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Abstract

The delay differential equations (DDEs) are widely used to explore various engineering and physical applications. An
example of DDEs with proportional delays is known as the pantograph model which governs the current collection in electric
trains. DDEs with constant delays also have different applications. This paper introduces a unified approach to analyze a class
of first order DDEs under arbitrary history functions (HFs). The proposed approach assumes that the arbitrary HF ¢(t) can
be represented as Maclaurin series with coefficients ¢, m > 0. Based on this assumption, the solution in each sub-interval
of the problem’s domain is obtained in explicit form in terms of the coefficients ¢,. Exact solutions are obtained for several
examples subjected to history functions of different forms. Properties of the solution and its derivative are proved and examined
theoretically. Existing results in the literature are derived from the current ones as special cases. In view of the obtained results,
the exact solution of any first order linear delay differential equation can be directly determined once the coefficients ¢, of the
given history function is inserted into the standard solution. This reflects the advantage of the proposed approach over other
techniques. Moreover, the suggested analysis can be easily extended to include higher order linear delay models.
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1. Introduction

The delay differential equations (DDEs) are of great importance due to their applications in various
fields [18, 25, 26, 35, 36, 38]. DDEs have been used to model the nutrient-autotroph-herbivore interac-
tion with nutrient recycling [29] and the nutrient-plankton system [34]. Other kinds of DDEs with a
proportional delay parameter and functional differential equations including the pantograph model have
applications in railways electrification [1, 8, 12, 20] and electric trains/locomotive [3, 19, 22, 23, 31]. A well-
known special case of the pantograph model is the so called Ambartsumian equation [6, 7, 16, 27, 33],
which concerns with the surface brightness in the Milky Way. This paper presents a new approach to
treat the basic DDE:

y'(t)=ayt) +Py(t—1), t=>0, (1.1)
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subject to

o
yt) =)= Y dmt™, tel-1,0], (1.2)
m=0
where o, 3 € R and T > 0. In Eq. (1.2), the history function (HF) is considered in the form of Maclaurin
expansion of a given HF ¢(t) in terms of the coefficients ¢,.

Although the Adomian decomposition method (ADM) [2, 5, 13, 14, 28, 39], the regular perturbation
method [17], the homotopy perturbation method [10, 11, 15] and its modification [21, 32], and the Laplace
transform (LT) [4, 24], have been found effective to solve various models, their applications on DDEs are
relatively rare. Also, there are a number of analytical approaches which have been applied to solve other
scientific models in different areas [9, 30, 37]. However, the current procedure facilitates the derivation
of the explicit solution for Egs. (1.1)-(1.2) under any given HF once the coefficients ¢, are specified. As
will be seen later, the solution is to be determined explicitly in sequential intervals in terms of ¢, and in
closed series form utilizing the method of steps (MoS). It will also be shown that such closed series forms
convert to certain entire functions once the coefficients ¢, of the given HF are inserted.

For examples, if the HF ¢(t) is given as e or e ' then ¢, are 1/m! or (—1)™/m!, respectively. For
polynomials HF such as t, then ¢1 = 1, ¢y, = O for all m > 1 in addition to m = 0. For ¢(t) = t?, we
have ¢ =1, ¢ = 0 for all m > 2 in addition to m = 0, 1. In a trigonometric form such as ¢(t) = cost,
we have ¢pm = (—1)™/(2m)! and ¢Pomy1 = 0, Ym > 0 while for ¢(t) = sint, we have ¢»,, = 0 and
Gomy1 = (—1)™/(2m +1)!, Ym > 0. Similarly, for other HFs one can specify the coefficients ¢, and then
obtain the explicit solution as will be demonstrated latter.

Although the problem (1.1)-(1.2) has been analyzed in several text books in addition to several papers,
the explicit solution was only obtained depending on specifying the HF from the beginning. This explains
the difference between the present approach and those previously reported on the same problem.

2. Theoretical results

In order to apply the MoS, the domain t > 0 is divided to sequential sub-intervals I, = [(n — 1)1, 1],
n > 1. Let us also assume that Iy = [—7,0]. The MoS determines the solution y, (t) in the sub-interval I,
in terms of the solution y,_1(t) in the previous sub-interval I,,_; as explained by the following theorem.

Th 2.1. The solution yn (t) is

t
Yn(t) =yn_1((n —1)r)ext=—=11) | geot J ey q(t—71)dt, tel, =[(n—Dtnd.  (2.1)
(n—1)T
Proof. Lett € I} =[0,71], then t — 7 € Iy = [—7,0]. Since yo(t) = P(t) represents the given HF in I and
y1(t) is the solution in Iy, then y1(t — 1) = yo(t — 1) = d(t — 1). Accordingly, y;(t) is governed by

y1(t) = ayi(t) + Byo(t—7), tel; =[0,1], 2.2)
y1(0) =yo(0) = $(0).
Similarly, the solution y,(t) in I, is governed by
Yp(t) = oya(t) + Pys(t— 1), telr =121, 2.3)
Y2(1) = y1(T).
Repeating this process n-times, one obtains the following initial value problem (IVP) for yn (t):
Yn(t) = oayn(t) + Byn—a(t—1), tely=[(n—-1)1,n1, 2.4)
Yn((n=1D)1) =yn-1((n—-1)7).

The solution of the IVP (2.4) gives the result in Eq. (2.1), which completes the proof. O
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Lemma 2.2. The reduced model:

y/(t) = BU (t_T)/
yt) =) =2 n_gdmt™, tel-T0],

has the solution: .

Yn () = yns((n—1)7) + rsj Yni(t—1)dt,

(n—1)T

in the interval I, = [(n—1)t,nt], n > 1.

Proof. The proof follows immediately from Theorem 2.1 by setting « = 0 in Eq. (2.1). O]

3. Properties

This section introduces some properties about the continuity of the solution y(t) and its derivative
y’(t) at the nodes t, =nt,n=0,1,2,..., as described in the next theorem.

Th 3.1. The solution y(t) of the delay model (1.1)-(1.2) is continuous at every point tn, = nt, Vn > 0. Moreover,
y'(t) is continuous at to = 0 if the given HF satisfies the condition:

$'(0) = axd(0) + Bd(—T), (3.1)
while y'(t) is continuous at every point t, =nt, ¥Vn > 1.

Proof. From the analysis of Theorem 2.1, we have y;(0) = yo(0), y2(1) = yi1(7),..., and yn((n —1)71) =
Yn—1((n—1)7), which implies the continuity of y(t) at tn,_1 = (n—1)1, ¥n > 1. Hence, y(t) is continuous
at every tn, =nt, ¥n > 0. The right derivative y/ (0) at t = to = 0 is given from Eq. (2.2) as

Y’ (0) = y1(0) = oy1(0) + Byo(—1),

ie.,
Y4 (0) = ad(0) + Bd(—1).
From the given HEF, the left derivative is y/ (0) = ¢/(0). Accordingly, y’(t) is continuous at t = ty = 0 if

$'(0) = adp(0) + BP(—T).

At t =t; = 1, we have from (2.2) that

y_ (1) = y1(1) = oy (1) + Byo(0), (3.2)
while Eq. (2.3) implies
y' (1) = y3(1) = oga(T) + By1(0). (3-3)

Since y1(0) = yo(0) and yz(t) = yi1(7), then Egs. (3.2) and (3.3) yield y’ (1) = y/, (1), which reveals that
/

y’(t) is continuous at t = t; = 1. By similar analysis, one can show that y’(t) is continuous at every point
t=t,=nt,Vn>1. O

Remark 3.2. As indicated in Theorem 3.1, the solution is always continuous at every point t = t, = nr,
n > 1 while the derivative is continuous at t = 0 if the given HF satisfies the condition (3.1). This means
that if Eq. (3.1) is satisfied then y’(t) is continuous in the whole domain t > 0. The next section explains
how to generate different classes of DDEs for which the given HF satisfies Eq. (3.1) and accordingly the
derivative of the solution(for each of these classes) is continuous in the whole domain t > 0.



E. R. El-Zahar, A. Ebaid, L. F. Seddek, ]J. Math. Computer Sci., 41 (2026), 25-33 28

4. Examples of special classes of DDEs
For the HF ¢(t) = e, Eq. (3.1) leads to B = (1 — «)e™. By this, the system (1.1)-(1.2) takes the form:

{y'(t) — ay(t) + (1— x)eTy(t—1), t>0, @)

y(t) =et, t € [—,0l.

From Theorem 3.1, the solution and its derivative of the class (4.1) are continuous in the whole domain
t > 0. Similarly for the HF ¢(t) = e~ %, Eq. (3.1) requires p = —(x+ 1)e~ T, which leads to the class:

y'(t) = ay(t) — (a+1)e Tyt —1), t>0, 42)
yt)=e™, t € [—,0L. '
Suppose that ¢(t) = A (real constant), Eq. (3.1) implies § = —«, a simple delay model is resulted as
1(4) — _ _ >
y'(t) =aly(t) —y(t—1)], t=0, 43)
y(t) = A, t € [-,0].

The above three classes can be combined if the HF is chosen as ¢(t) = Ae¥!, vy is a real constant. In this
case we have 3 = (y — «)eY™, which gives the class:

y'(t) =ay(t) + (y —x)e¥Ty(t—1), t=0,
y(t) = Aevt, t € [-1,0].

This class reduces to the classes (4.1), (4.2), and (4.3) aty =1, vy = —1, and vy = 0, respectively. In the
logarithmic forms ¢(t) = BIn(1+t) and ¢(t) = BIn(1 —1t) (B is a real constant), we have the delay models

(t—7)
y'(t) = ay(t) + fa—y, t=0, (4.4)
y(t) =BIn(1+1t), tel[-10, 0<t<]1,
and ()
—T
y'(t) = oay(t) — P, 20, 45)
y(t) =BIn(1—1), t € [-7,0],
respectively. Generally, the choice ¢(t) = BIn(1+ ut) (u > 0) gives the delay model:
_ py (t—71)
Yyt =oyt)+ i 120 1 (46)
y(t) = BIn(1 + ut), tel-10, 0<t< i
while the choice ¢(t) = BIn(1 —vt) (v > 0) gives the delay model:
_ (t—7)
y'(t) = oy(t) — piima, 20, “?)
y(t) =BIn(1 —vt), t e [—r,0].

It can be easily noticed that the classes (4.4) and (4.5) are special cases of the classes (4.6) and (4.7) when
u=1and v = 1, respectively. In the trigonometric forms, one can also find the following classes, where
¢ and ¢, are real constants:

{y’(t) = ay(t) - YT >, .y {y’(t) — ay(t) - WD g5

y(t) = cysint, te [-T,0], y(t) =cycost, t e [—1,0],
which are special cases of the general class:

{y'(t) = ay(t) + (xca—c1)y(t—7) t>0,

ci1sinT—cpcosT

y(t) =cysint+cpcost, t e [—7,0].
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5. Explicit solution

In this section, we show how to construct the explicit solution yi(t), y2(t), and ys(t) in the first three
interval I; = [0,7], I, = [t,27], and I3 = [27,31] for the delay model (1.1)-(1.2) at § = 0. The general case

in which 3 # 0 can be treated similarly. The result of Lemma 2.2 gives yn (t) in the interval I,, as

t
Ynlt) = yn_1((n— 1)1) + rsj Yn1(t—T)dt, I = [(n—1)r,nd, n > 1.

(n—1)T
Atn =1, we have
t
Ul(t)290(0)+BJ090(’£—T)<1’E, L = [0,.

However

Yot—1)=¢t—1) =) dm(t—1™

m=0

Inserting (5.2) into (5.1) and simplifying, then
— ([)O + B i d)m [(t—’t)m_'_l . (_T)m+1} ]
= mt 1

At n =2, we have
t

ya(t) =y (1) + rsj wlt—dt, L = [t 24.

T

Employing (5.3) in (5.4) gives

Ya(t) = o + Bt —7) - ZmH o

(_T)m+2

2 (t—27)m+2 mo1
+B Zm+1[ M2 miz COTEeT)

The case n = 3 leads to .

ys(t) = y2(20) + B J plt—1dt, I = 27,37,

2T
and hence
2 © 4 ©
¢oZ (=) rsmz_onwml(—ﬂm“+62n;0m+2(—T)m+2
2 S m 1 3 - d)m _ m+3
- mZ 10T R ) G g (Y
300 d)m A mA2 _13w¢m_m+1_2

6. Exact solutions at different HFs

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(™) (5.6)

In this section, the exact solutions at different forms of the HF ¢(t) are to be obtained via investing

the result of the previous section.
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6.1. ¢(t) =
In this case, one find that ¢, = 1/m!, m > 0. So, the solution yi(t) in the interval I; = [0, 1] can be
directly derived from Eq. (5.3) as

— . 1 m m+1
_q)0+f3nlz—0m_{_1)'[(t’t) +17(—T) +]/

=1+ ) %[(t—T)m—(—T)m],:1+B(et_T—l)—B(e_T—l),:1+B (e T—e 7).
m=1 ’

From Eq. (5.5), we obtain

x m+1
=1
Ya(t) =14 B(t—7) BZ_O m+1
o0 m+2 m+2 m-+1 (6.1)
PPl [ o i o PP
oyt (m+2)! (m+2)!  (m+1) '
Implementing the relations:
o0 m-+1 ©  m+12
Y il X gt
= (m+1)! =, (m+2)!

for x = —t and x =t — 27, then Eq. (6.1) can be simplified to
Yot) =14+B (t—t—e " +1)+p* [T —e T(1+t—1)].

From Eq. (5.6), we have

2 00 00
_ v B* K 1 m+1 2 1 m+2
US(t)—];)k!(t—kT) —BmZ_O (m—l—l)!(_T) B mZ_Om!(TTH-Z)(_T) "
—BA(t—21) Z_O (mil)! (O™ 4 B Z_O (mlw [(t=30)™ = (™) (62)
3 - 1 m+2 1 3 2 - 1 m+1
~B (t_ZT)n;o(m+2)'( )" = St 21) mZ_O i
Using the equality
0 ( m+2 0 m+2 (_T)m+2
mZ_Om' m+2) mz_o{ m+1) (m—|—2)!]

into Eq. (6.2) and simplifying, yields
Ys() =1—B (e T —1) +p*(~te T —e T+ 1) +B(t—1) + %(t—zﬂz (B2 — B3 (e " —1)]

—(t—21) [B2e " =1 + B (e T —1+1)] +p° [et_% —t— %(t —31)2421—e T+ %TZ )
Remark 6.1. It may be important to refer to that the solutions in the first three intervals satisfy the conti-
nuity condition at the points t = 0, 1,27, where yo(0) = y1(0) =1, y1(t) = y2(1t) =1+ pB(1 —e" "), and
Y2(27) = y3(21) = 1+ B(14+T1—e ™) + B2[1 — e (14 1)]. However, the derivative is not continuous at
t =0, wherey’ (0) = $(0) =1and y/ (0) =y1(0) = Be ™. Ify’ (0) =y’ (0),ie,1=Pe T or p =e7, then
y’(t) will be continuous at t = 0. This conclusion confirms the validity of the condition (3.1) provided by
Theorem 2.1. This condition at « = 0 becomes ¢'(0) = B$(—1), which implies fe~" =1 or f = €T, which
agrees with above conclusion.
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6.2. ¢(t) =et
This case implies ¢, = (—1)™/m!, m > 0. Eq. (5.3) gives yi(t) as

m= 0
— BZ% —t4+7)™m—(1)™],=1-B (e =1)+p(e"—1),=1—p (e """ —¢").
m=1

Substituting ¢, = (—1)™/m! into Egs. (5.5) and (5.6), then simplifying, we obtain
Yt) =1+B(t—T+e"—1)+p*[e T +eT(t—T—1)],
and

ys(t) =14+ B ("= 1)+ p* (te" — e+ 1)+ B(t — 1) + 5 (t —27)* [B2 + B>(e" —1)]

N| =

+ (t—27) [B*e"—1)—p3(e"—1—1)] +p° —e_t+3T—t—|—%(t—31)2—|—2'r—|—eT—%Tz :

6.3. $(t) =—
This polynomial case implies ¢9 = 0, $1 = —1, and ¢ = 0, m > 2. In other word, ¢, = 0 for all
m > 0 except at m = 1. Therefore, Eq. (5.3) reduces to

Also, Egs. (5.5) and (5.6) give

valt) = 2B — B2 [(t— 20+ 2 32 ()],
and
ys(t) = 7[31 + = BZT3+ (3[32 2 - p3) (t—2’t)+%1[33T2(t—2T)2—21—4[33 [(t—31)* —1Y].

6.4 ¢(t)=1

This HF is given as a constant, consequently, ¢g = 1 while ¢, = 0 for all m > 1. We also consider
f =—1, T =1, and then use Egs. (5.3), (5.5), and (5.6) to find that

1(1—t)2, yg(t):—§+1t—1(t 3P =1+ —t+1(t—1)2—é(t—2)3

yi(t) =1—-t, yz(t)zl—t+2 s tat—e 5

In such a case, the general solution yn, (t) in the interval I, = [n —1,n] can be written in the form:

[t_(l_l)T]l/ te[n_lln]/ n>1/

y'(t)=—yt—-1), t=>0,
[—1,0].
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7. Conclusion

A new approach was introduced in this paper to resolve a class of DDEs under arbitrary HFs. The
idea was based on expressing the arbitrary HF ¢(t) in the form of the Maclaurin series with coefficients
¢m, m > 0. By the aide of the MoS, an explicit form was obtained for the solution in each sub-interval
of the problem’s domain in terms of the coefficients ¢,. Selected examples were illustrated to derive
the solution under HFs in different forms. The paper also addressed the characteristics of the solution
and its derivative, where the condition to obtain continuous derivative in the whole domain was proved
theoretically. Existing results in the literature were derived as special cases of the present ones.

The obtained results can be invested to directly determine the exact solution of a first order linear
DDE by just inserting the coefficients ¢, of the given HF into the standard solution. This explains
the effectiveness of the suggested analysis and gives the opportunity to achieve further generalization
for higher order linear DDEs. Regarding this point, the method may be applicable to nonlinear delay
equations subjected to initial data described by HFs.
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