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Abstract

The Spectral Tau method is a widely recognized numerical technique employed for solving fractional-order differential
equations (FODEs). The central focus of the Spectral Tau method’s algorithm depends on the idea of operational matrices
derived from the basis sets of orthogonal polynomials, which are utilized to approximate derivative terms in the problems.
In this study, our main objective is to introduce a new numerical method within the class of spectral methods, but distinct in
its formulation from the Spectral Tau method. While both approaches utilize operational matrices of orthogonal polynomials,
the proposed method avoids the computation of residual functions, which is a key step in the Spectral Tau method. Another
important feature of the proposed study is the construction of novel generalized integral operational matrices in the Riemann-
Liouville sense, developed using a basis of orthogonal shifted Laguerre polynomials (OSLPs). This structure leads to simplified
implementation, reduced computational cost, and enhanced spectral accuracy. To demonstrate the efficiency and practical
applicability of the proposed method, we solve several test problems. Additionally, we compare the computational efficiency
and the absolute errors obtained using our proposed method with those derived from the Spectral Tau method.
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1. Introduction

Fractional calculus was conceived as a result of a philosophical discussion that took place on Septem-
ber 30, 1695, between two of the most well-known mathematicians of all time, L’Hospital and Leibniz. For
a long period, it was perceived as a mathematical curiosity having no relevance to the physical sciences or
any other fields associated with the scientific study of nature. The first significant use of fractional opera-
tors was reportedly by Abel, who solved the “Tautochrone problem" which involves determining the curve
on which a particle, starting from any initial position and moving without friction, takes the same amount
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of time to reach the bottom, regardless of its starting point. This challenge was resolved in 1823. Initially
foreseen by Leibniz as a potential paradox, the subject has since developed significantly, attracting the
attention of numerous researchers across diverse engineering and scientific fields ([8, 10, 26, 29]).

Among the widely used numerical techniques for addressing fractional order differential equations
(FODEs) are spectral methods and finite difference methods. However, finite-difference techniques have
certain limitations, such as linear convergence and applicability only to commensurate-order FODEs. In
contrast, spectral methods have been effectively applied to both commensurate-order and incommensurate-
order FODEs. These methods use operational matrices of derivatives, integrals, or both, associated with
orthogonal polynomials, to convert FODEs into algebraic equations that can be easily solved. As a result,
spectral methods offer exponential convergence, providing more accurate solutions compared to finite
difference methods.

A considerable amount of research articles exist in the literature where researchers have solved
FODEs using spectral methods, the construction of which primarily depends on the operational ma-
trices of orthogonal polynomials. As an example, in [27], the fractional-order derivative operational
matrix (FODOM) in Caputo sense is derived by using the basis set of shifted Legendre polynomials to
approximate the derivative terms in the problem, then the spectral Tau method (STM) is implemented to
reduce the linear FODEs into a system of algebraic equations (SAEs). Finally, the solution of the SAEs
leads to the solution of the original FODEs. In [4, 5], the FODOM in Caputo setting, based on OSLPs, is
constructed, and then the FODEs are reduced to the SAEs using the same approach developed in [27].
The fractional order integral operational matrix (FOIOM) in Riemann-Liouville framework is constructed
in [7] with OSLPs to construct the residual function, implementing the STM in order to obtain the SAEs.
In [6], a generalized OSLPs basis constructs the FOIOM in Riemann-Liouville setting, with STM applied
for reducing FODEs to algebraic form. In [31], the generalized Legendre polynomials have been used to
propose the FODOM in Caputo sense and FOIOM in Riemann-Liouville sense for reducing the FODEs
into SAEs without implementing the STM and spectral collocation method as proposed in [4–7, 27]. The
method presented in [31] is user-friendly and computationally less costly than the methodology followed
in [4–7, 27].

Motivated by the studies cited above, we propose a new modified family of spectral methods by incor-
porating a new modification to the existing spectral methods [4–7, 27, 31]. In these methods, as discussed
in [4–7, 27], the spectral Tau and/or spectral collocation methods are used to obtain the corresponding
SAEs. The STM, however, requires the computation of residual functions, which can limit its applicability
in certain cases due to potential computational difficulties and precision concerns. This is because the
high value of the residual indicates a large error in the approximations. Furthermore, solving the SAEs
within the STM framework necessitates the use of an appropriate numerical method. On the other hand,
the method presented in [31] has the ability of reducing the FODEs into the SAEs without using the STM
but needs both FODOM and FOIOM to serve the purpose. That makes it less friendly for users because of
the construction of two operational matrices which increased the theoretical work. On the same approach
as adopted in [4–7, 27, 31], the structure of our proposed method also depends using operational matrices
of orthogonal polynomials. However, unlike traditional approaches, our method does not require the ap-
plication of the spectral Tau condition or the use of spectral collocation methods to derive the SAEs. Our
propose method directly transforms the FODEs into a SAEs. Also, the proposed approach can reduce the
FODEs into SAEs having only one operational matrix, named the FOIOM, which is developed in Caputo
sense by using the basis set of generalized OSLPs.

The paper is organized as follows. In Section 2, we introduce fractional-order operators and discuss
some of their key properties, which are used throughout the work. Section 3 focuses on the properties of
generalized OSLPs and provides their analytical formula. In Section 4, we stae and prove the important
results that support the construction of operational matrices. Section 5 details the formulation of the
numerical method. In Section 6, the accuracy and efficiency of the proposed numerical method (PNM)
is demonstrated through the solution of various examples, with the results compared to those obtained
using other numerical approaches. The final section summarizes the findings of the study.
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2. Preliminaries of fractional calculus

In contrast to conventional derivatives and integrals, fractional order derivatives and integrals do not
have a single, unified definition. It has been shown that vmultiple fractional derivative and integral
operators, including Caputo, Riemann-Liouville (RL), Atangana-Baleanu (ABC), Hilfer, and Hadamard
[2, 13, 20], among others, can be effectively applied to solve a wide range of mathematical problems.
Among these, the RL and Caputo operators, which involve fractional integrals, are the most widely
studied [18, 20]. The RL fractional-order integral extends the traditional concept of integration to functions
with non-integer orders. It is defined as

RLJ
δ
a+u(t) =

1
Γ(δ)

∫t
a

(t− x)δ−1u(x)dx, t > a, δ > 0.

So, the fractional-order derivatives operators in Riemann-Liouville’s sense and Caputo’s sense are defined
in the follows

RLD
δ
a+u(t) = Dn

RLJ
n−δ
a+ u(t) =

1
Γ(n− δ)

dn

dtn

∫t
a

(t− x)n−δ−1u(x)dx, t > a,

CD
δ
a+u(t) =RL J

n−δ
a+ Dnu(t)

=
1

Γ(n− δ)

∫t
a

(t− x)n−δ−1u(n)(x)dx, t > a, n− 1 < δ < n, n ∈ N, δ > 0,

where n− 1 < δ < n, n ∈ N, and δ > 0. The Caputo fractional derivative operator is widely used in
the fractional modeling of physical phenomena because of its alignment with integer order initial and
boundary conditions. In addition, it demonstrates characteristics that are comparable to the derivatives
of integer orders. The Caputo operator satisfies the following:

RLJ
δ
a+CD

δ
a+u(t) = u(t) −

n−1∑
l=0

u(l)(a)

l!
(t− a)l, t > a, n− 1 < δ < n, (2.1)

and CD
δ
a+B = 0, where B is constant. The following generalized fractional integral (GFI) operators are

constructed by establishing a fractional integral of one function relative to another function ([15, 16, 28]).

Definition 2.1. The GFI operator of order δ > 0 of the function u(t) is defined as

RLJ
δ,η
a+u(t) =

η1−δ

Γ(δ)

∫t
a

xη−1(tη − xη)δ−1u(x)dx, t > a ⩾ 0, η > 0, (2.2)

provided that the integral is well defined.

Definition 2.2. The generalized fractional derivative (GFD) operator in RL type of order δ > 0 of the
function u(t) is defined as

RLD
δ,η
a+u(t) =

ηδ−n−1

Γ(n− δ)

(
t1−η d

dt

)n ∫t
a

xη−1(tη − xη)n−δ−1u(x)dx, t > a ⩾ 0, η > 0. (2.3)

Definition 2.3. The GFD operator in Caputo sense of order δ > 0 of the function u(t) is defined as

CD
δ,η
a+u(t) =

ηδ−n−1

Γ(n− δ)

∫t
a

xη−1(tη − xη)n−δ−1
(
t1−η d

dt

)n

u(x), t > a ⩾ 0, η > 0, (2.4)

where n− 1 < δ < n.
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3. Laguerre polynomials and their characteristics

The French mathematician Edmond Laguerre introduced Laguerre polynomials in the late 19th cen-
tury, are sets of functions that are mutually perpendicular and have significant importance in mathemat-
ical and computational methodologies, including numerical integration, approximation theory, and the
resolution of differential equations [30]. Additionally, they established linkages with probability theory,
namely in the examination of random variables and stochastic processes. These polynomials are also
useful in the analysis of queuing systems and other stochastic models. Their presentation in the radial
component for a single electron atom and their characterization of the stationary Wigner functions of
oscillator systems in quantum mechanics have significant implications for the field of quantum physics.
Laguerre polynomials have been widely employed in solving real problems, including the Lane-Emden
equation, Bratu’s equation, and Burger’s equation [25]. Let L(β)

k (t) be the generalized OSLPs of degree k,
for β > −1,

L
(β)
k+1(t) =

1
k+ 1

[(2k+β+ 1 − t)Lβk (t) − (k−β)Lβk−1(t)], k = 1, 2, . . . , (3.1)

where L(β)
0 (t) = 1,L(β)

1 (t) = 1+β− t. The basis set of the generalized OSLPs can be derived by using the
following analytical expression

L
(β)
k (t) =

k∑
s=0

(−1)sΓ(k+β+ 1)ts

Γ(k+β+ 1)(k− s)!s!
, k = 0, 1, 2, . . . ,n. (3.2)

Equation (3.2) can further be expressed as

L
(β)
k (t) =

k∑
s=0

Ω(s,k)t
s, (3.3)

where

Ω(s,k) =
(−1)sΓ(k+β+ 1)
Γ(k+β+ 1)(k− s)!s!

. (3.4)

The basis set of generalized OSLPs {L
β
0 (t),L

β
1 (t), . . . ,Lβn(t)} having the weight function w(t)=e−ttβ, pos-

sesses the following property in the interval [0,∞):∫∞
0
L
(β)
i (t)L

(β)
j (t)w(β)(t)dt = δij, i, j = 0, 1, . . . ,n,

where δij is the kronecker delta function.

3.1. Function approximation via generalized OSLPs
A function f(t) that belongs to the class of square-integrable functions over the interval [0,∞) can be

represented as the sum of generalized OSLPs as

u(t) =

∞∑
j=0

cjL
(β)
j (t), (3.5)

where

cj =
1
hj

∫∞
0
u(t)w(β)(t)L

(β)
j (t)dt, j = 0, 1, 2, . . . . (3.6)
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If we take the first n-terms of (3.5), then we have

u(t) ≈
n∑
j=0

cjL
(β)
j (t) = FTψ(t), (3.7)

where

FT = [c0, c1, c2, . . . , cn], ψ(t) = [L
(β)
0 (t),L(β)

1 (t), . . . ,L(β)
n (t)]T .
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Figure 1: Graphical representation of function approximate
by Laguerre polynomial for different values of n.
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Figure 2: Graphical comparison of function approximate by
Legendre and Laguerre polynomials for n = 5.

Figure 2 illustrates a graphical comparison of function approximation using Laguerre and Legendre poly-
nomials for n = 5, emphasizing the comparative efficacy of both orthogonal bases. The approximation
utilizing Laguerre polynomials corresponds closely with the exact function f(t) = t2

√
(t) + cos(t), espe-

cially as t varies. The higher efficiency results from the inherent applicability of Laguerre polynomials for
problems defined on semi-infinite intervals, due to their orthogonality with respect to the weight function
e−ttβ. This property allows for a more realistic representation of functions exhibiting rapid growth or de-
cay compared to Legendre polynomials, which are conventionally constructed on limited intervals such
as [−1, 1]. Thus, Laguerre-based spectral approximations reduce boundary-related errors and improve
computational efficiency for functions exhibiting exponential characteristics or unbounded behavior, as
demonstrated by the accuracy comparison illustrated in Figure 2.

4. Operational matrices of OSLPs

Lemma 4.1. The generalized Caputo derivative of L(β)
k (t), as defined in (3.3), can be computed as

cDδ,η
a+L

(β)
k (t) =

k∑
s=⌈δ⌉

(−1)s(i!)Γ(k+β+ 1)ηδΓ(s/η+ 1)
s!(s− k)!Γ(s+β+ 1)Γ(s/η− δ+ 1)

ts−ηδ, η,β ∈ R+.

Proof. The result can be proven by using Eq. (3.3) and Definition 2.3.

Corollary 4.2. For δ > 0, s ∈ N, we have

RLJ
δ,η
0+ t

s = η−δ Γ(s/η+ 1)
Γ(s/η+ δ+ 1)

ts+ηδ, δ,η ∈ R+.

Lemma 4.3. For any ts+ηδ ∈ L2([0,∞); e−ttβ), we have the following result:

ts+ηδ ≈
n∑
j=0

bjL
(β)
j (t), δ,η,β ∈ R+, (4.1)

bj =

j∑
l=0

(−1)lj!
l!(j− l)!Γ(l+β+ 1)

Γ(s+ ηδ+β+ l+ 1).
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Proof. Taking (n+ 1)-terms of OSLPs, we can approximate ts−ηδ as

ts+ηδ ≈
n∑
j=0

bjL
β
j (t).

Using Eq. (3.6), we may determine bj as

bj =

j∑
l=0

(−1)lj!
l!(j− l)!Γ(l+β+ 1)

∫∞
0
e−tts+ηδ+β+ldt,

bj =

j∑
l=0

(−1)lj!
l!(j− l)!Γ(l+β+ 1)

Γ(s+ ηδ+β+ l+ 1). (4.2)

Eqs. (4.1) and (4.2) establish the result.

4.1. Generalized FOIOM of OSLPs in RL-sense

The operational matrices corresponding to orthogonal polynomials have a crucial significance in sev-
eral areas of applied mathematics, especially in the field of computational mathematics. By applying
operational matrices based on orthogonal polynomials, it becomes feasible to express differential and in-
tegral operators as matrix operations. Consequently, FODEs could be converted into SAEs, considerably
simplifying the task of obtaining numerical solutions. This section focuses on the construction of a new
generalized FOIOM based on the generalized RL operator.

Theorem 4.4. Let ψ(t) = [Lβ0 (t),L
β
1 (t), . . . ,Lβn(t)]T , then the following holds true

Jδ,ηL
β
k (t) ≈ Q

(δ,η)ψ(t),

where Q(δ,η) is (n+ 1)× (n+ 1) and is the generalized FOIOM of order δ ∈ R+,

Q
δ,η
(n+1,n+1) =

s∑
k=0

Υ(s,l,k), s = 0, . . . ,n, l = 0, 1, . . . ,n,

Υ(s,l,k) =

j∑
l=0

(−1)s+l(j!)ηδΓ(k+β+ 1)Γ(s/η+ 1)Γ(s+ ηδ+β+ l+ 1)
(l!)(s!)(k− s)!(j− l)!Γ(s+β+ 1)Γ(s/η+ δ+ 1)Γ(l+β+ 1)

.

Proof. Using the GFI operator introduced in Eqs. (2.2)-(3.4), we have

RLJ
δ,ηL

β
k (t) =

k∑
s=0

Ω(s,k) RLJ
δ,η ts. (4.3)

Using Corollary 4.2, Eq. (4.3) can be expressed as

RLJ
δ,ηL

β
k (t) =

k∑
s=0

Ω(s,k)η
−δ Γ(s/η+ 1)
Γ(s/η+ δ+ 1)

ts+ηs. (4.4)

Using (n+ 1)-terms of OSLPs, ts+ηs can be approximated as

ts+ηs ≈
n∑
j=0

bjL
β
j (t). (4.5)
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Using Lemma 4.3, Eq. (4.5) can be expressed as

ts+ηs =

n∑
j=0

(
j∑

l=0

(−1)lj!
(l!)(j− l)!Γ(l+β+ 1)

Γ(s+ ηδ+ l+ 1)

)
L
(β)
j (t). (4.6)

Using Eq. (3.4) and Eq. (4.6) in Eq. (4.4), we have

RLJ
δ,ηL

β
k (t) ≃

k∑
s=0

(−1)sΓ(k+β+ 1)
s!(k− s)!

ηδ
Γ(s/η+ 1)

Γ(s/η+ δ+ 1)

×
n∑
j=0

(
j∑

l=0

(−1)lj!
l!(j− l)!Γ(l+β+ 1)

Γ(s+ ηδ+ l+ 1)

)
L
(β)
j (t).

(4.7)

Eq. (4.7) can further be written as

RLJ
δ,ηL

β
k (t) ≃

[
k∑

s=0

Υ(s,0,k)

k∑
s=0

Υ(s,1,k)

k∑
k=⌈α⌉

Υ(s,2,k), . . . ,
k∑

s=0

Υ(s,n,k)

]
ψ(t),

where

Υ(s,l,k) =

j∑
l=0

(−1)s+l(j!)ηδΓ(k+β+ 1)Γ(s/η+ 1)Γ(s+ ηδ+β+ l+ 1)
(l!)(s!)(k− s)!(j− l)!Γ(s+β+ 1)Γ(s/η+ δ+ 1)Γ(l+β+ 1)

.

Hence the result is proved,

Q1,1
(6,6) =



2 −1 0 0 0 0
1 1 −1 0 0 0
1 0 1 −1 0 0
1 0 0 1 −1 0
1 0 0 0 1 −1
1 0 0 0 0 1

 , Q
4/3,1
(7,7) =


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0 1 2 3 4 5
t

-100

0

100

200

300

u
(t
)
=

t4
/3
+
2
+
t2

Classical Integral

Integral by Laguerre Operational Matrix for n = 6 and δ = 4/3

Figure 4: Graphical comparison classical integral of function
VS integral by Operational Matrix for n = 6 and order δ =
4/3.

Figures 3 and 4 present graphical comparisons between the classical integral of the functions and their
numerical approximations obtained using the Laguerre integral operational matrix. The graphs clearly
show that the results produced by the operational matrix method closely align with the classical integrals,
highlighting its high accuracy and reliability.
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4.2. Sylvester matrix equation
The Sylvester matrix equation is a matrix equation of the form: AX+ XB = C, where A ∈ Rm×m,

B ∈ Rn×n, and C ∈ Rm×n are known matrices. The objective is to determine the unknown matrix
X ∈ Rm×n that satisfies this relation. According to Sylvester’s theorem [17], a unique solution exists
if and only if the sets of eigenvalues of matrices A and B are disjoint. That is α(A) ∩ α(B) = ∅, where
α(A) and α(B) denote the spectra of A and B, respectively. This equation has widespread applications in
several fields such as control theory for analyzing system behavior, model order reduction for simplifying
large dynamic systems, and signal processing for improving signal quality. It is also valuable in image
restoration, system decoupling, and implicit numerical schemes used in solving differential equations.
For a detailed discussion, refer to [9, 11, 12].

5. Numerical approach

Consider the following FODEs subject to the initial conditions (ICs)

CDδ,ηu(t) = f
(
t,u(t),C Dδ1,η1u(t),C Dδ2,η2u(t), . . . ,C Dδn,ηnu(t)

)
, u(i)(0) = λi, i = 0, 1, . . . , ⌈δ⌉− 1. (5.1)

Consider the following approximation holds true

CDδ,η
a+u(t) = F

Tψ(t). (5.2)

Using the GFI operator of order δ together with the ICs to Eq. (5.2), we get

u(t) = FTQδ,ηψ(t) +

⌈δ⌉−1∑
i=0

λi
i!
ti. (5.3)

Now

Dδ1,η1u(t) = Dδ1,η1 [FTQδ,ηψ(t) +

⌈δ⌉−1∑
i=0

λi
i!
Dδ1,η1ti]

= FTQ(δ−δ1),η1ψ(t) +

⌈δ⌉−1∑
i=⌈δ1⌉

λi
Γ(i− δ1 + 1)

ti−δ1 , δ1 < ⌈δ⌉− 1,

Dδ2,η2u(t) = Dδ2,η2 [FTQδ,ηψ(t) +

⌈δ⌉−1∑
i=0

λi
i!
Dδ2,η2ti]

= FTQ(δ−δ2)η2ψ(t) +

⌈δ⌉−1∑
i=⌈δ2⌉

λi
Γ(i− δ2 + 1)

ti−δ2 , δ2 < ⌈δ⌉− 1.

Generally we can write it as

Dδm,ηmu(t) = Dδm,ηm [FTQδ,ηψ(t) +

⌈δ⌉−1∑
i=0

λi
i!
Dδm,ηmti]

= FTQ(δ−δm),ηmψ(t) +

⌈δ⌉−1∑
i=⌈δm⌉

λi
Γ(i− δm + 1)

ti−δm , δm < ⌈δ⌉− 1,

(5.4)

where
⌈δ⌉−1∑
i=⌈δm⌉

λi
Γ(i− δm + 1)

ti−δm = GT
mψ(t).
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Now approximating the second term of Eq. (5.4), we get

GT
mψ(t) =

⌈δ⌉−1∑
i=⌈δj⌉

λi
Γ(i− δj + 1)

(
m∑

q=0

( q∑
s=0

(−1)qq!
Γ(s+ δ+ 1)(q− s)!s!

Γ(i− δj +β+ s+ 1)
))

,

δj < ⌈δ⌉− 1, j = 1, 2, . . . ,m. Eq. (5.4) becomes

Dδm,ηmu(t) = FTQ(δ−δm),ηmψ(t) +GT
mψ(t). (5.5)

the term in (5.3) can be evaluated as

⌈δ⌉−1∑
i=0

λi
i!
ti ≈

n∑
p=0

ejL
β
j (t) = R

T
pΨ(t).

so,

u(t) = FTQδ,ηψ(t) + RTpΨ(t), p = 0, 1, . . . ,n. (5.6)

Similarly the sourse term g(t) can be evaluated by the basis of generalized OSLPs as

g(t) ≈
n∑
j=0

bjL
β
j (t) = B

T
j ψ(t), (5.7)

The BT
j can be evaluated by using (3.6). Using Eqs. (5.2), (5.5), (5.6), and (5.7), Eq. (5.1) becomes

FT(1×n+1) + F
T
(1×n+1)

(
Q

(δ−δm,ηm)
(n+1×n+1) +Q

(δ,ηm)
(n+1×n+1)

)
= −GT

(1×n+1) − R
T
(1×n+1) +B

T
(1×n+1). (5.8)

Eq. (5.8) can further be simplified into Sylvester-type matrix equations AX+XB = C, which can be easliy
solved for unknowns FT(1×n+1) by substituting the values of FT(1×n+1) and GT

(1×n+1) in Eq. (5.3), we get
the approximation of the problem given in Eq. (5.1).

6. Examples

Example 6.1. Consider the following FODEs of Bagley-Torvik type associated with the ICs [22–24, 27],

CD
δ,ηu(t) + CD

δ1,η1u(t) + u(t) = H(t), 1 < δ1 < 2, t ∈ [0, 1], u(0) = λ0, u ′(0) = λ1,

for δ = 2, δ1 = 3/2, η = η1 = 1, λ0 = λ1 = 1, and H(t) = 1+ t. The exact solution expresses as u(t) = 1+ t.
By implementing the PNM discussed in Section 4, we have

CD
2u(t) = FTψ(t). (6.1)

Using Eq. (5.3), we can express Eq. (6.1) in the following way

u(t) ≈ FTQ(2)
(3,3)ψ(t) + 1 + t. (6.2)

The expression 1 + t in Eq. (6.2) can be approximated by Eq. (3.7). Table 1 illustrates the absolute error
of Example 6.1 for different values of n after implementing our PNM. It shows that the exact and the
approximate solution matches upto 14 decimal places. The results highlight the efficiency and accuracy
of our PNM.
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Table 1: The absolute error of Example 6.1, using PNM for various values of n.
t n = 5 n = 10 n = 15 n = 20 n = 25
0 4.1925 × 10−12 8.9100 × 10−13 2.7409 × 10−14 6.7951 × 10−14 3.7912 × 10−14

0.2 1.5681 × 10−12 6.994 × 10−14 7.8197 × 10−15 1.4162 × 10−15 1.2183 × 10−14

0.4 1.0990 × 10−14 2.1940 × 10−13 1.0357 × 10−13 6.8015 × 10−14 8.5713 × 10−14

0.6 6.1928 × 10−13 4.1749 × 10−13 3.7444 × 10−13 3.3172 × 10−13 3.34.3 × 10−13

0.8 3.2747 × 10−13 8.4649 × 10−13 9.2585 × 10−13 8.9611 × 10−13 8.8994 × 10−13

1.0 7.9773 × 10−13 1.7314 × 10−12 1.8917 × 10−12 1.8785 × 10−12 1.8737 × 10−12

Table 2: Comparing the results of Example 6.1 based on algorithm execution time(s)
n Execution time (s)

PNM Algorithm [7]
5 10.15 24.08
10 26.17 261.19
15 55.32 1427.78
20 99.62 5467.58

Table 2 presents a comparison of the execution timings for Example 6.1 that uses our PNM and the
technique described in [7]. The investigation examines several values of n. The technique described
in reference [7] applied a hybrid methodology by combining the operational matrix of fractional-order
integrals for generalized OSLPs in RL definition and the Tau method. Table 2 clearly shows that the
execution time data for both techniques exhibit unique characteristics related to performance. When the
value of n is 5, the PNM has an execution time of 10.51 seconds, but the approach described in [7] requires
24.08 seconds. As the value of n grows to 20, the execution time of the PNM method is 99.62 seconds,
whereas the technique mentioned in [7] encounters a more significant rise.

Example 6.2. Consider the following FODEs with the ICs [6],

CD
δ,ηu(t) + CD

δ1,η1u(t) + u(t) = H(t), 0 < δ1 ⩽ 1, t ∈ [0,∞), u(0) = λ0, u ′(0) = λ1,

where δ = 2, δ1 = 1/2, η = η1 = 1, and H(t) = t2 + 2 + 2.6666666667
Γ(0.5) t1.5. The exact solution is expressed as

u(t) = t2. Table 3 shows that as the number of terms n in the generalized SLP increases, the absolute error
decreases significantly, which indicates accuracy and the stability of PNM. In Figure 6 the resemblance
between the approximate and solution is analyzed for fixed η = 1 and 0 < δ1 < 1. Figure 7 illustrates the
error behavior of the proposed method for Example 6.2 by graphing the absolute error against the time
variable t, for different values of n. The error remains low (on the order of 10−12) throughout the interval
[0, 1], and decreases more as n grows, confirming the method’s excellent accuracy and spectrum conver-
gence. The graphic demonstrates the suggested approach’s reliability in capturing solution behavior with
little numerical error.

Table 3: The absolute error of Example 6.2, using PNM at different values of n.
t n = 5 n = 10 n = 15 n = 20 n = 25
0 4.1925 × 10−12 8.9100 × 10−13 2.7409 × 10−14 6.7951 × 10−14 3.7912 × 10−14

0.2 1.5681 × 10−12 6.994 × 10−14 7.8197 × 10−15 1.4162 × 10−15 1.2183 × 10−14

0.4 1.0990 × 10−14 2.1940 × 10−13 1.0357 × 10−13 6.8015 × 10−14 8.5713 × 10−14

0.6 6.1928 × 10−13 4.1749 × 10−13 3.7444 × 10−13 3.3172 × 10−13 3.34.3 × 10−13

0.8 3.2747 × 10−13 8.4649 × 10−13 9.2585 × 10−13 8.9611 × 10−13 8.8994 × 10−13

1.0 7.9773 × 10−13 1.7314 × 10−12 1.8917 × 10−12 1.8785 × 10−12 1.8737 × 10−12
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Figure 5: Graph of the exact and approximate solution of
Example 6.2.
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Figure 6: Graphical representation of the solution curve of
Example 6.2 for the various values of δ1.
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Figure 7: Graphical representation of the error of Example 6.2 for various value of n.

Example 6.3. Consider the following FODEs with the ICs [6]:

CD
δ,ηu(t) + 3u(t) = H(t), 0 < δ1 ⩽ 1, 0 < η ⩽ 1, t ∈ [0,∞), u(0) = λ0, u ′(0) = λ1,

where δ = 3/2, η = 1, and H(t) = 3t3 + 8
Γ(0.5)t

1.5. The exact solution is given as u(t) = t3. Example 6.3
exhibits the accuracy of PNM in solving FODEs. Figure 8 compares the exact and approximate solution
curves. Figure 9 shows the solution curves for several values of the parameter η, the approximate solutions
remain closely aligned with the exact solution which demonstrate the method’s adaptability and accuracy
under changing parameters. Figure 10 shows the solution curves for various values of δ1. Once again,
the approximation agrees with the exact solution, proving the PNM’s stability across different order
and parameter choices. These figures demonstrate the method’s accuracy and applicability in solving
complex FODEs. Table 4 compares the algorithm execution time (in seconds) between the proposed
technique and the algorithm described in [14], as measured for various values of n. The proposed method
uses substantially less CPU time than the algorithm in [14], highlighting the efficiency of the proposed
methodology.
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Figure 8: Graph of the exact and approximate solution of
Example 6.3.
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Figure 9: Graph of the exact and approximate solution for
the various values of η of Example 6.3.
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Figure 10: Graph of the exact and approximate solution for the various values of δ1 of Example 6.3.

Table 4: Comparing the results of Example 6.3 based on Algorithm Execution Time(s), as measured by both the PNM and the
algorithm proposed in [7].

n Approximate solution Execution time (s)
PNM Algorithm [7] PNM Algorithm [7]

3 t3 t3 4.95 7.34
5 t3 t3 6.41 21.16
10 t3 t3 14.39 244.98
13 t3 t3 23.16 759.52
15 t3 t3 28.20 1384.75

Example 6.4. Consider the following FODEs of Bagley-Torvik type associated with the ICs [6]:

CD
δ,ηu(t) + 2CD

δ1,η1u(t) + CD
δ2, η2u(t) + u(t) = H(t), t ∈ [0,∞), u(0) = λ0, u ′(0) = λ1,

where δ = 2, δ1 = 1, δ2 = 1/2, η = η1 = η2 = 1, λ0 = λ1 = 0, and H(t) = t7 + 2048
429

√
π
t6.5 − 14t6 − t2 −

8
3
√
π
t1.5 + 4t− 2. The exact solution is u(t) = t7 − t2. Example 6.4 demonstrates the proposed accuracy

and efficiency in solving FODEs. Figure 11 presents a comparison that how approximate solution closely
matches to the exact one, showcasing the method’s precision. Table 5 shows absolute error levels over time
for different numbers of terms n in the generalized Laguerre polynomial. As the number of terms grows,
the absolute error between exact and approximation answers decreases considerably. This decreasing
errors demonstrate the method’s reliability in solving complex FODEs with a high level of accuracy. In the
Table 6, the accuracy of the proposed method is evaluated using standard error metrics: maximum norm
error (∥NE∥∞), mean error (ME), root mean square error (RMSE), and significant correct digits (SCD),
calculated for different values of n. For each case, the RMSE serves as the reference measure of error, and
assuming nearly uniform point-wise errors, both ME and ∥NE∥∞ are considered approximately equal to
the RMSE. The corresponding SCD values are then computed accordingly. The results demonstrate that
the method maintains a high level of accuracy and numerical precision across different values of n.

Table 5: The absolute error is calculated using our PNM for different values of n of Example 6.4.
t n = 7 n = 10 n = 13
0 1.4142 × 10−8 3.2401 × 10−7 4.2574 × 10−8

0.2 5.8276 × 10−9 9.0934 × 10−8 6.0305 × 10−9

0.4 4.4458 × 10−10 2.1998 × 10−8 6.1579 × 10−9

0.6 2.6813 × 10−9 5.7735 × 10−8 6.1519 × 10−9

0.8 4.1262 × 10−9 4.8470 × 10−8 1.5500 × 10−9

1.0 4.3774 × 10−9 1.7549 × 10−8 3.3151 × 10−9
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Figure 11: Graphical visualization of the exact and approximate solutions for the given example. 6.4.

Table 6: The distribution of errors and precision factor (SCD) in Example 6.4 for different n values.
n ∥NE∥∞ Time (sec) RMSE Time (sec) ME Time (sec) SCD Time (sec)
10 3.2401 × 10−7 (25.2258) 1.2163 × 10−7 (25.2796) 8.2847 × 10−8 (25.3021) 6.4894 (25.1524)
12 3.0264 × 10−8 (33.4243) 1.0784 × 10−8 (33.8622) 6.7468 × 10−9 (42.6438) 7.5191 (33.6689)
14 2.8724 × 10−8 (56.4592) 9.862 × 10−9 (55.4129) 5.9837 × 10−9 (43.8059) 7.5418 (43.9162)

7. Conclusion

We present a numerical algorithm based on the newly developed FOIOM of OSLPs within the RL
framework. The proposed method demonstrates significantly improved accuracy compared to the STM.
To assess its performance, we solve various FODEs and compare the results of our PNM with those ob-
tained using the STM [7]. The comparison highlights that our method achieves accurate results when
compared with the STM. Furthermore, the proposed approach efficiently converts FODEs into Sylvester-
type equations can be solved efficiently using MatLab. This study can be further extended to address
nonlinear FODEs, partial differential equations (PDEs), and boundary value problems (BVPs). For non-
linear FODEs and PDEs, the construction of a new integral operational matrix will be necessary, while
solving BVPs will require the development of new product operational matrix. In addition, extending the
method to BVPs would involve modifications to the formulation to appropriately incorporate boundary
conditions. These extensions could present further challenges, such as increased computational cost and
complexities, which can be explored in future research.

7.1. Limitations of the proposed numerical method
The proposed method, utilizing the FOIOM of OSLPs within the Riemann-Liouville framework,

demonstrates consistent efficacy for linear fractional initial value problems (FIVPs). However, it presents
substantial limitations in terms of applicability, scope, and computational factors.

Limited applicability to nonlinear problems. The current formulation of the method is developed specifically
for linear FODEs. The absence of a generalized framework to construct operational matrices that ef-
fectively manage nonlinear terms restricts its direct application to nonlinear problems. This limitation
hinders the use of the method in more complex real-world systems when non-linearity occurs frequently.

Confined to FIVPs. The method is specifically formulated for FIVPs and is not applicable to BVPs. Ex-
tending it to handle BVPs would require the construction of a product operational matrix, a concept not
explored in this study. As a result, the practical applicability of the method remains confined.

Recommendation. We recommend the proposed method as an effective and accurate approach for solving
linear FIVPs, particularly when high precision is required. To expand its utility, future research should
focus on adapting the method to nonlinear and BVPs by developing suitable product operational matri-
ces and incorporating adaptive solution strategies. Such advancements could significantly broaden the
method’s applicability and impact in the field of FODEs.
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