J. Math. Computer Sci., 41 (2026), 150-182
Online: ISSN 2008-949X

Journal of Mathematics and Computer Science 3

AatiCs ang
o0 (@ o,
%

3\&'

yourna/ of
ouods ¥

Pusiicanons
Journal Homepage: www.isr-publications.com/jmcs

Mathematical modeling and optimal control strategies for | g checkforupdates
COVID-19: insights from initial public interventions in
Thailand

Chairat Modnak®*, Adison Thongtha®, Pattarapan Kumpai®

aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
bEnergy Policy and Planning Office, Ministry of Energy, Bangkok, 10400, Thailand.

SMinistry of Digital Economy and Society (MDES), the Government Complex, Bldg. C, Chaeng Watthana Rd., Laksi, Bangkok,
10210, Thailand.

Abstract

Since 2020, Thailand has been actively combating the COVID-19 pandemic. Initially, the country faced a significant surge
in infections but has since adapted its strategies to manage the virus more effectively. During the fourth wave in 2021, Thailand
categorized its population into eight groups: susceptible individuals, exposed, and infectious individuals, those treated in field
hospitals, individuals receiving ICU care without oxygen support, those in ICU with oxygen support, individuals in critical
condition, recovered individuals, and the deceased. Treatment in field hospitals is considered equivalent to care in standard
hospitals.We aim to gain insight into the dynamics of the disease to better prepare for similar diseases in the future. To achieve
this, we developed a mathematical framework consisting of eight differential equations, grounded in fundamental mathematical
principles. We calculated the reproduction number and analyzed the initial intervention strategies implemented by the Thailand
Public Health Administration. Numerical simulations of the optimal control problem highlight the critical role of preventing
exposed and infectious individuals from infecting the susceptible population in curbing COVID-19 transmission. Additionally,
our optimal control simulation indicates that vaccination policies should aim to inoculate approximately 46 percent (rather that
70 percent) of the population (at a daily rate of 0.2 percent) within the first 230 days of an outbreak to effectively halt disease
transmission. However, this result is based on certain assumptions in the model simulations, and the outbreak was not the first
wave. Therefore, the public health intervention program should be implemented as broadly as possible to cover the population
effectively.

Keywords: Mathematical modeling, Covid-19, infectious disease modeling, optimal control study, COVID-19 Thailand
modeling.
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1. Introduction

Thailand recorded its first COVID-19 case on January 13, 2020, with cases steadily increasing through-
out February and March. In response, Thai public health authorities swiftly implemented intervention
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measures, including social distancing protocols, mandatory mask-wearing mandates, and the closure of
schools. Additionally, infected individuals were hospitalized, while those exposed to the virus were
mandated to undergo a 14-day quarantine period [38].

The initial surge of COVID-19 cases in Thailand was largely linked to an outbreak at a boxing stadium
in Bangkok and various entertainment venues. In response, the government enacted stringent measures,
including nationwide lockdowns, business closures, curfews, and travel restrictions. As the situation
gradually improved after the first wave, restrictions were eased, with authorities shifting their focus
to extensive testing, contact tracing, and case isolation to manage outbreaks effectively. Nonetheless,
sporadic clusters continued to emerge, prompting localized lockdowns and targeted interventions to curb
further spread [38].

Throughout 2020, Thailand recorded relatively fewer COVID-19 cases than many other countries, a
result of swift containment measures such as travel restrictions, mandatory quarantines, and lockdowns.
Despite these efforts, several waves occurred, particularly during the early months and towards the end
of the year, bringing the total case count into the tens of thousands [8].

In 2021, the emergence of the Delta variant triggered Thailand’s fourth wave, beginning in late March.
Daily infections peaked at around 25,000 in mid-September before declining to approximately 2,000 per
day by early January 2022 [10].

The year 2022 marked a significant shift in strategy, as Thailand moved towards reopening and transi-
tioning from a pandemic to an endemic management approach. Although detailed data are unavailable, it
is presumed that case numbers increased compared to 2021 due to the spread of the Omicron variant. As
of May 2024, Thailand had reported a cumulative total of 4,770,149 confirmed cases, with a considerable
proportion likely occurring in 2022 [9]. A notable policy change occurred in September 2022, when the
Emergency Decree related to COVID-19 was lifted, and the disease was reclassified from a “dangerous
communicable disease” to a “communicable disease under surveillance,” aligning its management with
other endemic illnesses [9].

In 2023, the country’s focus shifted towards living with the virus, with fewer restrictions and greater
emphasis on economic recovery. However, by 2024, Thailand began facing a renewed resurgence of
COVID-19 cases. Since March 2024, there has been a sustained rise in hospitalizations, severe cases, and
fatalities. Weekly reports from the Ministry of Public Health indicate a consistent upward trend, with
the most recent data showing 1,672 new admissions and nine fatalities in the past week alone. Among
these, 390 patients were classified as severely ill, and 148 required mechanical ventilation as of April 27.
While there is no evidence suggesting that the current variants cause more severe disease, the escalation is
likely driven by higher transmissibility of circulating strains and reduced adherence to personal protective
measures, particularly during the Songkran festivities [10].

Thailand initiated its COVID-19 vaccination program on February 28, 2021, administering the Coron-
aVac vaccine to individuals aged 18-59, followed by the AstraZeneca vaccine for those aged 60 and above
on March 16, 2021. The Sinopharm vaccine became available to the general population on June 25, 2021,
with the Pfizer vaccine introduced in limited quantities on August 9, 2021, and the Moderna vaccine
on November 1, 2021. From January 2022, the vaccination program was expanded to include booster
doses. By October 2022, COVID-19 was officially reclassified in Thailand as a communicable disease
under surveillance [8].

Between 2021 and 2022, Thailand progressively adapted its COVID-19 management strategies, shifting
towards reopening and learning to coexist with the virus. Treatment protocols evolved to prioritize
home isolation or care in field hospitals for mild cases, reserving hospital beds for severe infections.
Individuals with mild symptoms and no underlying health conditions were encouraged to quarantine at
home under medical guidance. For those requiring closer monitoring or facing difficulties in isolation,
care was provided in field hospitals, often located in repurposed hotels or large tents equipped to deliver
basic medical services. These approaches contributed to a noticeable decline in new infections. Building
on these public health measures, the present study seeks to develop a mathematical model tailored to
Thailand’s specific interventions [8].
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According to the World Health Organization (WHO) [10], global SARS-CoV-2 activity has been ris-
ing since mid-February 2025, with test positivity reaching 11 %-a level last observed in July 2024. The
resurgence is most pronounced in the Eastern Mediterranean, South-East Asia, and Western Pacific re-
gions. Early 2025 also brought a slight shift in variant trends, with a Variant Under Monitoring (VUM)
accounting for 10.7 % of reported sequences by mid-May, echoing patterns from the same period the
previous year. Vaccination remains central to global control efforts, preventing severe disease and death,
particularly among high-risk populations.

Given our emphasis on mathematical modeling with optimal control, this review focuses on the de-
velopment and analysis of epidemic models and their associated control strategies. In 2020, Liu et al. [22]
examined the latent period before infectiousness, proposing two differential equation models-one group-
ing exposed individuals with the infected class, and another introducing a transmission delay-applied to
COVID-19 data from China to estimate parameters such as transmission rate and reproduction number.
Their work highlighted the influence of unreported cases and the importance of public health interven-
tions.

Also in 2020, Zhao and Chen [44] proposed the SUQC model (susceptible, un-quarantined infected,
quarantined infected, confirmed infected) to evaluate the impact of intervention measures in China. While
demonstrating the benefits of quarantine, it did not explore other control options. That year, Mahajan
et al. [24] developed the SIPHERD model (susceptible, exposed, symptomatic, purely asymptomatic,
hospitalized /quarantined, recovered, deceased) to project confirmed cases, active cases, and deaths. They
found that enhanced testing, strict social distancing, and timely lockdowns could significantly reduce
transmission, even without vaccines.

In 2021, Rajput et al. [36] modeled transmission in India across eight population groups, including
vaccinated individuals, undetected infectives, and hospitalized cases. They concluded that prioritizing
vaccination for exposed and undetected infectives-while lowering rates for susceptibles-could sustain
control while reducing costs. That same year, Lu et al. [23] proposed a two-stage epidemic model for
China that integrated dynamic control strategies to minimize costs while maintaining societal function,
proving effective during the second wave.

In 2022, Misra et al. [25] developed a model incorporating hospital bed availability with a time delay
to reflect capacity expansion, emphasizing the critical role of increasing capacity during surges. That year,
Dhar et al. [13] introduced a fractional-order SEVR model, demonstrating that even partial vaccination
can provide delayed but meaningful benefits. By 2023, modeling efforts had expanded to address policy
fluctuation impacts (Vallee et al. [40]), quarantine integration into SEIQRD frameworks (Darti et al.
[11]), and the effects of vaccination stages on outbreak dynamics (Aakash et al. [1]). Additional studies
examined screening and treatment in typhoid fever [17], infective immigration in rabies spread [28], and
equilibrium stability in SEIR-based COVID-19 models [1].

Researches in 2024 further diversified, incorporating stochasticity into deterministic models [5], ana-
lyzing discrete-time epidemic frameworks [15], and studying delayed optimal control interventions [21].
Other work addressed behavioral changes and Allee effects in SEIQRD structures [1], cost-effectiveness
in combined COVID-19 control measures [30], and vector control strategies for dengue fever [27].

In 2025, studies broadened beyond COVID-19, including malnutrition’s influence on tuberculosis [20],
fractional-order rabies models with memory effects [32], optimal control in rabies culling and vaccination
[26], and intervention analysis for Marburg virus [31], norovirus [33], and conjunctivitis [29].

Collectively, these contributions provide essential guidance for constructing our own model of COVID-
19 transmission in Thailand. We begin by collecting and analyzing national case data, then develop a
novel model reflecting local dynamics. We calculate the basic reproduction number, analyze equilibrium
stability, and perform sensitivity analysis to identify key parameters. Optimal control strategies are then
evaluated through simulations comparing no intervention, single measures, and combined approaches
against real-world data. The results inform public health recommendations aimed at supporting more
effective COVID-19 policies in Thailand.
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2. Mathematical model

We began by analyzing COVID-19 data from the Thai Public Health Administration for 2021, which
served as the foundation for constructing our mathematical model. The population is divided into eight
compartments: susceptible individuals (S); exposed and infectious individuals (E); infectious individuals
receiving treatment in field hospitals (I;); those treated in the ICU without oxygen support (I»); patients
in the ICU with oxygen support (I3); individuals in critical condition (I4); recovered individuals (R); and
deceased individuals (D).

Susceptible individuals become infected through close contact with infectious individuals from vari-
ous classes, with transmission rates denoted as (3; (from those in field hospitals), 3, (from ICU patients
without oxygen), 33 (from ICU patients with oxygen), and 34 (from exposed infectious individuals). The
natural birth and death rate is represented by n, while A denotes the recruitment rate of the popula-
tion. Exposed individuals progress to symptomatic infection at rates a4, &y, a3, and oy, corresponding
to the different infectious classes. COVID-19-related death rates are given by d;, d, d3, and d4, whereas
recovery rates are denoted by y; through vs.

Our findings suggest that some exposed individuals are capable of transmitting the virus, and infected
patients may experience varying degrees of symptom severity. Accordingly, we assume that infectious
patients treated in regular hospitals can progress to more severe stages at rates hj, hy, and hsz. Similarly,
ICU patients without oxygen support may deteriorate at rates A; and A, while those receiving oxygen in
the ICU may advance to critical condition at rate e.

The model also incorporates prevention and treatment interventions. Specifically, ¢; represents the
vaccination rate of susceptible individuals, while ¢, corresponds to control measures for exposed individ-
uals, including quarantine, social distancing, mask usage, and basic healthcare provision. The parameters
d3, ¢4, and Ps5 denote treatment rates for infected patients in field hospitals, ICU without oxygen, and
ICU with oxygen support, respectively.
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Figure 1: Diagram on the dynamical transmission of COVID-19.
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As a result, we obtain the following dynamical system (see Figure 1 for its diagram):

O = A (Bili+ Bl + B + B4E) S — (wt )5, @)
(ciTE = (B1l1 + B2l2 + B3ls + B4E) S — (1 + o2 + o3 + ota + 1 +v5 + P2 E, (2.2)
%:oqE—(u—i—dl—i—vl +hy +hy+hs + ¢3)], (2.3)
%:azEJrhlIl—(qudzﬂszr}\l + A2+ da)1a, (2.4)
% = ogE+holi + MDh — (n+ dz +v3+ e+ d5)15, (2.5)
% = oqE +h3ly +Aolp + elz — (n+ dg +v4) 1y, (2.6)
% = ¢1S+ (v1+ d3)1 + (v2 + da) I + (v3 + ds)I3 + vals + (vs + d2)E — 1R, (2.7)
dD

qp = Gl + dol + sl + duly, (2.8)

with the initial conditions S(0) > 0, E(0) > 0, I1(0) > 0, I,(0) > 0, I3(0) > 0, I4(0) > 0, R(0) > 0, and
D(0) > 0. First, we determine the boundary of the system of equations (2.1)-(2.8). Consider,
AN_dS dE dL  db dL dL dR, dD
dt dt dt dt dt dt dt dt dt
=A- (Blh + Bala + B3l + [34E)5 —(p+d1)S+ <f3111 + Balz + B3l + B4E)5
—(gt+optoazt+ost+pu+vys+d)E+ogE—(n+di+vi+h+ha+hs+d3)ly
+oE+hh —(u+dy+v2o+AM+A+dg)lo + agE+holi + AL — (u+ds+vs+ e+ dps)ls
+ b +haly + Al +els — (4 da +va)la + §1S + (v1 + d3) i + (v2 + da) Lo + (v3 + ds) I3 +vals
+ (v5+ ¢2)E—uR+ dqI1 + doIr + dslz + dyly
=A+uD—-pw(S+E+L+Lh+I3+14+R+D)=A+uD—puN.

It gives that

A
limsup N(t) < m + uM.

t—o0

Thus, the considered region for this model is
8 A
0=1(SEI LI 1RD) €RS :0<S+E+T+h+L+L+R+D < LM

All solutions of this model are bounded and enter the region () and M is the total number of death
individuals due to COVID-19 infections. Hence, Q is a positively invariant. That is every solution of this

model remains there for all t > 0.
The next section presents an equilibrium analysis to establish the existence of equilibrium points.

3. Equilibrium analysis

Next we find the disease free equilibrium point(DFE) by setting E, 11, I, I3, I, and D in the equations
equal to zero and solve for S and R. Thus from equation (2.1), we have
A
A+ by
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and from equation (2.7), we have
;A
(et d1)
Therefore, the DFE for the system is denoted by

A A
e=|———00000 ———,0).
° <H+¢1 r(p—+ b1) )

The following subsection derives the reproduction number of the model.

3.1. Basic reproduction number (Ro)

Next, we will find the basic reproduction number by using the next-generation method [41] (for all
details, please see Appendix B):

/\(34 lo 03 0s + 1 B1 €3 0y + Bo (1 + 0oly) €y + Ba(oalals + oy hols + ohyd + 0627\1‘32)>

Ro =

(L+ 1) b bl ’
where
=01+ + 03+ 0g+ 1L+ Vs5+ by, f=u+di+vi+h +hy+hs+ s,
3=+ doy+v2+A + A+ by, Uy =pnu+ds+v3+e+ bs.

Consequently, based on the work in the paper proposed by Van Den Driessche and Watmough[41], we
immediately have the following result.

Theorem 3.1. The disease-free equilibrium of the model is locally asymptotically stable if Ry < 1, and unstable if
Rp > 1.

In the next section, we use sensitivity analysis to identify the parameters that most strongly influence
the increase in the reproduction number.

4. Sensitivity analysis

In this section, we will conduct a sensitivity analysis of Ry with respect to the parameters, which will
be evaluated using the baseline parameter values provided in Table 2. We use the normalized forward
sensitivity index for this purpose, specifically focusing on Ry, which depends on the differentiability of a
parameter 1. The normalized forward sensitivity index is defined as YEO = %—f\“ X Rlo (refer to [7]). Table 1
presents the sensitivity indices of Ry concerning each parameter.

As depicted in Table 1, 1, 32, B3, B4, and A have a positive sensitivity index, indicating that an increase
in these parameters leads to an increase in the value of Ry. Conversely, oy, @z, a3, oa, hy, hp, di, do, d3,
h3, W, € Y1, Y2, Y3, V5,1, P2, $3, ds, d5, A1, and A, exhibit a negative sensitivity index, indicating that
an increase in their values leads to a decrease in the basic reproduction number. We can observe that the
vaccination rate, ¢1, exhibits the most negative sensitivity. Specifically, TdR)Ul = —0.9223, indicating that a
10% increase in the parameter ¢; results in a 9.223% reduction in the value of Ry

To effectively reduce the outbreak, emphasis should be placed on optimal control strategies involving
vaccination (¢1), treatment rates for infected individuals in field hospitals (¢,), regular hospitals (¢3),
ICUs without oxygen tubes (¢4), and ICUs with oxygen tubes (¢s). In particular, ¢; for susceptible
individuals and ¢, for exposed and infectious individuals play a key role in lowering infection rates. Since
the sensitivity indices of most parameters are relatively small, we present bar plots only for &, &y, &3, &4
and 1, B2, B3, B4, as shown in Figures 2 and 3, respectively. The analysis shows that 34 and A have the
largest positive impact; however, since A represents the recruitment rate, our focus will be on reducing
infections by targeting the transmission rates (31, 32, 33, 34 instead.
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Figure 3: Sensitivity indices of parameters in the basic repro-
duction number. The values of 31, 37, and p3 are extremely
small-close to zero-and therefore do not appear in the graph.

Figure 2: Sensitivity indices of parameters in the basic re-
production number

Table 1: Numerical values of sensitivity indices of Ry.
Parameter Sensitivity index Parameter Sensitivity index

o0 —0.0699 m —0.0780
o —0.0066 A +1.0000
o3 —0.0663 € —5.6213 x 10712
o —0.0663 vi —44112 x 10°°
d; —3.0843 x 10~° Y2 —1.9572 x 107
dy —1.3980 x 10~? Y3 —4.6825 x 1078
ds —5.7017 x 1010 vs —0.1004
h —1.2991 x 1078 d1 —0.9223
hy —8.1810 x 1010 o —0.6902
hs —8.1920 x 1012 $3 —3.2768 x 107
B1 +3.7200 x 107> o —9.7859 x 1012
B2 +1.9822 x 1077 ¢s —5.6213 x 10712
B3 +4.7431 x 108 A —9.5510 x 1010
B4 +1 A2 —9.7859 x 10— 11

In the next section, we verify the existence of an equilibrium point and examine its stability.

5. Global stability of the disease-free equilibrium

Next, we examine the global asymptotic stability of the DFE. To that end we state the following result
introduced by Castillo-Chavez et al. [6].

Lemma 5.1. Consider a model system written in the form

dXi
M F
dt

%

X1, X5),
(X1, X2) o

= G(Xll XZ)/ G(Xll 0) = 0/

where X1 € R™ denotes (its components) the number of uninfected individuals and X, € R™ denotes (its com-
ponents) the number of infected individuals including latent, infectious, etc; Xo = (XJ) denotes the disease-free
equilibrium of the system. Also assume the following conditions.

(H1) For % = F(X7,0), X7 is globally asymptotically stable.
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(H2) G(Xq,X2) = AXy — G(X1,X2), G(X1,X2) > 0 for (X1,X2) € Q, where the Jacobian A = g—g(x;ﬂ,m is
an M-matrix (the off diagonal elements of A are non-negative) and Q) is the region where the model makes
biological sense.

Then the DFE Xo = (X7, 0) is globally asymptotically stable provided that Ry < 1.
Theorem 5.2. The disease-free equilibrium of the model is globally asymptotic stable when Ry < 1.
Proof. We adopt the notations in Lemma 5.1, and verify the conditions (H1) and (H2). In our ODE system,

X1=(S,R), Xo =(E,It,I, 13,14 D) and X] = (ﬁ, u(ﬁir/zn))' Now when X; = 0, we have

Xm[/\—(qucbl)S]
dt $1S—puR '

As for S, we have from the above that % = A—(u+¢1)S, and thus it gives S(t) = A _ 4 Cre (rtd1)t for

Htdg
arbitrary constant value of Cy. Similarly with the equation 9% + pR = ¢S, by using the same technique,
we then have R(t) = u(ﬁiﬁn) + Coe Ht for djlr/‘tiitrary constant value of Cs. R on
Clearly, S(t) — and R(t) — ;, as t — oco. Thus X¥ = , L is globall
50 ! ATy ! (u+d>1 u(u+¢1)) vy

asymptotically stable. Next consider

([5111 + B2l + B3Iz + [?)4E>S —eE

O(lE — 6211
% — xE+hil; —e3lp
dt o3E +holy + A1) —eqls !

o E+haly + A + el —esly
dili + dolp +d3lz + dgly

wheree; =+ +os+os+u+vys+do, e =p+di+vyi+hi+hry+hs+ds, es=pn+do+v2+A1+
AN+ by, es =p+d3+v3+e+ bds, es = p+ dg + v4, and at the equilibrium point of the subsystem X;, we
have

—e1+P4S P1S B2S B3S 0 0

X1 —e) 0 0 0 0

0G o hy —es 0 0 0

aX2 - 3 hy M —ey 0 0

X4 h3 7\2 3 —e5 0

0 i d d3 dy O

Now, by the Lemma 5.1,

et uﬁﬁ& Hﬁ'&gl uﬁﬁ& Hﬁjgl 0 0
X1 —en 0 0 0 0
E(XT,O) — (0% h1 —e3 0 0 0
aXZ X3 hz }\1 —ey 0 0
x4 h3 7\2 £ —e5 0
0 d dy d3  dy 0

Now from (H2), we need to show that G(X;, X,) satisfies the equation
G(X1,X2) = AXy — G(Xy,X2) ,
and G(Xq,Xz) has to be greater than or equal to zero. Note that

G(X1,X2) = AXp — G(X1, Xa),
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[ —e Hﬁﬁgl Hﬁ‘ﬁgl Hﬁfgl ff$1 0 07T7E]
0 4] —en 0 0 0 Il
. (0.5 h.l —e3 0 0 0 I2
N X3 hz ?\1 —ey 0 0 13
X4 h3 7\2 € —e€s5 0 I4
L 0 d; d, d; d4 0] LD
(3111 + B2z + B3ls + B4E>S —ek <f3111 + B2la + Bslz + B4E> (uvi\cbl —=S
(X]E — 6211

O(2E+h111 —6312 —
o3E +holy + A1 —eqls
o4 B4+ hgly + Al 4+ elz —e5ly
dili + dolr + dslz + dqaly

S OO OO

)

given that S < ﬁ, where X; and X; are in Q). Hence it is clearly seen that G(Xq,X2) = 0. Therefore, by

Lemma 5.1 the DFE Xo = (X7, 0) is globally asymptotically stable.

6. The endemic equilibrium point and stability analysis

O

We first investigate the existence of the positive endemic equilibrium point, denoted by ¢* = (S*,E*, I},

I5, 13,13, R*). This endemic equilibrium is determined by the following equations:

0=A~- (Bllf + B2ly + Bslz + B4E*>5* — (k+$1)S7,

0= ([511? + BQI; + B3I§ + B4E*>S* — (g + o+ oz +og+p1+7vs+ do)EF,
0=oqE*—(u+di+v1+h+hy+hs+ d3)l7,

0= " + I —(u+da+v2+ A+ A+ da)I5,

0=ogE* + ] + MI; — (n+d3+v3+e+ bs)3,

0 = oqBE* +half +Ao15 + elf — (n+dg +va)I,

0= 18" + (v1 + $3)I] + (v2 + da) 15 + (v3 + P5)15 +vali + (v5 + d2)E" — uR™.

From equations (6.3) and (6.4), we obtain

* o E*
I = ,
1 L
and
« (ol +hioq)E"
Iz == ’
bl

respectively. Next we consider equations (6.5) and (6.6), we get

(x3lalz + orholz +Aq(oply +hyoy ) ) EX

I =
3 Llzly

and

(oqlalzly + aphslgly + Az (0oly + xphy )y + (aglols + oiphols + Ap (ool +hyop)))E*

I =
4 blzlyls ’

respectively. Substituting 17, I7, I3, and I} into equation (6.7), we obtain

B 1
ulalzlyls

*

((v1+ d3)x1lslals + (v2 + da) (o2lo + arhy ) lyls + (v3 + d5) (azlals

6.1)

6.9)

(6.10)
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+ orhalz + A (oply + hyo)) s + va(aalalaly + aghalaly + Ax(aoly + orhy)ly

+ (a3lalz + arhals + A (xoly +hyoq)) + (vs5 + $s5)lolalals) ) E™ + dqlalslalsS™|.

From (6.8), (6.9), and (6.10), we have

I =MiE*, I =MyE", I3 =Mt (6.11)
with M; = %,Mz = %, and M3 = (“31213+°‘1h21ég{i(O‘zlﬁhl“l)). For E* # 0, substituting
equations (6.11) into equation (6.1), we obtain that

A
§* = (6.12)

(B1M1 + BaMa + B3Msz + B4)E* + 1+ b1
Furthermore, substituting equations (6.11) into equation (6.2), we have

« L
> = B1Mi + B2Ma + B3sMs + B4’ (619
Substituting (6.12) into (6.13) for E = E*, we get g1(E) = g2(E), where
A L
(B + B2Ma  BaMs ¢ BaJE it b1’ P20 T BiMy+ BaMy + BaMy + Ba
Clearly, both g; and g, are differentiable functions for E > 0. Taking the derivative of g; and g, yields the
following:

g1(E) =

—A(B1M1 + BaM2 + B3M3 + B4)
((B1M1+ BaMa + B3Mz + B4)E+ pu+ d1)?

92(E) =0, gq(E) = < 0.

Therefore, on the interval [0,00], g1(E) is a decreasing function while g,(E) remains constant. We can
easily observe that if Ry > 1, then g1(0) > g»(0),which implies that there is a unique endemic equilibrium
at E = E*. However, if Ry < 1, then g1(0) > g2(0), and there is no endemic equilibrium. This result is
summarized below.

Theorem 6.1. When Ry > 1, there exists a unique endemic equilibrium of the system (2.1)-(2.7).

6.1. Local stability of the endemic equilibrium point

Theorem 6.2. The endemic equilibrium point (e*) is stable if it satisfies the Routh-Hurwitz criteria, where I7 > 1
wheni=1,2,3.

Proof. One can reduce the system (2.1)-(2.7) to a six-dimensional system by setting R = N—S —E —1I; —
I, — Iz — I4, we exclude D here since it does not affects other states, resulting in the Jacobian matrix of the
endemic equilibrium point, €*, being

[—(Ar+u+d)  —BsS* —P1 —P2 —P3z O
A1 BaS* =1l P11 B2 Pz O
*\ 0 X1 —12 0 0 0
Jle7) = 0 X h Lz 0 0]’
0 o3 hy A1 —ly 0
i 0 o hs A e —ls]

where A1 = 117 + 215 + B3I + B4E*. The eigenvalues of J(e*) are calculated using det(J(e*) —AI) =0,
and we obtain that

(=15 —A) (A’ + agA* + a3 + asA? + agh 4 a5) =0,
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where

a=lL+bL+1lz+A1+u+ b1 —PBsST,
a=LL+U+Lls++LL+ L +AB+FALFA L+ (+Pp) (1 + 1+ 13— B4aST) — Bsas
— B4S*lg — Baoa — B4S™ 3 — B4S™ 12 — o1 B,
a; = Libl + Lkl + L +LbL + AL +FA L +A L+ AL+ ALl — Bsogls — Bz hy
— Baasly — BacoAr — PBaools — B4STl3ls — B4S Lls — i B1ls — Paohy — Booly — R4S 1;
—Broals + (Lilg + Uls + Lls + Ll — Baoz — B4S™ly — Paoa — B4S™ 13 — B4S™ o — a1 B1) (1w + d1),
ag = hblly + Athlly + A1l + Alibly + Al s — Bz hals — Baaslals — BaxihiAr — BaoalaAg
— Baoahily — Baocololy — B4S™lalsly — g Brlaly + (1 + d1) (Lilsly + Lalsly + Liloly + Lilols — Baasls
— Bazohy — Baozly — BacoAr — Baozls — B4Sl3ly — B4S lals — o1 B1ly
— B2orhy — Baoaly — B4S* o1y — 1 B113),
as = A1l ly + (Llalaly — Baxrhols — Baaslals — BaarhiAdr — Bzl
— Baoahyly — Baoololy — B4S™ 2 laly — Brovlaly) (1 + d1).
Therefore, the first eigenvalue is —15, which is negative. Next, we consider the polynomial equation
A+ ai At + apA® + agA? + ayA+as = 0. According to the Routh-Hurwitz criterion, the endemic equilibrium
point is locally asymptotically stable if:
(1) a3 >0,1=1,2,3,4,5;
(ii) ajapasz > a% + a%a4; and

iii) (ajaq — as)(ajaraz — a% — a?
(iii) ( )( 3

2a4) > as(ajap —az)? + ara.
For details on all criteria, please refer to Appendix A. O
6.2. Global stability of the endemic equilibrium

In this section, we will also establish the global stability of the endemic equilibrium of system (2.1)-
(2.7) by using a Lyapunov function.

Theorem 6.3. The unique endemic equilibrium point (€*) of system (2.1)-(2.7) is globally asymptotically stable
when Ry > 1.

Proof. The system represented by equations (2.1)-(2.5) can be transformed into the following form:

S (A e (o) ar (2 o) e (B 1)) e (E
o2 (5 0) o (2 ) (1) (20w (£1))

dE _ BiI;S (11515 _1>+[32 ;S <125E 1) Bal3 <I3SE 1>+[34ES* (s_1>’

dt AN B \LS'E Er \LS'E S
dill . (XlE*Il EI;< 1

at I \EL ’

dh _ woF'L (EL bk (Ll

dt 5 E*Ip I I

dlz _ ozE*1; [ EI} 1) . h Iz (1115 ) 4 ML (LI )

dt I \EL I \LL Ik \Ll

Let us define the Lyapunov function as follows:

Le(s—s' —s"In> )+ (E—F —E'ln = ) Ny (L= —Ein L
S E* I;
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I I
+N, <12—1;—1;1n;’;> +N; <I3—1§—1§1ni>,
IZ I3
where
Np = 618*11‘ + N2h111< + Ng;hzli< N, = BZS*I; + N37\11§ Ns — BBS*I§ ‘
o E* ’ b +h Iy ’ asb* + ol + A1

Next, the derivative of L with respect to time is calculated:
dL S* A (S* I I, I E
(12 1) =g (L —1) =B (2 1) =B (2 —1) —paE (= —1
i S)HS*(s ) B“(H‘ ) B“(I; ) B”(I; BB
* [}S*E * I*S*E *
(1 E B1ly LSE" +f522 LSE"
E B \I;S'E Er \ISE
Iy * EIF By * EL; ML (LI5
+N1 = (XlE Il 1 _1 +N2 2 OCZE 12 2 1)+ 11112 12_1
I . \E I, I \ED I \IL
I3 E*I; [/ EI3 h iz (1113 MG (I3
+N3 3 X3 3 3_1+213 13_1+123 23_1 ’
I ; \El, o \Il . \GL

s s o (S SKE oo (S SLE* (S SLE
“Af2-2-2 (- (- (-
A (2 s S*) ThSTh (S* S*ITE) TS (S* 5*1;E> TS <5* S*I;E)

EL* ELX LIz EL3
+Njoy E* (1— 1 )—i—NzoczE* (1— 2 ) +Nohy I (1— : e) + NzozE” (1— E*f )
3

2 B, I

LIz LI LIz
FNghoI (1= 22 ) N3N TS (1— =3 ) 4 NaALE (1— 22 ).

I15 Irls 115

After substituting Ny, Ny, and N3 into g—lt‘ and performing some algebraic manipulations, we obtain

dL S S st S 0 E*BoS*IE S*  EIf  SLE*
A2 22 *1 ) (24 2 )42 2 (32 2
dt ( 5 S*> + (B1S™h x+B25713) ( st 5*> E* + il S B, SGE
MIfBS'ly (, S* EIf Ll ShE! B3S*I5oaE* _§*  E  SLE*
oE* + hy I} S B L S*GE) T ogEf+holf + AL S El; S*GE
BsS" I (0aE" +hol}) ) S S B3S*Iihyl} s LI E  SLE*
ozB* +holf + A 15 S S* ogE* +hoIlf + M5 S Iz E*L S*I;E
S*Ixh,I* M1 hy EI2 El: I
B3STITho[] 113 CPELT | pr— 2Bl oy e TuliD
ogE* +holf + M5 nE* + Iy E*y I, I,
g bl B3SLEA I3 B3SIE ML
27 aGE* ol + ML E(ogE* + holf + A 15)
S/\(Z—S*—S*>+(6ls Il*+ﬁ25 12+B3S 13) <_2+S+S*>

oE* PS5 B S B EL; B SI,E* h I3 B2S*I5 i S B EI} B ﬂ B SI,E*
nE* +hIf S B, S*IJE mnE* +hIf

B3S*I3o3E" B S B EL3 B SI3E*
oasE* +holf + M5 S E*I3 S*I;E
B3S*I3hyly (4 s* LIy EI SI3E*>

oE* + i + M 7 S I B S*IIE

ﬁ3SI§ (XzE*)\lI; 4_ EI; . g - E* - 173
0gE* + Myl + M TS | oE + L B, Gl; E I
M IEA I (5_ Bl LI LI E* 13> ]

oE* +hy It B*L L, Lz E I
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From the equation (6.1), we can see that
A= ([511? + BZI; + 63I§ + B4E*>S* +(n+ d)l)S*.

Therefore, we obtain that

dL S S\ aErBStI $*  EI}  SLE*

& < ((BaE s ) (222 ) R2EF2 (g 0 Fa

at ((B‘* et ) < S S*) T RE S EL, SGE
MIfBoS'ly (, S* ELl LI ShE' BsSLowE" (. S* EL  SLE'
E* + I S EL L, STE) wE ol MG S B, S'IE

BsS'Iihali  (, §* LI Elj  SLE"
oE* + holi + M TG S L, EBL  SILE
4 [5351;; (XzE*)\l I’Zk 4 EI; IQIE;: E* 13
ogE* + thT + A1 I; o E* 4+ hy IT E*I I; I3 E I;
]’L1I>1k)\11§ 5_ F_Iik B 111; B I2I§ E* I3
oE* +hy IT E*I4 Iik I, I; I3 E I; '

Thus, by applying the arithmetic-geometric mean inequality, we obtain 4= < 0. When Ry > 1, we have
4L < 0. The equality 4- = O holds ifand only if S = S*, E=E*, 1 = I}, L = I3, 3 = I}, I, = I,
and R = R*. According to LaSalle’s invariance principle [19], the endemic equilibrium €* is globally

asymptotically stable when Ry > 1. 0

7. Optimal control study

Our initial model has already integrated the initial measures implemented by the Thailand Public
Health Administration, which we have analyzed using available data. Conducting an optimal control
study is valuable for exploring intervention policies aimed at achieving specific objectives, whether it
be minimizing or maximizing the problem of interest. This approach serves as a useful tool for future
reference, particularly in the event of similar historic occurrences. However, in our initial model, the pa-
rameters for intervention measures are estimated as constants, remaining unchanged over time. This lack
of temporal variation could potentially lead to an overemphasis on certain aspects in real-world scenarios.
In this section, our focus centers on determining the optimal implementation of control strategies encom-
passing the vaccination rate of susceptible individuals (u(t)), control measures such as wearing masks,
home isolation, social distancing, and providing healthcare for exposed and infectious individuals (u,(t)),
treatment rates for infected individuals in field hospitals (u3(t)), treatment rates for infected individuals
in ICU without oxygen tubes (u4(t)), and treatment rates for infected individuals in ICU with oxygen
tubes (us(t)). These strategies aim to minimize the total number of infectious individuals while simulta-
neously minimizing associated control costs. We adjust model (2.1)-(2.7) by integrating time-dependent
control variables ¢; = u;(t), where i ranges from 1 to 5. Thus, the COVID-19 model (2.1)-(2.7) with
time-dependent controls (measured in days) is expressed as follows:

8 = A~ (Bili +Bala + B3l + BE)S — (w+wi (1)S, 7.1)
%5 = (5111 + B2l + B3Iz + [34E)S — (o1 + &g + o3 + otg + L +y5 + Uz (1)), (7.2)
%Itl:oqE—(u—i—dl +v14h1 + hy + hg + us (1), (7.3)
42 E Tl — (0 da 2+ M A+ wa(0)D, (7.4)

dt
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dl
dffzfxaEJrhzh +AMIp —(n+d3s+v3+e+us(t))ls, (7.5)
dl
d: = o4 B+ haly + Aol + ez — (n+ dg +v4) 1y, (7.6)
dR
prie wi(t)S + (v1 +us(t))l + (v2 +ua(t)) 2 + (va +us(t)) I3 + vals + (v5 + ua(t))E — uR. (7.7)

We consider the system over a time interval [0, T]. The functions u;(t), u2(t), usz(t), us(t), and us(t) are
assumed to be at least Lebesgue measurable on [0, T]. We now introduce the following objective functional:

T

J(ui, uy, uz, up,us) = minJ E4+L+L+ I3+ 144+ ciu(t)S + coup(t)E + caug(t)h
0

+cqug(t) Iz + csus(t) 15 + ; (c6ui(t) + cru3(t) + csuj(t) + couj(t) + croud(t))] dt,

where, c; (where i = 1,2,3,4,5) represents the respective positive balancing constants, while the terms
c6u%(t), C7u%(t), csug(t), 09uﬁ( ), and c10u5( ) denote the costs associated with vaccination control, treat-
ment of infected people in field hospitals, treatment of infected people in regular hospitals, treatment of
infected people in ICU without an oxygen tube, and treatment of infected people in ICU with an oxygen
tube, respectively. This objective function aims to minimize the total number of exposed, infectious, and
other infected individuals while keeping the intervention costs as low as possible. The Hamiltonian (H)
for the objective functional ] is derived by applying Pontryagin’s Minimum Principle, as described in [35].

It is given by
H=E+L+L+I3+ 14+ crui(t)S+ coup(t)E + cauz(t)Ih + cauq(t)In
+csus(t)Is + ;
<f3111 + B2lo + Bals + B4E> (H+u1(t))3]

+Ae K 111 + B2l + B3Iz + I34E) — (1 +op+o3+ o+ un+7vys +u2(t))E}
[
[
[
[

(c6ui(t) + cu3(t) + csuj(t) + couj(t) + croud(t)))

+ A, [ E—(p+dy +v1 +hy +ho 4+ hg +ug(t)) 4]

+ A, [ooE +hly — (m+da +v2 + A+ A +ug(t))Io]

+Ar, [ogE +holy + M1 — (n+d3 +v3 + € +us(t))13]

+Ar, [ogE +haly + A0 4 eIz — (w+ dg +v4) 14

+Ar W (H)S + (v1 +us(t)) 1 + (v2 +wa(t)) 2 + (v3 +us(t)) I3 +vals + (v5 + uz(t))E — uR].

Given an optimal control uj(t), uj(t), uz(t), u;(t), and uz(t), there exist adjoint functions, As, Ag, Ay,
A1, A1, A1, and Ag, corresponding to the states S, E, Iy, Iy, I3, I4, and R, respectively, that satisfy:

% = —% =— :61111(‘&) +As(—(B111 + Balp + Bals + B4E) — p—us (1))
+Ae(B1lr 4+ B2la + Bals + B4E) + Arwy (t)} ,

d;\—f =—2—? :—:1+czuz(t)+>\s(—(545)+AE([543_(“1+a2+a3+“4+u+y5)
—W(t)) + A 1 + A 00 + Ao + Ao + AR (Vs +u2(t))],

d;\,il = SE —|1+caus(t) + AeB1S + A, (—(n+di +v1 +hy + o+ hg) —uz(t)

+A,h1 +Aho + A hg +Ar(yv1 + Ua(t))] ,
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dA; oH [

dt2 =T, 1+ cquy(t) + A (—(p+d2 +v2 + A1+ A2) —ug(t)) + A A +7\I4?\2+7\R(V2+u4(t))}
d\,  oH

it oL 1+csus(t) + A, (—(k+ds+v3+e€)—us(t)) + A e + Ar(yz +us(t)) |,

d\, oH [

i - oL ——_1+7\14(—(H+ ds +va)) + ARVa|,

g OH

AL S L

R m]

With the transversality conditions, As(T) = 0, Ag(T) =0, A1, (T) =0, Ar,(T) =0, Ar,(T) =0, A, (T) =0,
and Ag(T) = 0. The characterizations of the optimal controls u;(t) for i =1,2,3,4,5 are then based on the
conditions:

oH

=0, wherei=1,2,3,4,5,
aui

subject to the constraints 0 < ui(t) < Uimax, for i = 1,2,3,4,5. Moreover, the optimal controls are
characterized by the following optimality conditions:

*

Uy (t) = max{O, min{ui (t)/ ui max}}r

where
AsS —ARS — 1S AeE—ARE —coE A, I1 —ArI; — 3l
w(t) = S2EE Iy = ST (g = S
Ce Cy Cs
walt) = Al —7\R12—C412’ us(t) = 7\1313—7\1213—6513'

Co €10

8. Numerical results

In late 2020, Thailand began its vaccine distribution policy, initially focusing on a limited segment
of the population. By around October 2021, the country expanded its vaccination efforts to encompass
broader segments of society, alongside implementing additional strategies such as home isolation, social
distancing, and mask-wearing. During the fourth wave of infections, nearly half of the population received
their first vaccine dose [10]. However, the successful control of the disease in Thailand may have been
attributed to a combination of various strategies. In this simulation, we aim to investigate these strategies
by considering the initial intervention policies implemented by Thailand.

Initially, during the second and third waves of infections (February 2021-July 2021), Thailand vacci-
nated only about 2-5 percent of the population, with no vaccines available during the first wave. By the
third wave, the vaccination rate increased to approximately 30 percent of the population, albeit progress-
ing slowly due to limited vaccine availability. During the fourth wave, Thailand ramped up its vaccination
efforts, vaccinating around 15 percent of the population by mid-July and reaching approximately 70 per-
cent by the end of December 2021. On average, Thailand administered vaccines at a rate of 0.4 percent of
the population daily during this period. However, for the entire duration of the fourth wave, the average
daily vaccination rate should ideally range between 0.05 to 0.4 percent of the population. Therefore, the
initial vaccination rate (¢) for Thailand during this period is estimated to be approximately 0.05 to 0.4
percent daily [8].

During the fourth wave, individuals who were exposed or infectious were required to self-isolate.
Thailand also faced shortages of essential medical supplies, masks, and basic healthcare for COVID-19
patients. Consequently, the estimation of the availability of these measures (¢,) ranged between 10 to
20 percent. Thailand established "field hospitals" to offer temporary care for infectious individuals with
mild to moderate symptoms, overseen by regular hospitals. The control measures for this group were
estimated to range between 40 to 60 percent, considering the surveillance and treatment provided. As the
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number of individuals in intensive care units (ICUs) was relatively small and had minimal impact on the
reproduction number, the control rates for this aspect were relatively low. The values of other parameters
are listed in Table 2.

Table 2: Parameter values.

Symbol Value Reference Symbol Value Reference
N 71800000 [10] Iy 26 [9]
hy 0.000168 [14] dy 3.765x 10>  Estimated
hy 0.00001 Assumed d, 0.0014286 Assumed
hs 0.0000001 Assumed ds 0.0010143 [39]
M 0.001 Assumed dy 0.0001143 Assumed
A2 0.0001 Assumed Y1 [0.00284 — 0.2] [14]
€ 0.00001 Assumed ) [0.0075 —0.2] Estimated
o1 0.01267 Estimated Y3 [0.0026 — 0.0833] Estimated
o 0.0012—-0.1 Estimated Ya 0.001 Estimated
o3 0.0120—0.1  Assumed Y5 0.01819 [14]
0l 0.0120 Assumed b1 [0.0005 —0.004] Estimated
B1 5.571 x 10712  Estimated o) 0.125 Estimated
B2 1.3928 x 10713 Estimated b3 0.4 Estimated
B3 1.3928 x 10715 Assumed [N 0.00001 Assumed
Ba 41783 x 10~° Estimated bs 0.00001 Assumed
A mmel oy i 4]

Please note that the infection rates listed in Table 2 are estimated based on the curve fitting technique
using data from Thailand. To estimate (1, 2, B3, B4, Y1,Y2,Y3 Y4, and ys, we used the curve fitting
technique by using the Trust Region Reflective (TRF) method for the bound parameters. The calculation
yielded an RMSE of 2,487.1732 cases between the real data and the model. The model produced a root
mean square error (RMSE) of 2,487.1732 cases when compared with the observed data. Given a total
susceptible population of 71,800,000 individuals, this corresponds to a relative error of approximately
0.0035%. Although the absolute error appears large, it is negligible when expressed as a proportion of the
population, indicating that the model provides a strong fit to the observed data at the population scale.
Figure 4 shows the real data and the fitted curve of our model. This fit gives the parameters listed in Table
2. Additionally, we have compared these values with those from other research papers, finding that they
are calculated similarly and yield comparable results. For example, while the average recovery time for
infected individuals is typically 4 days, during this wave of the outbreak in Thailand, it has increased to an
average of 6 days. Therefore, the recovery rate may show slight variations. Some parameters are assumed
due to the unavailability of data; however, these assumptions are based on epidemiological reasoning.

Our Model vs Real Infection Data

© Real Data (Infected)
—— Our Model Fit

25000 a
.

20000

15000

10000

Number of Infected Individuals

5000

0 50 100 150 200 250 300 350

Figure 4: Parameter estimation using real data and the fitted model.



C. Modnak, A. Thongtha, P. Kumpai, . Math. Computer Sci., 41 (2026), 150-182 166

In this section, we employ the forward-backward sweep method to numerically solve the optimality
of the system. In MATLAB code, the state variables are represented by x(t), the adjoint functions by
A(t), and the control variables by u(t). For the forward-backward method, we follow these steps. For
0<t<ty,

Step 1. Make an initial guess for u(t) over the given interval and store it as u(t).

Step 2. Using the initial condition x(t) and the stored values for u, solve x(t) forward in time according
to its differential equation in the optimality system.

Step 3. Using the transversality condition A(t;) = 0 and the stored values for u(t) and x(t), solve A(t)
backward in time according to its differential equation in the optimality system.

Step 4. Update the control by substituting the new x(t) and A values into the characterization of u.

Step 5. Check convergence. If the difference between the variable values in the current and previous
iterations is negligibly small, output the current values as the solution. If not, return to Step 2 and
repeat the process.

For Steps 2 and 3, any ODE solver can be used. In our case, we chose Euler’s method since the system is
not overly complex. For our computational work, we used MATLAB version R2024b.

Initially, we adjust the parameter values to align with the data provided in Table 2. To investigate
the intervention policies distributed by the Thailand Public Health Administration and compare with our
scenarios, we show each case study as follows.

8.1. Case study 1: actual public health interventions and model fitting for optimal control model

On average, we estimated that Thailand vaccinated susceptible individuals at a rate of 0.001 per day
(equivalent to 0.1 percent of the susceptible population per day). Therefore, for the initial model with
constant vaccination measures (¢1), we set ¢1 = 0.001. As shown in Table 2, we estimated other measure
values. At the time of detecting COVID-19, Thailand had a total population of approximately 71,800,000
people, with authorities confirming 26 infectious cases. Hence, we set the initial conditions as follows:
(S(0), E(0),11(0),12(0), I3(0), I4(0), R(0)) as (71800000, 26,0,0,0,0,0).

To compare with a constant intervention strategy, we investigate an optimal control problem where
the maximum vaccine effort (u;, ) that can be deployed is set at a rate of 0.001 per day, matching
the actual average distributed by the Thai Public Health Administration. The government prioritizes
preventing and reducing the number of infections as the first priority, followed by considering the cost
of vaccination. Distributing other measures is deemed equally important to maintaining the number of
each state low. Therefore, we assign weighting constants c¢; = 0.0001,c; = 1,c3 =1,c4 =1,¢5 = 1,¢6 =
2,c; = 2,c8 = 2,c9 = 2, and ci9p = 2. Additionally, the corresponding basic reproduction number is
approximately 3.03.

Figure 6 (a) illustrates the trajectory of exposed and infectious individuals under constant measures
(with a vaccination rate of 0.1 percent of susceptible per day). However, the current control measures
in place are inadequate to curb the COVID-19 outbreak, leading to a significant number of infections
(peaking at approximately 25,000 new infections). Indeed, the infection trend depicted here closely re-
sembles the real data from the Thai Public Health Administration, as shown in Figure 5. Additionally,
other categories of individuals have been plotted for further investigation, as depicted in Figure 6.

Figure 7 illustrates the optimal control measure model, where (a) showcases the trajectory of the num-
ber of exposed and infectious individuals (E), reaching a peak of approximately 25,000 cases around day
210 before gradually declining to zero by the year’s end. Additionally, Figure 7 (b) demonstrates that,
with the implementation of controls, the number of infectious individuals treated in field hospitals peaks
at around 160. Similarly, Figures 7 (c) and 7 (d) indicate that the numbers of infectious individuals receiv-
ing treatment in the ICU without oxygen tubes and with oxygen tubes remain very small. Consequently,
in this scenario, if all controls are enacted as depicted in Figure 8, the numbers of individuals in the ICU
and critical condition remain low.
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The optimal control profiles suggest that to achieve the same goal (number of new infections) as
the actual control measures implemented, as shown in Figure 9, vaccination should be administered at
a rate of 0.001 (or 0.1 percent) of the susceptible population per day for the entire year, resulting in
approximately 36.5 percent of the population being vaccinated by the year’s end. Additionally, other
measures should follow suit, as depicted in Figure 8.

25000
20000
15000
10000

5000

SRR N N
NN N N

Figure 5: Thailand’s infection report during the fourth wave [10].
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Figure 6: The simulation results of the model cover scenarios with constant controls for: (a) exposed and infectious individuals;
(b) infectious individuals treated in field hospitals; (c) infectious individuals treated in the ICU without oxygen tubes; (d)
infectious individuals treated in the ICU with oxygen tubes; and (e) individuals in critical condition.
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Figure 7: The simulation results of the model cover scenarios with optimal controls for: (a) exposed and infectious individuals;
(b) infectious individuals treated in field hospitals; (c) infectious individuals treated in the ICU without oxygen tubes; (d)
infectious individuals treated in the ICU with oxygen tubes; and (e) individuals in critical condition.
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Figure 8: Optimal control dynamics: (a) vaccination rate (uy(t)); (b) treatment rate for exposed and infectious individuals (uy(t));
(c) treatment rate for infected individuals in field hospitals (uz(t)); (d) treatment rate for infected individuals in the ICU without
oxygen tubes (u4(t)); and (e) treatment rate for infected individuals in the ICU with oxygen tubes (us(t)).
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Figure 9: When comparing the constant measures implemented by the Thailand Public Health Administration with the optimal
control model, we find that the number of new infections in both models is quite similar. Their curves overlap, effectively
representing the trends in the number of exposed and infectious individuals.

8.2. Case study 2: achieving 70 percent vaccination of the susceptible population in one year with constant measure
costs

In this simulation, we assume that Thailand achieves its goal of vaccinating about 73 percent (0.2
percent per day) of the susceptible population at the end of the year, disregarding the cost of vaccina-
tion, while maintaining other measures. As shown in Figure 10, without optimal controls (with control
measures remaining constant each day), the number of new infections (exposed and infectious) decreases
dramatically, peaking at 110 days with only 800 infected individuals, as illustrated in Figure 10(a). This
result is comparable to the optimal control model (not shown here), with the number of new infections
for both models (constant controls and optimal controls) being relatively the same, as shown in Figure 11.
We will not show the real data for this case due to the significant difference between the numbers of real
data and simulated results.
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Figure 10: The simulation results of the model cover scenarios with constant controls for (a) exposed and infectious individuals;
(b) infectious individuals treated in field hospitals; (c) infectious individuals treated in ICUs without oxygen tubes; (d) infectious
individuals treated in ICUs with oxygen tubes; and (e) individuals in critical condition.
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Figure 11: With the assumed constant measures implemented by the Thailand Public Health Administration (vaccinating 73
percent of susceptible individuals per year) compared to optimal control strategies, we observe that the number of new infections
in both models is relatively similar, with their curves overlapping.

The optimal control profiles for this case study are presented in Figure 12. Figure 12(a) indicates that
about 0.2 percent of the susceptible population should be vaccinated each day, allowing the vaccination
program to conclude around day 230 after the first day of vaccination (46 percent in total), rather than
continuing at the same rate throughout the entire year as in the constant control model.
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Figure 12: Optimal control dynamics for the case study: (a) vaccination rate (1 (t)); (b) treatment rate for exposed and infectious

individuals (u;(t)); (c) treatment rate for infected individuals in field hospitals (us(t)); (d) treatment rate for infected individuals
in the ICU without oxygen tubes (u4(t)); and (e) treatment rate for infected individuals in the ICU with oxygen tubes (us(t)).

Next, we consider increasing the vaccination cost slightly by adjusting the weight parameter c; from
0.0001 to 0.001. According to our simulations, this adjustment results in a shorter distribution period for
the optimal vaccination control measure, reducing it from 230 to 180 days, as depicted in Figure 13(a).
Additionally, we observe that the number of new infections for the optimal control problem is slightly
higher than that of the constant control model. This discrepancy arises because there are no further
vaccinations administered after the 180th day, as illustrated in Figure 13(b).

This strategy indicates that rather than vaccinating the susceptible population for the entire year, a
duration of approximately 180 days may suffice, offering potential cost savings. However, this simulated
results are based on the assumption that vaccination must be deployed at 0.2 percent of the susceptible
population per day. Although the simulated results suggest that 230 days should be sufficient for vac-
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cination, in reality, the program should continue until at least 70% of the population is covered, as the
simulations are based on assumed parameters.
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Figure 13: The simulation reveals (a) the vaccination rate for the optimal control problem; (b) when comparing the constant
measures implemented by the Thailand Public Health Administration to optimal control strategies, we observe that the number
of new infections for both models is relatively consistent, with their curves overlapping.

8.3. Case study 3: contrasting real constant control measures plus assumed additional measures with optimal control
strategies

In this section, our focus is on exploring how Thailand could enhance its disease control efforts by in-
corporating additional measures alongside a vaccination plan targeting only 0.1 percent of the susceptible
population per day. The simulations are based on observed circumstances from Thailand’s Public Health
Intervention program and the number of infected cases during the outbreak period. Once again, we will
not present the real data for this case due to the substantial discrepancy between the actual figures and
the simulated results.

We hypothesize that implementing successful policies to prevent exposed individuals from spreading
the disease to susceptible populations, such as reducing parameter 4 from 0.3 divided by the total
population to 0.25 divided by the total population, coupled with measures like wearing masks, social
distancing, and encouraging infected individuals to stay home, could lead to significant outcomes. Figure
14 (a) illustrates a significant reduction in the number of exposed individuals, with a peak of only about
35 individuals on day 50 after the onset of the outbreak. Similarly, Figure 14 (b) shows a decrease in the
number of infected individuals treated in field hospitals.

To achieve these outcomes, authorities should implement control measures to support exposed in-
dividuals in staying indoors, provide medical assistance for those with mild symptoms, and promote
mask-wearing and social distancing. Figures 14 (c), (d), and (e) demonstrate similar trends for other
states regarding exposed and infectious individuals treated in field hospitals, indicating a reduction in
numbers as well.

The optimal control measures for this simulation are outlined in Figure 15. In Figure 15 (a), the
vaccination policy for susceptible populations is deployed over approximately 150 days instead of the
entire year. Other controls are depicted in Figures 15 (b), (c), (d), and (e). The optimal control guideline
emphasizes the importance of vaccination policies for the initial 150 days, during which other measures
can be minimal to prevent the escalation of infections.

The simulation results of constant controls are shown in Figure 16, and the comparison between the
constant control model and the optimal control model is represented in Figure 17. The tail of the optimal
control model is slightly higher than that of the constant control model, primarily because the vaccination
policy in the optimal control model ceases around day 150.

It’s important to note that while the data collected during the COVID-19 outbreak in 2021-2022 cat-
egorized infected individuals, which we used to formulate equations capturing the dynamic behaviors
of the disease and the population, our simulations may slightly deviate from the actual data in terms
of total individuals in each state. Nonetheless, these simulations offer valuable insights, demonstrating
how strategic deployment of intervention programs can help in reducing and controlling the spread of
COVID-19.
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Figure 14: The simulation results of the model encompass scenarios with optimal controls aimed at reducing the transmission
rate from exposed infectious individuals to susceptible population for (a) exposed and infectious individuals; (b) infectious
individuals treated in field hospitals; (c) infectious individuals treated in ICU without oxygen tube; (d) infectious individuals

treated in ICU with oxygen tubes; and (e) individuals in critical condition.
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Figure 15: Optimal controls dynamics with a focus on reducing the transmission rate from exposed individuals to susceptible
population comprise: (a) vaccination rate (uq(t)); (b) treatment rate of infected individuals in field hospitals (u;(t)); (c) treatment
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Figure 16: The simulation results of the model cover scenarios involving constant control measures, all aimed at preventing
exposed individuals from infecting the susceptible population. These scenarios include (a) exposed and infectious individuals;
(b) infectious individuals treated in field hospitals; (c) infectious individuals treated in the ICU without oxygen tubes; (d)
infectious individuals treated in the ICU with oxygen tubes; and (e) individuals in critical condition.
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Figure 17: When comparing the constant measures implemented by the Thailand Public Health Administration to optimal
control strategies, we observe that the number of new infections for both models remains relatively consistent, with their curves
overlapping.

8.4. Case study 4: comparing actual control implementations with simulated optimal control

In this section, we will compare the actual control plan implemented by the Thailand Public Health
Administration with our simulated optimal control model. During the fourth wave of infections in 2021,
Thailand managed to vaccinate about 36.5 percent of the susceptible population, corresponding to a
vaccination rate of 0.1 percent of the susceptible population per day. For comparison, in our optimal
control scenario, we assume that Thailand could improve slightly, achieving a vaccination rate of 0.11
percent per day, or 40.15 percent by the end of the year.

Figure 18 (a) shows that the total number of new infections in the optimal control model is lower
than the actual numbers from Thailand’s interventions. Figure 18 (b) depicts that the vaccine should be
distributed at a rate of 0.11 percent of the susceptible population per day for the entire year.

Next, we assumed that Thailand could vaccinate the susceptible population at a rate of 0.2 percent per
day, or 73 percent by the end of the year. As shown in Figure 19, the infection level becomes very low
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under this scenario. Figure 19 (a) shows that the number of new infections per day is significantly lower
compared to the actual data, and Figure 19 (b) demonstrates that distributing the vaccine at a daily rate of
0.2 percent of the susceptible population for approximately 230 days (reaching 46 percent in total, without
the need to reach 70 percent) can significantly decrease the number of infections to very low levels.
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Figure 18: The comparison includes the real data (represented by dots), the simulation results for new exposed and infectious
individuals from the initial model (with a vaccination rate of 0.1% per day, referred to as ‘with constant controls’), and the
optimal control scenario (with a vaccination rate of 0.11% per day, referred to as ‘with optimal controls’).
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Figure 19: The comparison includes the real data (represented by dots), the simulation results for new exposed and infectious
individuals from the initial model (with a vaccination rate of 0.1% per day, referred to as ‘with constant controls’), and the
optimal control scenario (with a vaccination rate of 0.2% per day, referred to as ‘with optimal controls’).

9. Conclusion

We have developed a mathematical model using the dataset collected by the Thailand Public Health
Administration during the fourth wave of the COVID-19 outbreak in 2021. Both the actual data and the
simulation results exhibit similar trends in disease dynamics. Initially, the model incorporated certain
constant measures implemented through public intervention programs. However, these measures proved
insufficient to halt the spread of the disease at that time. Consequently, we integrated an optimal control
study into our model to explore guidelines that could aid in disease control and prove beneficial for future
outbreaks.

The model comprises eight differential equations, presenting analytical challenges. We have computed
the reproduction number, which, given our parameters, indicates that Thailand faced an Ry of about
3.03 at the time of the outbreak during the fourth wave. Additionally, this study presents other crucial
mathematical insights.

Based on our simulations, the daily vaccination rate of the susceptible population plays a crucial role
in controlling the disease. However, if vaccines are limited, additional measures such as wearing masks,
social distancing, and washing hands are needed to prevent the susceptible population from getting
infected. The simulations also show that if Thailand could vaccinate about 0.2 percent of the susceptible
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population daily after the onset of the outbreak, the country would not face such a high number of new
infections. With this vaccination rate, the program could conclude in approximately 230 days after the
tirst day of distribution.

Additionally, we investigated the impact of intervention costs and found that higher vaccination costs
would prevent the vaccination policy from being sustained for the entire year. In this scenario, other mea-
sures would play a crucial role, although they would require a longer time to achieve similar reductions
in new infections. Therefore, combining control measures remains essential in effectively controlling the
disease.

We acknowledge that our model represents vaccination as a direct shift from the susceptible to the
recovered compartment, which simplifies the complex effects of COVID-19 vaccines. This approach was
chosen to capture the overall impact of vaccination on reducing infection risk without explicitly modeling
disease severity. While it is true that COVID-19 vaccines primarily reduce infection susceptibility, severity,
and transmission, our focus was on broad population-level immunity dynamics rather than individual-
level clinical outcomes.

That said, incorporating the effect of vaccination on disease severity could provide additional in-
sights. If appropriate and with data available, for our future work, we can extend our model to include a
vaccinated-exposed-infected compartment or introduce stratified severity levels among infected individ-
uals. However, we believe our scenario analyses remain informative, as they still capture key epidemio-
logical trends, including the overall reduction in infection rates due to vaccination.

Appendix A

Theorem 9.1. The endemic equilibrium point (€*) is stable if it satisfies the Routh-Hurwitz criteria where I7 > 1
wheni=1,2,3.

Proof. We have proved the theorem, and now we show the Routh-Hurwitz criteria as follows:
(i) a; >0,1=1,2,3,4,5;
(i) ajazas > a3+ ajas; and

(iii) (a1as —as)(arazas — a3 — aas) > as(ajar — a3)* + aral.

For (i) we want to show that a; > 0 fori=1,2,3,4, and 5. Consider that,

ar=L+bL+1L+A;+pn+ P —PaS*
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_ Pa
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For a,, we see that
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A1y — Bz > B3 x 305 — Baas = (I3 —1)Bzaxz > 0,
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Lily — B4S™ly = (L1 — B4S™)

= (11 — B4

L —BaS™ =(1 Ju >0,

L
l
B1M1 + B2Mo + B3M3 + 34) i




C. Modnak, A. Thongtha, P. Kumpai, . Math. Computer Sci., 41 (2026), 150-182 176

B4
=(1-— Lily >0,
( BlM1+BZM2+BBM3+B4) ™
Ll — B4S™1l3 = (11 — B4S™)13 > 0,
Ll — 4SSl = (11 — B4S™)1, > 0.

Thus a; > 0. Next, we will show that az > 0. We have that
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Artlibly — o Bily > Brlfeqloly — i Brla(p+ d1) >0,

Arlibly — Baoohy > Balyoohily — Baoohy (L + d1) >0,

A1hibly — Baooly > Balioolaly — Broola(n+ d1) > 0,

Arlilzly — g Bils > g Brllaly — g B1la(p+ 1) > 0.

Lkl — BaS Lzl = (1 Llblzly >0,

Thus a4 > 0. Now we check as > 0. Consider that

as = A1liblaly + (Llsly — Bz haols — Baaslals — BaaghyiAr — BaxalaAg
— Baoxihily — Baoalaly — B4S™ lolaly — Broaglaly) (L + d1),

and similar to a4, we have

Arliblzly — (Bzxrhols + Baaslals + BaxihiAr 4+ BaooloA) (L + d1) >0,
A1tlillgly — (Baorhyly + Booxololy) (+ dq) > 0,

and
Alilalsly — Brog lala(p + ) > 0.

Next, consider that

Bsly
B1M1B2MB3M3 + B4

Ba
— LbLLzl, > 0.
51M152M2+53M3+f54) 1

Lilalsly — R4S Lalsly = Lilalgly — Lzl

-1

Thus as > 0. For the second criteria, we have to show that a;a,asz > a% + a% a4, OF A10203 — a% — a% ag > 0.
After some algebraic manipulations, we have that

arapas — a3 —afas = (L + L+ l3+ Ay + d1 — BaS™ (1 + d1) (13Bron + Lilsly + Llsla + Lol
+hbls + hllsls + L2f2on + 12303 + LaRsos + Lafrog + Lafrar + Bahioy
+ Baohy 4+ B3ooAr — L2134S™ — Ll3P4S™ 1y — 13B4S™ ) — LalaPaly — l3laProy
+ blafoor + l3Rsho + LPsoA — lafohiog + L3fzonAr + Bshiog A + Lk lsly
+ULA1l + LlaArly + LlaArly — L3R4S ) + (K + d1)(Bro — L3
— s — Ll — Ll + Baoxa + Bzog + 1RaS™ +13B4S™ + B4S™ly) — L1l A1 — LilzA,
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—bLBAT—lLbly — Ll — bzl — AL + Blacg + LRl Pzxs + l3Pzos
+14Brog + LPaoa + Bahiog + Bzagha + BaooAs + 21 13B4S™ + 13B45%1)?,

and
Ul — 3paS™ Ly = (1— Ps Jilsly > 0,
B1M1 + B2Mo + B3Ms + B4
* [34
Liblals — L3RSy = (1 — L L1 0,
1hlaly — Ll3P4S™ s = ( ﬁ1M1+f52M2+f53M3+f54)1234>
Ba

Lkl >0,

Lilals — LL13R4S* = (1—
1lals — s Py ( B1M1 + BoMy + B3sM3 + By

LlzA1l — LlPsly > (I3 —1)Bsllsly >0,
LA — BlaPBrag > (I7 —1)Brolzly >0,
LAl — WBrhiog > (17 —1)Balghio >0,

* [34
Liblals — L3R4S 1y = (1 — L L1 0.
1hlaly — Ll3B4S™ s = ( 51M1+f52M2+f53M3+f54)1234>

Hence, ajaras — aé — a% ag > 0, that is ajayaz > a% + a%a4, and now the second criteria holds. Next, we
will show that (aja4 — as)(ajazas — a% — a% ag) > as(ajax —az)® +a; ag. First, from the second criteria we

aza
have ajazaz > a% + a%a4. Then ajazaz — a% — a%a4 >0, or ajap; —az > é34, and from

(a1a4 — as)(ajazaz — a3 — afay) > 0,

with as(ajap — a3)? + a1 a% > 0, then we have aja4 — as > 0, and so ajag > as. Therefore,

2.2 2.3
((1 C14) ai1das asqi
as(aja; — az)® + alaé > a5172 + alag > alaé(iz +1) > 125.
a a a
3 3 3
Thus
2.3
2 2 aias
(a1as —as)(arazas — a3 — ajas) > —2,
as
or

2 2 2 2 2
as(ajas —as)(ajapaz — a3 —aj —ajaq) > alag.

We only need to show that a%(a1 as — as)(ajazas — a% — a% — a%a4) — a% ag > 0. With some algebraic
manipulations, we have that

a%(a1a4 —as)(ajazaz — a% — a% — a%a4) — a%ag

=(lL+L+B+Ar+p+dr—BaS™)((L+ 1) (Brog —Lils — Lalz — 131y
+ Boaog + Paog + 12B4S™ + 13B4S™ + B4S™ly) — il A1 — Lil3A1 — L13A;
—hbly —hlsly — bLlaly — 3A L + 3o + Lo + 2R3
+13B3os + luProg + LaPaoa + Bahioyg + Baxrha + BacoAr + 21213 345"
+13B4S™ 1) + (1 + d1) (l2laBaoxs + l3laBro + LalaPros + LoBsco)
+lLPohioy + BRso s + Bahicad — Liblsly + b3 RaS*ls) — LA 1)
x (L4 + 1+ A+ p+ b1 — BaS™ )+ (n+ d1)(Broa — lils — Lls — ly
— Ul + Baog + lyP2hiog + l3Paaxrhy + BahionAr + Lilalaly — bal34S™14)
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+LblzArly) (L + b+ 13+ A+ p+ d1 — BaS*) (1 + d1)

x (Broa +hlz +1alz + lalg + Lily + Lily + Boo + Baag — 1P4S™ — 13B4S™
—B4S* ) + LLAT + 1 1zAT + LIzAT — L1l — Lilzly — Lzl + 13A 1y

+ LAl +3R1og + 12f2oo — 12z — 3o — LaBrog — laf20n

— Bohiog — Baohy — BaooAr + 2L 13B4S™ + 13345 ).

Next, we have that

B4

Lillaly — L13PsS™ly = (1 —
1—pB1M1+ BaMo + BsM3 + B4

Lllzly >0,

LA —1Brog >

LA —
LLA

l]lQA] — 12[530(3 > (I
1113A1 — 13[33063 > (I
11A114—14[32062 > 12

Thus the last criteria holds, that is, (ajas — as)(ajaraz — ag —

B30¢27\1 > 13

(

(

(
—Baoghy > (I3 —

(

(

(

I[ =)oy >0,
1112A1 — Bzhloq > (I

—1oghiPfa >0,
—1agA1B3 >0,
Doghaps >0,
—DhasPs >0,
—1asPsls >0,
—1)[32140(2 > 0.

a%a4) > as(ajap — az)? + a1a5 We have

also computed these criteria and found that they are all satisfied, with values a; = 1.0237, a, = 0.1791,

as = 0.0215, ag = 0.0023, a5 = 2.3849 x 10~°,

ajapaz — a% — a%a4 = 0.0011 > 0, and (ajas4 — as)(ajaraz —

ag—a%a4)—a5(a1a2—a3)2—a1a§ =3.4989 x 10 > 0. O
Appendix B

From our model, we have

(Bili+ Bala + Bals + B4E ) S (01 + 02+ 0+ 0 + o+ + paE
0 (u+di+v1+hy +hy+hs+ d3)l; — E
F= 0 and V= (W+do+v2+AM + A+ bg)lr —oE -4
0 (L+d3s+v3+e+ ds5)l3 — ozE—holy —A D
0 (4 ds+v4)ls — g E —hgly — A Ip — el

Next, we find F and V by calculating the Jacobian of J and V, respectively, then substituting €y =

(u -|/-\¢1 0,0,0,0,0, o ﬁﬁ) L 0) into the Jacobian matrices F and V, we have
uﬁﬁ gl LLB—OE gl P—B-i gl uﬁ-i gl 0 51 0 0 0 O
0 0 -1 b 0 0 O
F(eo) = 0 0 0 0 0 and V(eg)=| —a —h 13 0 0|,
0 0 0 0 0 —a3 —hp —A1 L O
0 0 0 0 0 -4 —hg —A —¢ s

where iy =g+ +os+as+u+vys+dy, b=pu+di+vyi+hi+hy+hs+d3, si=pu+do+vo+A1 +

A+ dy, Iy =

Vi(e) =

u+ds+vs+e+ ds and ls =

o A €+061h31314+061]11)\2144—60(1]’1213-'—8062)\2

w+ dg + vs. It follows that

1
51
Ll
ax1hi+oxoly
Lil1s
a1hy A1+ oAb
i3l
f2+064121314+062>\21214+£0621213

X3 12+ o1 hy
i1y

Tlalslals
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0 0 0 O
L 0 0 0
0 & 0 0
Ahi+hols A1 1 0
Lzl [ T
elihiA1+hglilsla+2A 4 L3 lu+ehyly s eEAF+A £ 1
Lilal3lyls T35 Ll 15

Next, we find the eigenvalues of the Jacobian matrix by considering solving det(FV—! —AI) = 0. Thus, Ry
is the spectral radius of FV—1, therefore we then obtain the basic reproduction number (Ry), which yields

Ro

where

A o 1
+
[(H+¢1)(O¢1+062+0<3+0<4+H+Y5+¢2)} [B4 n+dy+v1+hy +hy+hs+ b3

o1 B2hy + o3P2(p + di +7v1 +h1 +hy + hs + §3)
(ho+dr+vi+h+hoths+ s ) (et da+va+ A+ Ao+ )
o1 Bshy + o3B3 (p +di +v1 +h1 +ha+hs + §3)
(m+d+vi+h+hoths+ds) (et ds+ys + e+ ds)

+

_l’_

o1 B3hiA + Ao (L + di +v1 +hy +ho +hs + d3)

_l’_
<u+d1+‘}/1 +hy +h2—|—h3—|—d)3) <u+dz+Y2+7\1 +7\2+d)4> <u+d3+‘}/3+€+d)5)

/\<[34 0 3 04+ 01 B1 €3 by + B2 (cahy 4 0ly) €y + B3 (xalals + ooty + cqhyAg + 0627\132)>
B (k+ 1) bl lsly ’

b =oq+op+ag+oyg+1w+ys+ do, bb=pu+d;+v1+hi +hy+hg+ b3,
bb=pu+dp+v2+A +A2+ Py, ly=pu+ds+v3+e+ bs.
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