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Abstract 
Fuzzy relational compositions (FRCs) are the core of the fuzzy relational models (FRMs) 
which play a significant role in the fuzzy linguistic modeling. In this paper, we introduce 
some new fuzzy relational compositions. These FRCs are composed of some new t-norms 
and t-conorms and have some good properties such as differentiability. In this regard, the 
properties of the proposed t-norms and t-conorms are studied and compared with the other 
ones. Finally, as the most important applications of the FRCs suggest that the new FRCs are 
to be used in fuzzy relational modeling of some benchmark problems to justify their usage. 
We show by simulations that the proposed FRCs yield fuzzy relational dynamic systems with 
very good modeling capabilities. 
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1. Introduction 
Fuzzy relational modeling is a favorite tool for modeling both static functions and dynamic 

systems [1]. Using smooth or differentiable t-norms and t-conorms in fuzzy relational composition 
improves the modeling capability of the model [2]. Already there are some smooth or differentiable t-
norms and t-conorms introduced in the literature, and in this paper we propose some new ones. To 
introduce some new t-norm or t-conorm let us remind the definitions and properties of them. In this 
regard, primary, secondary, and tertiary properties of t-norms and t-conorms are studied in this text. 

A t-norm 𝑡:  0,1 2 →  0,1  (and respectively t-conorm 𝑠:  0,1 2 →  0,1 ) is defined by its primary 
properties as follows. 
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Boundary condition: 𝑡 𝑎, 1 = 𝑎 (𝑠 𝑎, 0 = 𝑎) (1a) 
Commutativity: 𝑡 𝑎,𝑏 = 𝑡 𝑏, 𝑎  (𝑠 𝑎, 𝑏 = 𝑠 𝑏, 𝑎 ) (1b) 
Associativity: 𝑡 𝑎, 𝑡 𝑏, 𝑐  = 𝑡 𝑡 𝑎, 𝑏 , 𝑐  (𝑠 𝑎, 𝑠 𝑏, 𝑐  = 𝑠 𝑠 𝑎,𝑏 , 𝑐 ) (1c) 

Monotonicity: 𝑏 ≤ 𝑐 ⇒ 𝑡 𝑎, 𝑏 ≤ 𝑡 𝑎, 𝑐  (𝑏 ≤ 𝑐 ⇒ 𝑠 𝑎, 𝑏 ≤ 𝑠 𝑎, 𝑐 ) (1d) 
Also the secondary properties of a t-norm (and respectively t-conorm) are as follows. A t-norm 

(s-norm) may or may not have each of these properties. 

Continuity:                𝑡: continuous (𝑠: continuous) (2a) 
Being Archimedian: 𝑡 𝑎,𝑎 < 𝑎,∀𝑎 ∈  0,1  (𝑠 𝑎, 𝑎 > 𝑎,∀𝑎 ∈  0,1 ) (2b) 
Strict monotonicity:  

𝑡 𝑎, 𝑏 < 𝑡 𝑎, 𝑐 ,∀𝑎 ∈  0,1  𝑎𝑛𝑑 𝑏 < 𝑐 
(𝑡 𝑎,𝑏 < 𝑡 𝑎, 𝑐 , 
     ∀𝑎 ∈  0,1  𝑎𝑛𝑑 𝑏 < 𝑐) 

(2c) 

Another additional property is considered in this paper as a tertiary property and that is the 
differentiability of a t-norm and t-conorm which is discussed in the next section after introducing the 
new fuzzy compositions. 

This paper consists of four sections . In section 2, the new t-norms and t-conorms are 
introduced and their properties are investigated. Then in section 3, the proposed fuzzy relational 
compositions are used in some modeling problems which approve the use of them. Finally a brief 
conclusion is presented in section 4. 

 

2. Introducing New Fuzzy Relational Compositions 
The new fuzzy relational compositions are of the form s-t where 𝑠 and 𝑡 are respectively some 

new t-conorms and t-norms which are presented in Table 1. 
 

Table 1. The proposed t-norms and t-conorms, five t-norms and five t-conorms 

# t-norm 𝒕 𝒂,𝒃  t-conorm 𝒔 𝒂,𝒃  

Paramete

r 

Boundary 

1  𝛽log 𝛽  𝛽−1 𝑎+1  log 𝛽   𝛽−1 𝑏+1 − 1  𝛽 − 1    𝛽 − 𝛽log 𝛽  𝑎+𝛽−𝑎𝛽   log 𝛽  𝑏+𝛽−𝑏𝛽    𝛽 − 1   𝛽 ∈  1,∞  

2 1 − cos  
2

𝜋
cos−1 1 − 𝑎 cos−1 1− 𝑏   

  𝛽 − 1 𝑎 + 1   𝛽 − 1 𝑏 + 1 𝛽− log 𝛽   𝛽−1 𝑎+1  log 𝛽  𝛽−1 𝑏+1 − 1

 𝛽 − 1 
 𝛽 ∈  1,∞  

3 
4

𝜋
tan−1  tan 

𝜋

4
𝑎 tan  

𝜋

4
𝑏   1 −

4

𝜋
tan−1  tan 

𝜋

4
 1− 𝑎  tan 

𝜋

4
 1 − 𝑏    --- 

4 1 −
2

𝜋
cos−1  sin 

𝜋

2
𝑎 sin  

𝜋

2
𝑏   

2

𝜋
cos−1  cos 

𝜋

2
𝑎 cos  

𝜋

2
𝑏   --- 

5 cos  cos−1𝑎 + cos−1𝑏 −
2

𝜋
cos−1𝑎 cos−1𝑏  cos 

2

𝜋
cos−1𝑎 cos−1𝑏  --- 

 
The differentiability of the components of the fuzzy relational composition is important for us to 

have the ability of using the gradient-based methods to tune the parameters of the model in fuzzy 
relational modeling. In this regard we accept a fuzzy relational composition for the smooth fuzzy 
relational modeling if the contributing t-norm and t-conorm are differentiable everywhere in 
 0,1 ×  0,1  or at least differentiable almost everywhere in  0,1 ×  0,1 . 

In Table 1, t-norms 1, 3, and t-conorms 1-3 are differentiable everywhere and the other ones are 
differentiable almost everywhere. In fact t-norm 2 is nondifferentiable in 𝑎 = 0, t-norm and t-conorm 
4 are nondifferentiable in  0,0 , and t-norm and t-conorm 5 are nondifferentiable in 𝑎 = 1. 

Also all the proposed t-norms and t-conorms of Table 1 have all of the secondary conditions (2) in 
addition to the necessary conditions (1). Hence they are well-behavior. 

 
Definition 1. Let  𝐿𝑖 𝑖∈ 0,1  be the level sets of a function 𝑓:  0,1 2 →  0,1 , dim 𝐿𝑖 = 𝑙𝑖  for 

𝑖 ∈  0,1 , and 𝑛 = max𝑖 𝑙𝑖  . Then 𝑓 is called 𝑛-D-to-one. 
 
The notion of 𝑛-D-to-one can be defined for any multi-variable function. Here, for t-norm and t-

conorm, 𝑛 ≤ 2. If a t-norm or t-conorm is 2-D-to-one then it shows a kind of saturation behavior. 
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Hence being 1-D-to-one is favorite from the viewpoint of effective computational models. Also note 
that being 𝑛-D-to-one and specifically 1-D-to-one for a multi-variable function is somehow an 
extension of the notion of being one-to-one for a single-variable function. It is worth mentioning that 
when a t-norm or t-conorm has the secondary properties (2) then it is 1-D-to-one. Therefore all the 
proposed t-norms and t-conorms of Table 1 are 1-D-to-one. Checking the primary and secondary 
properties of the proposed t-norms and t-conorms using (1) and (2) is straightforward. 

 
 

3. Application and Simulation Results 
In this section the FRCs made up of the t-norms and t-conorms of Table 1 are applied to fuzzy 

relational modeling of some dynamic systems. The mean squared error is calculated to assess the 
identification process. In view of the differentiability, since the proposed FRCs are at least 
differentiable almost everywhere in their domain, so smooth fuzzy relational modeling is possible 
through gradient-based methods for parameter tuning.  

 
 

3.1. Mackey-Glass time series [3] 
This time series is in fact the output of a dynamic system represented by the following differential 

equation. 

 𝑥 =
0.2 𝑥 𝑡−𝜏 

1+𝑥10 𝑡−𝜏 
− 0.1 𝑥 𝑡  (3) 

For 𝜏 ≥ 17 the system becomes chaotic. The more the value of 𝜏 is, the more chaotic is the system. 
Here, 𝜏 = 30, which represents a very chaotic behavior. One thousand data is produced, 500 for 
identification, and 500 for verification, and 𝑥 𝑡 + 6  is predicted from 𝑥 𝑡 , 𝑥 𝑡 − 6 , 𝑥 𝑡 − 12 , and 
𝑥 𝑡 − 18 .  The initial condition is 𝑥 0 = 1.2.  

Figure 1 shows the result for the verification data where the mean squared error 𝐽 = 0.0083 is 
achieved. The result of some other methods for this benchmark problem can be found at [4]. 
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Figure 1. Verification of the FRM identified by Mackey-Glass times series with 𝜏 = 30 , three linguistic terms, and 
FRC #1  

(Actual output, Model output, and the error curve) 

 
 

3.2. Nonlinear dynamical system 
The system is described by the following equations. 

 

 
 
 

 
 
𝑥1 = 𝑦 𝑘 

𝑥2 = 𝑦 𝑘 − 1 

𝑥3 = 𝑦 𝑘 − 2 

𝑥4 = 𝑢 𝑘 

𝑥5 = 𝑢 𝑘 − 1 

  , 𝑦 𝑘 + 1 =
𝑥1𝑥2𝑥3𝑥5 𝑥3−1 +𝑥4

1+𝑥2
2+𝑥3

2  (4a) 

where the input is as follows. 

 𝑢 𝑘 =  

sin 𝜋𝑘 25  
1

0 ≤ 𝑘 ≤ 250
250 ≤ 𝑘 ≤ 500

−1
0.3 sin 𝜋𝑘 25  + 0.1 sin 𝜋𝑘 32  + 0.6 sin 𝜋𝑘 10  

500 ≤ 𝑘 ≤ 750
750 ≤ 𝑘 ≤ 1000

   (4b) 

 
To model the system, 1000 data pairs were generated by Simulink. The identification process 

yields 𝐽𝑙𝑒𝑎𝑟𝑛 = 0.0017. The result can be seen in Fig. 7. Only two linguistic terms are used in this FRM. 
 

 
Figure 2. Actual output, model output, and error curve for fuzzy relational modeling of the dynamic system of 

Section 3.2 

 
 

3.3. Synchronous generator 
In this section the FRM of a synchronous generator is obtained using the proposed FRCs. The 

input and output of the generator system are respectively the field voltage and the electrical power. 
Hence the inputs of the FRM is considered as 𝑦 𝑘 − 1  and 𝑢 𝑘 −𝑚 . The identification is done for 
several values of 𝑚 as seen in Table 2. This leads to selecting 𝑚 = 0 which means no delay for the 
input. There exist one thousand data for this problem, where we used the first 300 data for tuning the 
FRM and the last 700 data for verification of the FRM. The results of identification and verification are 
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shown respectively in Fig. 3 and Fig. 4. The mean squared errors  𝐽𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 74 × 10−6 and 

𝐽𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 82 × 10−6 are achieved in this run. 

 

 
Figure 3. Identification of the FRM for the synchronous generator with only two linguistic terms and FRC #3  

 
 

Table 2. The mean squared error versus several input delays, for FRM with FRC #4 
Input delay 𝑚 Mean squared error 𝐽 

0 0.00011210 

1 0.00011221 

2 0.00011235 

3 0.00011287 

4 0.00017631 

 
 

 
Figure 4. Verification of the FRM for the synchronous generator with only two linguistic terms and FRC #3  
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In this paper, some new t-norms and t-conorms are proposed to establish new FRCs. These t-
norms and t-conorms have the secondary properties in addition to the necessary primary ones. They 
are also differentiable almost everywhere in their domains. This makes them popular to be used in 
smooth fuzzy relational modeling leading to more accurate models of arbitrary functions and dynamic 
systems. Simulation results justified the use of the proposed FRCs in FRMs.  
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