOs utilized in the inter-
val Pythagorean NS were introduced by Palanikumar et al. [25]. A few trigonometric operational rules
were introduced [10]. Interval-valued fermatean NS concept explored by Broumi et al. [5]. Kalantari
et al. [11] discussed the neutrosophic model for the best closed-loop, sustainable supply chain network
that takes carbon emission and inflation policies. Karamasa et al. [13] interacted by weighing the ele-
ments influencing logistics outsourcing. An expanded SVNS based on AHP and MULTIMOORA concept
presented by Karamasa et al. [14] to assess the best training aircraft for flying training firms.

NSS with MADM is investigated by Peng et al. [28] using TOPSIS and MABAC algorithms. Hwang et
al. [38] investigated a practical use of MADM. Riaz et al. [30] used reference parameters to discuss Linear
Diophantine FS (LDFS). Because it incorporates reference criteria, the LDFS is more successful and adapt-
able than alternative methods. Furthermore, by altering the physical importance of reference parameters,
LDFS categorizes the data in MADM issues. Kannan et al. [12] have addressed the concept of the LDFS
with CODAS approach for logistic specialist selection. Chakraborty et al. have looked at the practical
uses of Fermatean fuzzy Bonferroni AOs [6]. The relationship between Fermatean fuzzy soft sets and
their application to managing COVID-19 symptoms was examined by Zeb et al. [43]. Wei [40] introduced
MADM to the novel idea of PFS interaction AOs. Single-valued trapezoidal neutrosophic number payoffs
in a matrix game solution [32]. A nonlinear programming model has been developed to solve matrix
games with payoffs that are single-valued neutrosophic numbers [31]. An interval neutrosophic matrix
game-based solution to cyber security challenges [34]. Developments in statistical analysis and DM were
made in [7]. A new CRADIS method for interval neutrosophic GDM based on triangular divergence
distance. Using single-valued neutrosophic number pay-offs to solve the market share problem in matrix
games [33]. Interval valued Fermatean neutrosophic super hyper soft sets and their algebraic structures:
applications in health care [1]. Using the IFS based on the MCDM Method, block chain networks are
assessed and ranked [24]. Resilience and sustainable urban innovation using artificial intelligence and the
q-rung orthopair FS with expo logarithmic method [29].

1.2. Motivations for this research

The decision-maker can improve reliability and flexibility in the strategy-making process by utilizing
SVNNs. SVNNs are superior to FS/IFS in presenting a variety of unclear circumstances. Due to its high
projected return on investment, the stock market is one of the most visited locations. However, the world
of business is complicated. Because price fluctuations are unpredictable, investors need to be careful when
choosing their investing strategy. Making well-informed judgments should be their initial course of action
when using their resources. Regular stock traders need to be up to date on the most recent stock news
given the previously described circumstances. This is because the value is always changing. When the
update is received, they must decide on the best course of action for the stocks. They should gain from the
decision. In this situation, newbie stock traders typically make poor decisions about whether to purchase
or sell the equities. This study focuses on the application of fuzzy logic and soft computing in the finance
industry, which includes stocks and investment markets as well as financial organizations. Investors and
decision makers are in charge of determining the location, timing, and strategy of investments.

Because this problem is unpredictable, decision-makers are always attempting to reduce risk by using
sophisticated algorithms, tools, and procedures. It is anticipated that the fuzzy model developed with
this method will aid in the decision-making of investment traders. Unexpected financial market events
that are very difficult to forecast are the subject of this study. Soft computing has been used in the past
by several academics in the business and finance domains. By comparing present market instability with
known historical occurrences, it can identify them. The fuzzy model processes a large number of input
parameters before generating investment recommendations. This study seeks to provide a decision-
making assistance model that assists investors in identifying opportunities for both long-term critical
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imbalances and long-term, low-risk profit margins, as opposed to advocating for insufficient ideas. At
this point, the national economy has demonstrated the significance of the stock market. The way that
changes in the stock market impact the economic growth of nations in central and eastern Europe serves
as evidence of this. Price volatility and capital liquidity are two examples of the two categories into which
the tasks are divided.

1.3. Research gap
Data analysis of triangular NSs by Edalatpanah [9]. More generalized CT-SVNNs are introduced using

cosine trigonometry for SVNN. Suppose (0.71, 0.15, 0.57) be the one neutrosophic sample such as 0 ⪯
cos ((∝) · 0.71) = 0.4871 ⪯ 1, 0 ⪯ 1 − cos ((∝) · (1 − 0.15)) = 0.55 ⪯ 1 and 0 ⪯ 1 − cos ((∝) · (1 − 0.57)) =
0.4604 ⪯ 1 are the results of using the AO operator. According to Mahmood et al.[20], there are several
real world uses for spherical FSs and PFSs. Riaz et al. [30] describe the q-Rung orthopair FS and Linear
Diophantine FS based on DM. It is critical to distinguish investor investment decisions from the way
stock markets function. Around the world, research on investment decisions is still conducted utilizing a
variety of backgrounds and research approaches that include a number of factors. This is due to the fact
that investment activities are influenced by a wide range of factors, each of which has been the subject
of numerous analyses and studies. If any investor hopes to make a sizable profit or avoid incurring a
sizable loss, they must make the right choices. Thus, the goal of this research is to offer a framework for
decision-making when buying or selling shares on the open market.

1.4. Contribution of the paper
This study will describe the new method for CT-SVNNS. AOs are also informed about CT-SVNNS.

This research report is divided into seven parts. It is believed that Section 1 serves as an introduction.
Section 2 provides a general review of CT-SVNS and associated concepts. The MADM employed in
the cosine trigonometric single-valued neutrosophic normal number (CT-SVNNN) and its fundamental
operations are covered in Section 3. The distance between CT-SVNNNs was the foundation for the
investigation in Section 4. The MADM and a few of its AOs for CT-SVNNN are interacted with in
section 5. CT-SVNN is described as an example and an innovation with comparative sections in Section
6. Finally, the purpose of Section 7 is to conclude. The goal of this research is following.

1. HDs are presented for the CT-SVNNS concept.
2. An example and a pertinence analysis of the stated definition and CT-SVNNN various operators.
3. CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG operator that uses two ideal

values such as positive and negative.
4. Make contributions to the stock market by applying and confirming well-known models.
5. DM for using the natural number Ξ to determine the outcome.

2. Basic concepts

Our goal in this section is to review some definitions and results needed to improve our learning.

Definition 2.1. Let U be the universal set. The Pythagorean IVFS (PIVFS) Ö =
{
τ,
〈
σ̃T (τ), σ̃F (τ)

〉∣∣∣τ ∈ U
}

,

where σ̃T : U → Int([0, 1]) and σ̃F : U → Int([0, 1]) denote the MG and NMG of τ ∈ U to Ö, respectively,
and 0 ⪯ (σT +(τ))2 + (σF+(τ))2 ⪯ 1. For Ö =

〈[
σT −,σT +

]
,
[
σF−,σF+

]〉
is called a Pythagorean

interval-valued fuzzy number (PIVFN).

Definition 2.2 ([39]). The single-valued NS(SVNS) Ö =
{
τ,
〈
σT (τ),σI (τ),σF (τ)

〉∣∣τ ∈ U
}

, σT (τ), σI (τ)

and σF (τ), which is belongs to [0, 1] denote the truth, indeterminacy and falsity MD of τ ∈ U, respectively,
and 0 ⪯ σT (τ) + σI (τ) + σF (τ) ⪯ 3. For Ö =

〈
σT ,σI ,σF

〉
is represents a single-valued neutrosophic

number(SVNN).
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Definition 2.3 ([39]). Let Ö =
〈
σT ,σI ,σF

〉
, Ö1 =

〈
σT

1 ,σI
1 ,σF

1

〉
, and Ö2 =

〈
σT

2 ,σI
2 ,σF

2

〉
be three SVN-

SNs, and Ξ > 0. Then

1. Ö1 ⊞ Ö2 =
[
(σT

1 ) + (σT
2 ) − (σT

1 ) · (σT
2 ),σI

1 · σI
2 ,σF

1 · σF
2
]
;

2. Ö1 ⊗ Ö2 =
[
σT

1 · σT
2 , (σI

1 ) + (σI
2 ) − (σI

1 ) · (σI
2 ), (σF

1 ) + (σF
2 ) − (σF

1 ) · (σF
2 )
]
;

3. Ξ · Ö =
[
1 −

(
1 − (σT )

)Ξ, (σI )Ξ, (σF )Ξ
]

;

4. ÖΞ =
[
(σT )Ξ, 1 −

(
1 − (σI )

)Ξ, 1 −
(
1 − (σF )

)Ξ] .

Definition 2.4. The fuzzy number M(x) = e−
(

x−Ψ
Ω

)2

, (Ω > 0) is known as a normal fuzzy number (NFN)
if M = (Ψ,Ω), where R be the real numbers.

Definition 2.5. Let X = (Ψ1,Ω1) ∈ N̈ and Y = (Ψ2,Ω2) ∈ N̈, (Ω1,Ω2 > 0). The distance between X and Y

is D(X, Y) =
(
(Ψ1 −Ψ2)

2 + 1
2(Ω1 −Ω2)

2
)1/2

, where N̈ be the NFN.

3. New basic operations for CT-SVNNN

Some trigonometric neutrosophic numbers and NFN notions served as the foundation for the proposal
of the CT-SVNNN and its functions. Here ∝= π/2.

Definition 3.1. Let (Ψ,Ω) ∈ N, Ö =
〈
(Ψ,Ω); ρT , ρI , ρF

〉
be the CT-SVNNN is defined as

cos Ö =
{

cos
(
∝ ·(σT (x))

)
, p − cos

(
∝ ·(p −(σI (x))

)
, p − cos

(
∝ ·(p −σF (x))

)}
.

Hence, cos Ö is also CT-SVNNN, and satisfied the condition that cos
(
∝ ·σT (x)

)
∈ [0, 1], cos

(
∝ ·σI (x)

)
∈

[0, 1] and p − cos
(
∝ ·
(
p −σF (x)

))
∈ [0, 1]. Therefore, cos Ö =

{
cos
(
∝ ·(σT (x))

)
, p − cos

(
∝ ·(p −(σI (x)))

)
, p

− cos
(
∝ ·((p −σF (x)))

)}
is a CT-SVNNN, where σT = σT e−

(
y−Ψ
Ω

)2

and σI = σI e−
(

y−Ψ
Ω

)2

and σF =

σFe−
(

y−Ψ
Ω

)2

, y ∈ Y, where Y is a non-empty set.

Definition 3.2. For any CT-SVNN Ö =
〈
(Ψ,Ω); ρT , ρI , ρF

〉
, then

S(Ö) =
Ψ

2

(
2 + (cos2(∝ ·σT )) − (cos2(∝ ·σI )) − (cos2(∝ ·σF ))

2

)
,

S(Ö) ∈ [−1, 1], where S(Ö) is said to be the score function of Ö.

Definition 3.3. Let Ö =
〈
(Ψ,Ω); ρT , ρI , ρF

〉
, Ö1 =

〈
(Ψ1,Ω1);σT

1 ,σI
1 ,σF

1

〉
, and Ö2 =

〈
(Ψ2,Ω2);σT

2 ,

σI
2 ,σF

2

〉
be three CT-SVNNNs, and Ξ > 0. Then

1. cos Ö1 ⊞ cos Ö2 =

(Ψ1 +Ψ2,Ω1 +Ω2); (cos2(∝ ·σT
1 ))Ξ + (cos2(∝ ·σT

2 ))Ξ

−(cos2(∝ ·σT
1 ))Ξ·(cos2(∝ ·σT

2 ))Ξ,
cos2(∝ ·σI

1 ) · cos2(∝ ·σI
2 ), cos2(∝ ·σF

1 ) · cos2(∝ ·σF
2 )

 ;

2. cos Ö1 ⊗ cos Ö2 =

(Ψ1 ·Ψ2,Ω1 ·Ω2); cos2(∝ ·σT
1 ) · cos2(∝ ·σT

2 ), (cos2(∝ ·σI
1 ))Ξ + (cos2(∝ ·σI

2 ))Ξ

−(cos2(∝ ·σI
1 ))Ξ·(cos2(∝ ·σI

2 ))Ξ, (cos2(∝ ·σF
1 ))Ξ + (cos2(∝ ·σF

2 ))Ξ

−(cos2(∝ ·σF
1 ))Ξ·(cos2(∝ ·σF

2 ))Ξ

 ;

3. Ξ · cos Ö =
[
(Ξ ·Ψ,Ξ ·Ω); p −

(
p −(cos2(∝ ·σT ))Ξ

)Ξ, (cos2(∝ ·σI ))Ξ, (cos2(∝ ·σF ))Ξ
]

;

4. (cos Ö)Ξ =
[
(ΨΞ,ΩΞ); (cos2(∝ ·σT ))Ξ, p −

(
p −(cos2(∝ ·σI ))Ξ

)Ξ, p −
(
p −(cos2(∝ ·σF ))Ξ

)Ξ] .
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4. Distance for CT-SVNNNs

We discuss some mathematical properties of CT-SVNNs based on Euclidean distance (ED) and Ham-
ming distance (HD).

Definition 4.1. Let Ö1 =
〈
(Ψ1,Ω1);σT

1 ,σI
1 ,σF

1

〉
and Ö2 =

〈
(Ψ2,Ω2);σT

2 ,σI
2 ,σF

2

〉
be the CT-SVNNNs.

Then DE

(
Ö1, Ö2

)
=

([
1+P

2 Ψ1 −
1+Q

2 Ψ2

]2
+ 1

2

[
1+P

2 Ω1 −
1+Q

2 Ω2

]2
)1/2

and

DH

(
Ö1, Ö2

)
=
[∣∣∣1+P

2 Ψ1 −
1+Q

2 Ψ2

∣∣∣+ 1
2

∣∣∣1+P
2 Ω1 −

1+Q
2 Ω2

∣∣∣] ,

where

P = cos2(∝ ·σT
1 ) − cos2(∝ ·σI

1 ) − cos2(∝ ·σF
1 ), Q = cos2(∝ ·σT

2 ) − cos2(∝ ·σI
2 ) − cos2(∝ ·σF

2 ).

Theorem 4.2. If any three CT-SVNNNs Ö1 =
〈
(Ψ1,Ω1);σT

1 ,σI
1 ,σF

1

〉
, Ö2 =

〈
(Ψ2,Ω2);σT

2 ,σI
2 ,σF

2

〉
, Ö3 =〈

(Ψ3,Ω3);σT
3 , σI

3 ,σF
3

〉
, then

1. DE(Ö1, Ö2) =0 if and only if Ö1 = Ö2;
2. DE(Ö1, Ö2) = DE(Ö2, Ö1);
3. DE(Ö1, Ö3) ⪯ DE(Ö1, Ö2) +DE(Ö2, Ö3).

Proof. The proof is provided in an appendix.

Lemma 4.3. If any three CT-SVNNNs Ö1 =
〈
(Ψ1,Ω1);σT

1 ,σI
1 ,σF

1

〉
, Ö2 =

〈
(Ψ2,Ω2);σT

2 ,σI
2 ,σF

2

〉
, Ö3 =〈

(Ψ3,Ω3);σT
3 , σI

3 ,σF
3

〉
, then

1. DH(Ö1, Ö2)=0 if and only if Ö1 = Ö2;
2. DH(Ö1, Ö2) = DH(Ö2, Ö1);
3. DH(Ö1, Ö3) ⪯ DH(Ö1, Ö2) +DH(Ö2, Ö3).

5. Aggregation operators for CT-SVNNNs

Here, we introduced AOs based on CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG.

5.1. CT-SVNN weighted averaging (CT-SVNNWA)

Definition 5.1. If Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the finite family of CT-SVNNNs, W = (κ1, κ2, . . . ,κn)

be the weight of Öi, κi ⪰ 0, and
⊎n

i 7→1 κi = 1. Then CT-SVNNWA operator is defined as CT-SVNNWA
(Ö1, Ö2, . . . , Ön) =

⊎n
i 7→1 κiÖi.

Theorem 5.2. Let Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the finite family of CT-SVNNNs. Then

CT-SVNNWA(Ö1, Ö2, . . . , Ön) =

[(⊎n
i 7→1 κiΨi,

⊎n
i 7→1 κiΩi

)
; p −

⊗n
i 7→1

(
p −(cos2(∝ ·σT

i ))Ξ
)κi

,⊗n
i 7→1(cos2(∝ ·σI

i ))κi ,
⊗n

i 7→1(cos2(∝ ·σF
i ))κi

]
.

Proof. The proof is provided in an appendix.

Theorem 5.3. If all Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
and Öi = Ö, then CT-SVNNWA(Ö1, Ö2, . . . , Ön) = cos Ö.

Proof. The proof is provided in an appendix.
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Theorem 5.4. Let Öi =
〈
(Ψij,Ωij);σT

ijσ
I
ij ,σF

ij

〉
(i 7→ 1, 2, . . . ,n); (j 7→ 1, 2, . . . , ij) be the finite collection

of CT-SVNNWA, where Ψ︸︷︷︸ = infΨij,
︷︸︸︷
Ψ = supΨij, Ω︸︷︷︸ = supΩij,

︷︸︸︷
Ω = infΩij, σT︸︷︷︸ = infσT −

ij ,︷︸︸︷
σT = supσT −

ij , σI︸︷︷︸ = infσI −

ij ,
︷︸︸︷
σI = supσI −

ij , σF︸︷︷︸ = infσF−

ij ,
︷︸︸︷
σF = supσF−

ij . Then〈
( Ψ︸︷︷︸, Ω︸︷︷︸); σT︸︷︷︸,

︷︸︸︷
σI ,

︷︸︸︷
σF

〉
⪯ CT-SVNNWA(Ö1, Ö2, . . . , Ön) ⪯

〈
(
︷︸︸︷
Ψ ,

︷︸︸︷
Ω );

︷︸︸︷
σT , σI︸︷︷︸ σF︸︷︷︸〉.

Proof. The proof is provided in an appendix.

Theorem 5.5. Let Öi =
〈
(Ψtij ,Ωtij);σ

T
tij

,σI
tij

,σF
tij

〉
and Ẅi =

〈
(Ψhij

,Ωhij
);σT

hij
,σI

hij
,σF

hij

〉
be the two fami-

lies of CT-SVNNWAs. For any i, if there is Ψtij ⪯ Ωhij
,
(

cos2(∝ ·σT
tij
)
)
⪯
(

cos2(∝ ·σT
hij

)
)

and
(

cos2(∝ ·σI
tij
)
)

⪰
(

cos2(∝ ·σI
hij

)
)

and
(

cos2(∝ ·σF
tij
)
)
⪰
(

cos2(∝ ·σF
hij

)
)

or Öi ⪯ Ẅi, then

CT-SVNNWA
(
Ö1, Ö2, . . . , Ön

)
⪯ CT-SVNNWA

(
Ẅ1, Ẅ2, . . . , Ẅn

)
.

Proof. The proof is provided in an appendix.

5.2. CT-SVNN weighted geometric (CT-SVNNWG)
Definition 5.6. If Öi =

〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNNs, the CT-SVNNWG operator

is defined as CT-SVNNWG (Ö1, Ö2, . . . , Ön) =
⊗n

i 7→1(cos Öi)
κi .

Theorem 5.7. Let Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNNs. Then

CT-SVNNWG(Ö1, Ö2, . . . , Ön) =

 (⊗n
i 7→1 Ψ

κi

i ,
⊗n

i 7→1 Ω
κi

i

)
;
⊗n

i 7→1(cos2(∝ ·σT
i ))κi ,

p −
⊗n

i 7→1

(
p −(cos2(∝ ·σI

i ))Ξ
)κi

, p −
⊗n

i 7→1

(
p −(cos2(∝ ·σF

i ))Ξ
)κi

 .

Proof. The proof based on Theorem 5.2.

Theorem 5.8. If all Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
and Öi = Ö, then CT-SVNNWG(Ö1, Ö2, . . . , Ön) = Ö.

Proof. The proof based on Theorem 5.3.

Remark 5.9. Boundedness and monotonicity are satisfied by the CT-SVNNWG operator.

Proof. The proof based on Theorems 5.4 and 5.5.

5.3. Generalized CT-SVNNWA (GCT-SVNNWA)
Definition 5.10. Let Öi =

〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNN. Then

GCT-SVNNWA(Ö1, Ö2, . . . , Ön) =
( n⊎

i 7→1

κi(cos Öi)
Ξ
)1/Ξ

.

Theorem 5.11. Let Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNNs. Then

GCT-SVNNWA(Ö1, Ö2, . . . , Ön)

=



((⊎n
i 7→1 κiΨ

Ξ
i

)1/Ξ
,
(⊎n

i 7→1 κiΩ
Ξ
i

)1/Ξ
)

;

(
p −
⊗n

i 7→1

(
p −
(
(cos2(∝ ·σT

i ))Ξ
)Ξ)κi

)1/Ξ

,

p −

(
p −

(⊗n
i 7→1

(
p −
(
p −(cos2(∝ ·σI

i ))Ξ
)Ξ)κi

,

)Ξ)1/Ξ

,

p −

(
p −

(⊗n
i 7→1

(
p −
(
p −(cos2(∝ ·σF

i ))Ξ
)Ξ)κi

)Ξ)1/Ξ


.
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Proof. The proof is provided in an appendix.

The GCT-SVNNWA is transformed to the CT-SVNNWA in the case of Ξ 7→ 1.

Theorem 5.12. If all Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
and Öi = Ö, then GCT-SVNNWA(Ö1, Ö2, . . . , Ön) = Ö.

Proof. The proof can be found in Theorem 5.3.

The boundedness and monotonicity properties are satisfied in the case of the GCT-SVNNWA operator,
as shown by Theorems 5.4 and 5.5.

5.4. Generalized CT-SVNNWG (GCT-SVNNWG)

Definition 5.13. Let Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNNs. Then GCT-SVNNWG

(Ö1, Ö2, . . . , Ön) =
1
Ξ

(⊗n
i 7→1(Ξ cos Öi)

κi

)
.

Theorem 5.14. Let Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
be the family of CT-SVNNNs. Then

GCT-SVNNWG(Ö1, Ö2, . . . , Ön) =



(
1
Ξ

⊗n
i 7→1(ΞΨi)

κi , 1
Ξ

⊗n
i 7→1(ΞΩi)

κi

)
;

p −

(
p −

(
n⊗

i 7→1

(
p −
(
p −(cos2(∝ ·σT

i ))Ξ
)Ξ)κi

)Ξ)1/Ξ

,(
p −

n⊗
i 7→1

(
p −
(
(cos2(∝ ·σI

i ))Ξ
)Ξ)κi

)1/Ξ

,(
p −

n⊗
i 7→1

(
p −
(
(cos2(∝ ·σF

i ))Ξ
)Ξ)κi

)1/Ξ

,


.

Proof. The proof based on Theorem 5.11.

Since the GCT-SVNNWG operator is converted to the CT-SVNNWG operator in the case of Ξ 7→ 1. In
the case of the GCT-SVNNWG operator, the boundedness and monotonicity properties are satisfied, and
we used Theorems 5.4 and 5.5.

Theorem 5.15. If all Öi =
〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
and Öi = Ö, then GCT-SVNNWG(Ö1, Ö2, . . . , Ön) = Ö.

6. CT-SVNN applied for MADM

The set of n-alternatives Ö = {Ö1, Ö2, . . . , Ön}, the set of m-attributes A = {A1,A2, . . . ,Am}, and
κ = {κ1, κ2, . . . ,κm} is called the attributes of the weights, where i 7→ 1, 2, . . . ,n and j 7→ 1, 2, . . . ,m, Öij =〈
(Ψij,Ωij); cos2(∝ ·σT

ij ), cos2(∝ ·σI
ij ), cos2(∝ ·σF

ij )
〉

denote CT-SVNNN of alternative Oi in attribute Aj.

Since cos
(
∝ ·(σT

ij (x)
)
+
(
p − cos

(
∝ · p −(σI

ij (x))
))

+
(
p − cos

(
∝ ·(p −σF

ij (x))
))

⪯ 3 and

cos
(
∝ ·(σT

ij (x)
)
∈ [0, 1],

(
p − cos

(
∝ · p −(σI

ij (x))
))

∈ [0, 1],
(
p − cos

(
∝ · p −(σF

ij (x))
))

∈ [0, 1].

Here, D = (Öij)n×m is called the n×m decision matrix.



M. Palanikumar, N. Kausar, D. Pamucar, V. Simic, J. Math. Computer Sci., 41 (2026), 222–243 230

6.1. Algorithm for CT-SVNN

Step-1: Enter the CT-SVNN decision values.

Step-2: To demonstrate the decision values for normalization, the matrix D = (Öij)n×m to D =

(Öij)n×m, since Öij =
〈
(Ψij,Ωij);σT

ij ,σI
ij ,σF

ij

〉
and

Ψij =
Ψij

supi(Ψij)
, Ωij =

Ωij

supi(Ωij)
·
Ωij

Ψij
, σT

ij = σT
ij .

Step-3: Each alternative is evaluated based on its aggregate values. D = (Öij)n×m, where Öij =〈
(Ψij,Ωij);σT

ij ,σI
ij ,σF

ij

〉
is aggregated into D = (Öi)n×m, where Öi =

〈
(Ψi,Ωi);σT

i ,σI
i ,σF

i

〉
.

Step-4: Each choice should be represented by two unique ideal values, such as positive and negative,

Ö+ =

〈(
sup

1⪯i⪯n

(Ψij), inf
1⪯i⪯n

(Ωij)
)

; 1, 0, 0

〉
, Ö− =

〈(
inf

1⪯i⪯n
(Ψij), sup

1⪯i⪯n

(Ωij)
)

; 0, 1, 1

〉
.

Step-5: Compute the ED and HD for each choice:

D+
i = DE

(
Öi, Ö+

)
; D−

i = DE

(
Öi, Ö−

)
.

Step-6: The closest similar value should be used to compare each choice: D∗
i =

D−
i

D+
i +D−

i

.

Step-7: The most effective solution is to provide the values of supD∗
i .

Figure 1 is a flowchart illustrating the MADM process using CT-SVNN.

Figure 1: Structure of flowchart network
.
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6.2. Stock market

Investors often invest in debt or equity assets in the hopes of making money. Given recent market
events, investors could think about making changes to their investment portfolios. In a volatile and
uncertain climate, investors base their decisions on trial-and-error or out-of-date rules. However, while
evaluating investment prospects, emotional and cognitive aspects are really taken into account, undercut-
ting the necessity of using reason. People may now participate in a variety of financial products thanks
to the expansion of the financial sector. Behavioral finance has increased our understanding of individ-
ual investor behavior by explaining the distinct traits and psychological processes that effect people’s
investment intentions and actions [18]. Individuals, according to classical economic theory, make rational
investment decisions and follow basic financial principles in order to maximize their wealth. Their invest-
ment approach frequently incorporates the use of technical analysis, fundamental analysis, and judgment
[16]. People act irrationally due to fear of loss, regardless of their knowledge or research on investment
products before to making an investment [8]. In mutual funds, a stock market share is defined as 0.1 per-
cent of a company earnings. These financial support sectors are governed by stock market rules. When
applying, following or reviewing the stock market key concepts, quality rating is the most important
consideration. A company’s financial growth should steadily improve over time.

Company Liquidity: The holding stock or passive stock exchange may be confirmed by the business
liquidity, and the primary liquidity ratio is to determine the company value per share at a given market
price.

Positive earnings: Positive profits are a significant growth signal for a firm, which is only feasible in
particular phases for a high-quality stock. To achieve a single profit ratio, the stock market must close
and reopen at a specific level. It also has several serious issues, such as the price-to-earnings and price-
to-book ratios.

Dividents with long term: It is the best strategy to invest money. A competent stock market investor
may earn thousands of dollars employing this dividend structure. He will distribute his money across
dividend stocks in such a manner that it becomes a gold-level investment, which is the simplest approach
to make more. Using the stock market, we should plant a seed that will develop into a stronger tree.
Long-term investment is crucial for stock market investing, but most individuals are uninterested since it
takes longer.

Real return calculation: If an investment is made, the majority of the return should be estimated to ensure
that no significant stocks or the stock market lose their position. It might be optimistic or deceptive, but
calculating true return is a stock market golden rule.

If five persons called (alternatives) trade in a firm that follows the precision and accuracy of the stock
market, for example {Öa, Öb, Öc, Öd, Öe}.

Four attributes are considered as company liquidity (A1), positive earnings (A2), dividends with long
term (A3) and real return calculation ((A4) and weights are κ = {0.4, 0.3, 0.2, 0.1}. We will choose the
best option from each alternative based on an expert assessment against the criteria. Tables 1 and 2
demonstrate inputting the DM values.

Table 1: DM information.
A1 A2

Öa

〈
(0.9, 0.65); 0.28, 0.64, 0.43

〉 〈
(0.65, 0.35); 0.71, 0.52, 0.45

〉
Öb

〈
(0.95, 0.75); 0.28, 0.3, 0.16

〉 〈
(0.55, 0.5); 0.62, 0.85, 0.44

〉
Öc

〈
(0.85, 0.65); 0.2, 0.37, 0.23

〉 〈
(0.5, 0.3); 0.43, 0.1, 0.45

〉
Öd

〈
(0.7, 0.5, 0.29, 0.3, 0.59

〉 〈
(0.5, 0.45, 0.55, 0.37, 0.44

〉
Öe

〈
(0.75, 0.6, 0.27, 0.38, , 0.65

〉 〈
(0.75, 0.65, 0.29, 0.52, , 0.64

〉
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Table 2: DM information.
A3 A4

Öa

〈
(0.85, 0.5); 0.5, 0.52, 0.45

〉 〈
(0.8, 0.65); 0.71, 0.15, 0.57

〉
Öb

〈
(0.75, 0.6); 0.29, 0.3, 0.44

〉 〈
(0.8, 0.75); 0.5, 0.45, 0.85

〉
Öc

〈
(0.55, 0.5); 0.71, 0.5, 0.31

〉 〈
(0.7, 0.65); 0.27, 0.52, 0.52

〉
Öd

〈
(0.6, 0.55, 0.5, 0.57, 0.72

〉 〈
(0.85, 0.45, 0.28, 0.58, 0.78

〉
Öe

〈
(0.7, 0.6, 0.55, 0.64, 0.45

〉 〈
(0.8, 0.6, 0.34, 0.45, 0.44

〉
Tables 3 and 4 demonstrate that the normalized decision matrix is as shown in Table 3.

Table 3: Normalized decision matrix.
A1 A2

Öa

〈
(0.9474, 0.6259); 0.28, 0.64, 0.43

〉 〈
(0.8667, 0.2899); 0.71, 0.52, 0.45

〉
Öb

〈
(1, 0.7895); 0.28, 0.3, 0.16

〉 〈
(0.7333, 0.6993); 0.62, 0.85, 0.44

〉
Öc

〈
(0.8947, 0.6627); 0.2, 0.37, 0.23

〉 〈
(0.6667, 0.2769); 0.43, 0.1, 0.45

〉
Öd

〈
(0.7368, 0.4762); 0.29, 0.3, 0.59

〉 〈
(0.6667, 0.6231); 0.55, 0.37, 0.44

〉
Öe

〈
(0.7895, 0.64); 0.27, 0.38, , 0.65

〉 〈
(1, 0.8667); 0.29, 0.52, , 0.64

〉

Table 4: Normalized decision matrix.
A3 A4

Öa

〈
(1, 0.4902); 0.5, 0.52, 0.45

〉 〈
(0.9412, 0.7042); 0.71, 0.15, 0.57

〉
Öb

〈
(0.8824, 0.8); 0.29, 0.3, 0.44

〉 〈
(0.9412, 0.9375); 0.5, 0.45, 0.85

〉
Öc

〈
(0.6471, 0.7576); 0.71, 0.5, 0.31

〉 〈
(0.8235, 0.8048); 0.27, 0.52, 0.52

〉
Öd

〈
(0.7059, 0.8403); 0.5, 0.57, 0.72

〉 〈
(1, 0.3176); 0.28, 0.58, 0.78

〉
Öe

〈
(0.8235, 0.8571); 0.55, 0.64, 0.45

〉 〈
(9412, 0.6); 0.34, 0.45, 0.44

〉
Table 5 demonstrates that CT-SVNNWA utilizes AO for each option.

Table 5: CT-SVNNWA.
CT-SVNNWA operator (Ξ = 1)

Öa

〈
(0.9331, 0.5058); 0.9027, 0.488, 0.5030

〉
Öb

〈
(0.8906, 0.7793); 0.9180, 0.1402, 0.0941

〉
Öc

〈
(0.7697, 0.5802); 0.3594, 0.2820, 0.3313

〉
Öd

〈
(0.7359, 0.5772); 0.6248, 0.1146, 0.2876

〉
Öe

〈
(0.8746, 0.7474); 0.4333, 0.6864, 0.2319

〉
A discussion of the optimum values for each choice, both positive and negative is as

〈
(0.9331, 0.5058), 1, 0, 0

〉
,〈

(0.7359, 0.7793), 0, 1, 1
〉
. Every option has an ED with the positive and negative ideal values, respectively,

D+
1 = 0.9181, D+

2 = 0.4881, D+
3 = 0.6939, D+

4 = 0.9706, D+
5 = 0.8741,

and
D−

1 = 0.4554, D−
2 = 0.8855, D−

3 = 0.6796, D−
4 = 0.4029, D−

5 = 0.4994.

Calculate the relative closeness values as D∗
1 = 0.3316, D∗

2 = 0.6447, D∗
3 = 0.4948, D∗

4 = 0.2934, D∗
5 =

0.3636. Ranking of alternatives is as Öb ⪰ Öc ⪰ Öe ⪰ Öa ⪰ Öd. According to the report of Öa, Öb,
Öc, Öd, Öe traders, since the trader Öb meets all the criteria, including sequence trading and report
analysis, he will be regarded as a successful trader. In order to get superior trading, Öb will be assigned.
Consequently, Öb is the best choice.
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6.3. Comparisons between suggested and existing models
By comparing the proposed models with the existing models, this part will demonstrate their suitabil-

ity and benefits for the application. The ED methodology was based on the four categories of method-
ologies. The following categories can be used to group distances. We use the HD-based CT-SVNNWG,
GCT-SVNNWA, and GCT-SVNNWG techniques in light of the aforementioned data. The various dis-
tances are displayed as in Tables 6 and 7.

Table 6: Different distances
Ξ 7→ 1 CTSVNNWA CTSVNNWG

TOPSIS Öb ⩾ Öc ⩾ Öe Öb ⩾ Öd ⩾ Öe

HD (proposed) Öa ⩾ Öd Öa ⩾ Öc

HD Öb ⩾ Öa ⩾ Öc Öb ⩾ Öa ⩾ Öc

[25] Öe ⩾ Öd Öe ⩾ Öd

Table 7: Different distances.
Ξ 7→ 1 GCTSVNNWA GCTSVNNWG

TOPSIS Öb ⩾ Öc ⩾ Öe Öb ⩾ Öd ⩾ Öe

HD (proposed) Öa ⩾ Öd Öa ⩾ Öc

HD Öb ⩾ Öa ⩾ Öc Öb ⩾ Öa ⩾ Öc

[25] Öe ⩾ Öd Öe ⩾ Öd

6.4. Effectiveness test
Reliability rates for the MADM approach vary throughout options. There are a number of prereq-

uisites for testing. The following proximity values and rankings may be found using the CTSVNNWA
technique when various Ξ values are achieved. The CTSVNNWA operator (Ξ = 2) must be used in order
to aggregate the data for each option. This graphic illustrates the values of the aggregating operator.
Lastly, a comparison with previous models is made to assess the authority and superiority of the modi-
fied model. The Ξ values are changed in accordance with CT-SVNNWA. Lastly, the rankings and relative
closest values are shown below.

Figure 2: Graphical representation using HD for CT-SVNNWA.

We determined that the CT-SVNNWA operator utilized alternate ranking. If Ξ = 1, then alternative
ranking is Öb ⪰ Öc ⪰ Öe ⪰ Öa ⪰ Öd. If Ξ 7→ 2, then alternative ranking is Öa ⪰ Öd ⪰ Öb ⪰ Öe ⪰ Öc.
As a result, the optimal alternative shifts from Öb to Öa. Similarly, alternate rankings are generated
using CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG operators. The best outcomes with the most
value were achieved for each phase. The proposed AOs were tested using the available techniques to
demonstrate their superiority and validity. The proposed AO’s accuracy and dependability outperform
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those of the current technique. We suggested a novel method for determining the best option for the
MADM problems.

Figure 3: Graphical representation using HD for existing and proposed models.

6.5. Sensitivity Analysis
The CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG operators satisfy the prop-

erties of associativity, boundedness, and monotonicity. When Ξ = 1, this study converts the GCT-
SVNNWA operator to the CT-SVNNWA operator. If Ξ = 1, then the GCT-SVNNWG operator is con-
verted into the CT-SVNNWG operator. Using the above analysis, we find that the alternative ranks
Öb ⪰ Öc ⪰ Öe ⪰ Öa ⪰ Öd. The new order is Öa ⪰ Öd ⪰ Öb ⪰ Öe ⪰ Öc, when Ξ = 2. Hence,
we changed from Öb to Öa. Alternative ranks are based on ⅁ from CT-SVNNWG, GCT-SVNNWA, and
GCT-SVNNWG. Because it takes into account the relationships between the different features, the afore-
mentioned strategy is beneficial. Therefore, the suggested approach yields better outcomes. This method
is hence more effective in [25]. HD for CT-SVNN was established in this work. Through comparison, HD’s
superiority was shown. We developed a novel HD concept for CT-SVNN that aids in practical calculations
and is given in an easy-to-understand mathematical manner. Consequently, a numerical example showed
that the HD was superior when these two factors were coupled. The utility of HD is illustrated with a
real-world example of its utilization.

6.6. Advantages
The following advantages of the suggested method are made possible by the aforementioned analysis.

One well-known example of a complex system with dynamic and nonlinear behavior is the stock market.
The purpose of this study was to develop a simple and acceptable methodology that would help investors
choose profitable stock market chances and reduce their stress levels. Because the markets under study
are unique, the model employed a neutrosophic model, which can manage a higher level of uncertainty.
The created model is relatively limiting, but it does show how the NSS, which is commonly used in
technical fields, may be utilized in new ways. A more sophisticated updated model might be constructed
by adding more key input variables to the model now given. However, the goal of this study was to make
the model and set of input variables as easy as possible so that any new investor could use them.

The previously given analysis emphasizes the multiple benefits of the applications. CT-SVNNS inte-
grates FVNS principles. CT-SVNNS is used to study natural phenomena and human behavior in the real
world that follow a normal distribution. The sum of TMG, IMG, and FMG exceeds 1, and it conveys com-
plicated information. The TMG, IMG, and FMG squared values are all less than one. The decision-maker
is free to choose the outcome based on q and personal preferences. Different ranking outcomes may
be created dynamically for each approach employing operators like CT-SVNNWA, CT-SVNNWG, GCT-
SVNNWA, and GCT-SVNNWG. As a consequence, using the suggested DM approach, we can determine
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the optimal alternative for using CT-SVNN-based decision support systems. To assess the efficacy and
dependability of the suggested algorithm, we compared it to certain other algorithms that are already in
use. The recommended technique may have limited applicability in some domains or decision contexts.
A proposed strategy should be assessed in light of the constraints and conditions that may make it most
successful. To facilitate analysis, the proposed technique includes some assumptions and simplifications.
As a result, the outcomes may not always correlate to real-world events, limiting their usefulness.

6.7. Limitations

The daily changes of the financial markets are influenced by many different types of variables. The
model dependability would be much reduced if it were used to short-term investments. The reliability of
investing in a single company is significantly diminished because events like partnerships, unanticipated
management changes, changes in the company’s focus, and other similar changes have a major effect on
the stock price of the individual company but not the entire list, which consists of hundreds of companies.
Using a certain set of input variables is the aim of this simple model. Due to significant variations in
conditions, its suggestions would be far less dependable when applied to other indices. To confirm the
efficacy of the suggested strategy, we conduct a comparison analysis. We mostly compare and examine
from two angles. The comparison is conducted from the perspective of AOs as they form the foundation
of our proven MADM technique. Nonetheless, the comparison is conducted from the perspective of
MADM techniques. A proposed method ought to be assessed in view of the constraints and circumstances
that might maximize its effectiveness. The proposed technique simplifies some aspects and makes some
assumptions to facilitate analysis. Because the findings would not always match actual events, their
usefulness would be limited.

7. Conclusion:

The SVNN is a significant tool for addressing uncertainty in DM difficulties. It goes without saying
that various decision-makers may give different possibilities varying weights. These days, people fre-
quently talk about the process of choosing assets. The application of CT-SVNNS logic to the problem of
investment decision-making is presented in this work. Despite the high levels of non-linearity, volatility,
and unpredictability in financial markets, CT-SVNNS penetration in this sector is still minimal. In other
words, there is ample opportunity to explore the results of a higher level of neutrosophic thought, and
the financial markets in particular offer this opportunity. As interest in this area of study has grown, a
number of well-known papers containing state-of-the-art data have surfaced, providing a strong scientific
basis for further investigation. Investors who want to lower risk while managing their long-term assets
may find the neutrosophic model-based investment decision-making tool to be of great use. Naturally,
lowering risk and identifying safe solutions are the goals of this research. This research opposes making
hasty, short-term predictions. The results of a thorough testing and evaluation of a model constructed
using historical data are presented in this study, showing that the model is capable of producing accurate
investment suggestions with a high statistical likelihood.

For CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG, we also proposed AOs. An
example was produced by applying the CT-SVNNS operator to the MADM problem-solving process uti-
lizing SVNSS data. Using examples, we described the characteristics of these operators. Applying the
MADM to each alternative allows individuals to create the appropriate DM in situations that are unclear
and inconsistent. Thus, Ξ used the CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-SVNNWG
operators to overcome MADM problems. The CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and GCT-
SVNNWG operators on Ξ provide many alternative rankings. Finally, the discussion concluded that
generalized values using Ξ had the greatest desirable impact on alternative rankings. Finally, the decision
maker determines the DM to get at Ξ. The HD in the case of SVNNS provides a variety of applications,
including data analysis. Solving a market share problem demonstrates the viability and efficacy of the
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recommended method. The ideal solutions are found in the SVNN form, which is preferable. The ac-
quired findings are compared to the results produced by [25] and found that the best methods for both
players are relatively comparable. This indicates the consistency of our approach. As a result of the
present study, the researcher believes the discussions will be beneficial to modern scholars interested in
this type of research. We will talk about the following subjects in further detail. (1) Soft sets, vague sets
and complex FS utilizing AOs are all connected to the CT-SVNNWA, CT-SVNNWG, GCT-SVNNWA, and
GCT-SVNNWG operators. (2) We analyze the IVFS and cubic FS using the CT-SVNNWA, CT-SVNNWG,
GCT-SVNNWA, and GCT-SVNNWG operators. (3) By analyzing (p,q, r)-rung CT-SVNN as well as com-
plex (p,q, r)-rung CT-SVNN based on similarity measures. (4) In the future, further novel approaches to
solving matrix games with SVNN payoffs could be studied.
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Appendix

The proof of Theorem 4.2. Proofs (1) and (2) are the simplest. Now, we have to prove the other part (3).
Now,

(
DE(Ö1, Ö2) +DE(Ö2, Ö3)

)2
=


(
(Υ1Ψ1 −Υ2Ψ2)

2 + 1
2(Υ1Ω1 −Υ2Ω2)

2
)1/2

+
(
(Υ2Ψ2 −Υ3Ψ3)

2 + 1
2(Υ2Ω2 −Υ3Ω3)

2
)1/2


2

implies(
(Υ1Ψ1 −Υ2Ψ2)

2 +
1
2
(Υ1Ω1 −Υ2Ω2)

2
)
+
(
(Υ2Ψ2 −Υ3Ψ3)

2 +
1
2
(Υ2Ω2 −Υ3Ω3)

2
)

+ 2

(
(Υ1Ψ1 −Υ2Ψ2)

2 +
1
2
(Υ1Ω1 −Υ2Ω2)

2

)1/2

×

(
(Υ2Ψ2 −Υ3Ψ3)

2 +
1
2
(Υ2Ω2 −Υ3Ω3)

2

)1/2

where Υ1 = 1+P
2 , Υ2 = 1+Q

2 , and Υ3 = 1+R
2 ,

P = cos2(∝ ·σT
1 ) − cos2(∝ ·σI

1 ) − cos2(∝ ·σF
1 ),

Q = cos2(∝ ·σT
2 ) − cos2(∝ ·σI

2 ) − cos2(∝ ·σF
2 ),

R = cos2(∝ ·σT
3 ) − cos2(∝ ·σI

3 ) − cos2(∝ ·σF
3 ).
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Now,

(
DE(Ö1, Ö2) +DE(Ö2, Ö3)

)2

⪰
(
(Υ1Ψ1 −Υ2Ψ2)

2 +
1
2
(Υ1Ω1 −Υ2Ω2)

2
)
+
(
(Υ2Ψ2 −Υ3Ψ3)

2 +
1
2
(Υ2Ω2 −Υ3Ω3)

2
)

+ 2
(
(Υ1Ψ1 −Υ2Ψ2)× (Υ2Ψ2 −Υ3Ψ3) +

1
2
(Υ1Ω1 −Υ2Ω2)× (Υ2Ω2 −Υ3Ω3)

)
= (Υ1Ψ1 −Υ2Ψ2 +Υ2Ψ2 −Υ3Ψ3)

2 +
1
2
(Υ1Ω1 −Υ2Ω2 +Υ2Ω2 −Υ3Ω3)

2

= (Υ1Ψ1 −Υ3Ψ3)
2 +

1
2
(Υ1Ω1 −Υ3Ω3)

2 = DE(Ö1, Ö3).

The proof of Theorem 5.2. We prove the theorem by mathematical induction. If n = 2, then CT-SVNNWA
(Ö1, Ö2) = κ1 cos Ö1 ⊞ κ2 cos Ö2, where

κ1 cos Ö1 =

[(
κ1Ψ1, κ1Ω1

)
; p −

(
p −(cos2(∝ ·σT

1 ))Ξ
)κ1

,
(cos2(∝ ·σI

1 ))κ1 , (cos2(∝ ·σF
1 ))κ1

]

and

κ2 cos Ö2 =

[(
κ2Ψ2, κ2Ω2

)
; p −

(
p −(cos2(∝ ·σT

2 ))Ξ
)κ2

,
(cos2(∝ ·σI

2 ))κ2 , (cos2(∝ ·σF
2 ))κ2

]
.

Applying to Definition 3.3,

κ1 cos Ö1 ⊞ κ2 cos Ö2 =



(
κ1Ψ1 + κ2Ψ2, κ1Ω1 + κ2Ω2

)
;(

p −
(
p −(cos2(∝ ·σT

1 ))Ξ
)κ1
)
+
(
p −
(
p −(cos2(∝ ·σT

2 ))Ξ
)κ2
)

−
(
p −
(
p −(cos2(∝ ·σT

1 ))Ξ
)κ1
)
·
(
p −
(
p −(cos2(∝ ·σT

2 ))Ξ
)κ2
)

,
(cos2(∝ ·σI

1 ))κ1 · (cos2(∝ ·σI
2 ))κ2 , (cos2(∝ ·σF

1 ))κ1 · (cos2(∝ ·σF
2 ))κ2



=


(
κ1Ψ1 + κ2Ψ2, κ1Ω1 + κ2Ω2

)
;

p −
(
p −(cos2(∝ ·σT

1 ))Ξ
)κ1

·
(
p −(cos2(∝ ·σT

2 ))Ξ
)κ2

,
(cos2(∝ ·σI

1 ))κ1 · (cos2(∝ ·σI
2 ))κ2 , (cos2(∝ ·σF

1 ))κ1 · (cos2(∝ ·σF
2 ))κ2

 ,

CT-SVNNWA(Ö1, Ö2) =

[(⊎
i 7→1 κiΨi,

⊎
i 7→1 κiΩi

)
; p −

⊗
i 7→1

(
p −(cos2(∝ ·σT

i ))Ξ
)κi

,⊗
i 7→1(cos2(∝ ·σI

i ))κi ,
⊗

i 7→1(cos2(∝ ·σF
i ))κi

]
.

Also, valid for n ⪰ 3 and

CT − SVNNWA(Ö1, Ö2, . . . , Öl) =

[(⊎l
i 7→1 κiΨi,

⊎l
i 7→1 κiΩi

)
; p −

⊗l
i 7→1

(
p −(cos2(∝ ·σT

i ))Ξ
)κi

,⊗l
i 7→1(cos2(∝ ·σI

i ))κi ,
⊗l

i 7→1(cos2(∝ ·σF
i ))κi

]
.
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If n = l+ 1, then

CT-SVNNWA(Ö1, Ö2, . . . , Öl, Öl+1)

=



(⊎l
i 7→1 κiΨi + κl+1Ψl+1,

⊎l
i 7→1 κiΩi + κl+1Ωl+1

)
;⊎l

i 7→1

(
p −
(
p −(cos2(∝ ·σT

i ))Ξ
)κi
)
+
(
p −
(
p −(cos2(∝ ·σT

l+1))
Ξ
)κl+1

)
−
⊗l

i 7→1

(
p −
(
p −(cos2(∝ ·σT

i ))Ξ
)κi
)
·
(
p −
(
p −(cos2(∝ ·σT

l+1))
Ξ
)κl+1

)
,⊗l

i 7→1(cos2(∝ ·σI
i ))κi · (cos2(∝ ·σI

l+1))
κl+1 ,

⊗l
i 7→1(cos2(∝ ·σF

i ))κi · (cos2(∝ ·σF
l+1))

κl+1


=

[(⊎l+1
i 7→1 κiΨi,

⊎l+1
i 7→1 κiΩi

)
; p −

⊗l+1
i 7→1

(
p −(cos2(∝ ·σT

i ))Ξ
)κi

,⊗l+1
i 7→1(cos2(∝ ·σI

i ))κi ,
⊗l+1

i 7→1(cos2(∝ ·σF
i ))κi

]
.

The proof of Theorem 5.3. Since, (Ψi,Ωi) = (Ψ,Ω), cos(∝ ·σT
i ) = cos(∝ ·σT ), cos(∝ ·σI

i ) = cos(∝ ·σI ),
and cos(∝ ·σF

i ) = cos(∝ ·σF ), for i 7→ 1, 2, . . . ,n, and
⊎n

i 7→1 κi = 1. Now,

CT-SVNNWA(Ö1, Ö2, . . . , Ön) =

[(⊎n
i 7→1 κiΨi,

⊎n
i 7→1 κiΩi

)
; p −

⊗n
i 7→1

(
p −(cos(∝ ·σT

i ))Ξ
)κi

,⊗n
i 7→1(cos(∝ ·σI

i ))κi ,
⊗n

i 7→1(cos(∝ ·σF
i ))κi

]

=

(Ψ⊎n
i 7→1 κi,Ω

⊎n
i 7→1 κi

)
; p −

(
p −(cos(∝ ·σT ))Ξ

)⊎n
i 7→1 κi

,

(cos(∝ ·σI ))
⊎n

i 7→1 κi , (cos(∝ ·σF ))
⊎n

i 7→1 κi


=
[
(Ψ,Ω); p −

(
p −(cos(∝ ·σT ))Ξ

)
, (cos(∝ ·σI )), (cos(∝ ·σF ))

]
= cos Ö.

The proof of Theorem 5.4. Since, σT︸︷︷︸ = infσT −

ij ,
︷︸︸︷
σT = supσT −

ij , and σT︸︷︷︸ ⪯ σT −

ij ⪯
︷︸︸︷
σT . We have,

cos2(∝ ·σT )︸ ︷︷ ︸ =p −
n⊗

i 7→1

(
p −(cos2(∝ ·σT )︸ ︷︷ ︸)Ξ)κi

⪯p −
n⊗

i 7→1

(
p −(cos2 · ∝ ·σT −

ij )Ξ
)κi

⪯p −
n⊗

i 7→1

(
p −(

︷ ︸︸ ︷
cos2(∝ ·σT ))Ξ

)κi

=
︷ ︸︸ ︷
cos2(∝ ·σT ) .

Since σI︸︷︷︸ = infσI −

ij ,
︷︸︸︷
σI = supσI −

ij , σI︸︷︷︸ ⪯ σI −

ij ⪯
︷︸︸︷
σI , we have

cos2(∝ ·σI )︸ ︷︷ ︸ =
n⊗

i 7→1

(cos2(∝ ·σI )︸ ︷︷ ︸)κi ⪯
n⊗

i 7→1

(cos2 · ∝ ·σI −

ij )κi ⪯
n⊗

i 7→1

(
︷ ︸︸ ︷
cos2(∝ ·σI ))κi =

︷ ︸︸ ︷
cos2(∝ ·σI ) .

Since, σF︸︷︷︸ = infσF−

ij ,
︷︸︸︷
σF = supσF−

ij , and σF︸︷︷︸ ⪯ σF−

ij ⪯
︷︸︸︷
σF , we have

cos2(∝ ·σF )︸ ︷︷ ︸ =
n⊗

i 7→1

(cos2(∝ ·σF )︸ ︷︷ ︸)κi ⪯
n⊗

i 7→1

(cos2 · ∝ ·σF−

ij )κi ⪯
n⊗

i 7→1

(
︷ ︸︸ ︷
cos2(∝ ·σF ))κi =

︷ ︸︸ ︷
cos2(∝ ·σF ) .

Since, Ψ︸︷︷︸ = infΨij,
︷︸︸︷
Ψ = supΨij, Ω︸︷︷︸ = supΩij,

︷︸︸︷
Ω = infΩij and Ψ︸︷︷︸ ⪯ Ψij ⪯

︷︸︸︷
Ψ , and

︷︸︸︷
Ω ⪯

Ωij ⪯ Ω︸︷︷︸, hence,

n⊎
i 7→1

κi Ψ︸︷︷︸ ⪯ n⊎
i 7→1

κiΨij ⪯
n⊎

i 7→1

κi
︷︸︸︷
Ψ and

n⊎
i 7→1

κi
︷︸︸︷
Ω ⪯

n⊎
i 7→1

κiΩij ⪯
n⊎

i 7→1

κi Ω︸︷︷︸ .
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Therefore,⊎n
i 7→1 κi Ψ︸︷︷︸

2

(p−⊗n
i 7→1

(
p−(cos2(∝ ·σT )︸ ︷︷ ︸)Ξ)κi

)
2 −

⊗n
i 7→1(

︷ ︸︸ ︷
cos2(∝ ·σI ))κi


2 −

2+

⊗n
i 7→1(

︷ ︸︸ ︷
cos2(∝ ·σF ))κi


2


⪯
⊎n

i 7→1 κiΨij

2

[(
p−
⊗n

i 7→1

(
p−(cos2 ·∝·σT −

ij )Ξ
)κi

)
2 −

(⊗n
i 7→1(cos2 ·∝·σI−

ij )κi
)

2 −
2+
(⊗n

i 7→1(cos2 ·∝·σF−

ij )κi
)

2

]

⪯
⊎n

i 7→1 κi
︷︸︸︷
Ψ

2

p−
⊗n

i 7→1

(
p−(

︷ ︸︸ ︷
cos2(∝ ·σT ))Ξ

)κi


2 −

(⊗n
i 7→1(cos2(∝ ·σI )︸ ︷︷ ︸)κi

)
2 −

2+

(⊗n
i 7→1(cos2(∝ ·σF )︸ ︷︷ ︸)κi

)
2

 .

Hence,

〈
( Ψ︸︷︷︸, Ω︸︷︷︸); cos2(∝ ·σT )︸ ︷︷ ︸,

︷ ︸︸ ︷
cos2(∝ ·σI ),

︷ ︸︸ ︷
cos2(∝ ·σF )

〉
⪯ CT-SVNNWA(Ö1, Ö2, . . . , Ön) ⪯

〈
(
︷︸︸︷
Ψ ,

︷︸︸︷
Ω );

︷ ︸︸ ︷
cos2(∝ ·σT ), cos2(∝ ·σI )︸ ︷︷ ︸, cos2(∝ ·σF )︸ ︷︷ ︸〉.

The proof of Theorem 5.5. For any i, Ψtij ⪯ Ωhij
. Therefore,

⊎n
i 7→1 Ψtij ⪯

⊎n
i 7→1 Ωhij

. For any i,(
cos2(∝ ·σT

tij
)
)
⪯
(

cos2(∝ ·σT
hij

)
)

. Therefore, p −
(
cos2(∝ ·σT

ti
)
)
⪰p −

(
cos2(∝ ·σT

hi
)
)

. Hence,

n⊗
i 7→1

(
p −
(

cos2(∝ ·σT
ti
)
))κi

⪰
n⊗

i 7→1

(
p −
(

cos2(∝ ·σT
hi
)
))κi

and

p −
n⊗

i 7→1

(
p −
(

cos2(∝ ·σT
ti
)
)Ξ)κi

⪯ p −
n⊗

i 7→1

(
p −
(

cos2(∝ ·σT
hi
)
)Ξ)κi

.

For any i,
(

cos2(∝ ·σI
tij
)
)Ξ

⪰
(

cos2(∝ ·σI
hij

)
)Ξ

. Therefore, −

(⊗n
i 7→1 cos2(∝·σI

tij
)
)

2 ⪯ −

(⊗n
i 7→1 cos2(∝·σI

hij
)
)

2 .

For any i,
(

cos2(∝ ·σF
tij
)
)

⪰
(

cos2(∝ ·σF
hij

)
)

. Therefore, −
2+
(⊗n

i 7→1 cos2(∝·σF
tij

)
)

2 ⪯ −
2+
(⊗n

i 7→1 cos2(∝·σF
hij

)
)

2 .
Hence,

⊎n
i 7→1 Ψtij

2
×


p − n⊗

i 7→1

(
p −(cos2 · ∝ ·σT −

ti )Ξ
)κi


2

−

(⊗n
i 7→1(cos2 ·∝·σI−

tij )
)

2 −
2+
(⊗n

i 7→1(cos2 ·∝·σF−

tij )
)

2



⪯
⊎n

i 7→1 Ψhij

2
×


p − n⊗

i 7→1

(
p −(cos2 · ∝ ·σT −

hi )Ξ
)κi


2

−

(⊗n
i 7→1(cos2 ·∝·σI−

hij )
)

2 −
2+
(⊗n

i 7→1(cos2 ·∝·σF−

hij )
)

2

 .

Hence, CT-SVNNWA
(
Ö1, Ö2, . . . , Ön

)
⪯ CT-SVNNWA

(
Ẅ1, Ẅ2, . . . , Ẅn

)
.
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The proof of Theorem 5.11. Via mathematical induction, it is compulsory to show that

n⊎
i 7→1

κi(cos Öi)
Ξ =



((⊎n
i 7→1 κiΨ

Ξ
i

)
,
(⊎n

i 7→1 κiΩ
Ξ
i

))
;

p −
⊗n

i 7→1

(
p −
(
(cos2(∝ ·σT

i ))Ξ
)Ξ)κi

,

⊗n
i 7→1

(
p −
(
p −(cos2(∝ ·σI

i ))Ξ
)Ξ)κi

,

⊗n
i 7→1

(
p −
(
p −(cos2(∝ ·σF

i ))Ξ
)Ξ)κi


.

Putting n = 2,

κ1(cosO1)
Ξ ⊞ κ2(cosO2)

Ξ =



(
κ1Ψ

Ξ
1 + κ2Ψ

Ξ
2 , κ1Ω

Ξ
1 + κ2Ω

Ξ
2

)
;(

p −
(

p −
(
(cos2(∝ ·σT

1 ))Ξ
)Ξ)κ1

)Ξ

+

(
p −
(

p −
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Ξ ⊞ . . . ⊞ κl(cos Öl)
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