

http://www.TJMCS.com

The Journal of Mathematics and Computer Science Vol.2 No.4 (2011) 698-701

A NOTE ON COMPACT OPERATORS VIA ORTHOGONALITY

Hossein Asnaashari Eivary Faculty of Basic Science, Zabol University, Zabol, Iran h.asnaashar@gmail.com

Received: August 2010, Revised: November 2010 Online Publication: January 2011

Abstract

In this paper, we extend the usual notion of orthogonality to Banach spaces. Also, we establish a characterization of compact operators on Banach spaces that admit orthonormal Schauder bases.

AMS Subject Classification(2000): 46B20, 47L05, 46A32, 46B28.

Key Words: Orthogonality, compact operator.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper K is the field of real or complex numbers, E is a Banach space over K and norm denoted by $\|.\|$, and $(x_n) = (x_n)_{n=1}^N = (x_n)_{n \in L}$ is a finite or infinite sequence in E, where either N is a positive integer and $L = \{1, 2, ..., N\}$ or $N = \infty$ and $L = \{1, 2, ...\}$. For $J(\neq \emptyset) \subset L$, the closure of the span of the set $\{x_n : n \in J\}$ is denoted by $[x_n : n \in J]$.

The reader is referred to [2] for undefined terms and notation.

The notion of orthogonality goes a long way back in time. Usually this notion is associated with Hilbert spaces or, more generally, inner product spaces. Various extensions have been introduced through the decades. Thus, for instance, x is orthogonal to y in E

(a) In the sense of (G. Birkhoff [1]) if for every $\alpha \in K$

$$\|x + \alpha y\| \ge \|x\|;$$

Hossein Asnaashari Eivary/ TJMCS Vol .2 No.4 (2011) 698-701

(b) In the sense of (B. D. Roberts [5]) if for every $\alpha \in K$

$$||x + \alpha y|| = ||x - \alpha y||;$$

(c) In the isosceles sense (R. C. James [4]) if

$$||x + y|| = ||x - y||;$$

(d) In the Pythagorean sense (R. C. James [4]) if

$$||x - y||^2 = ||x||^2 + ||y||^2;$$

(e) In the sense of (I. Singer [7]) if

$$\|\frac{x}{\|x\|} + \frac{y}{\|y\|}\| = \|\frac{x}{\|x\|} - \frac{y}{\|y\|}\|.$$

One of the natural and simple properties of orthogonality in a Hilbert space H that one would like to hold true in a Banach space is that x is orthogonal to y in H if and only if

 $\begin{array}{ll} (1.1) & \|x+\lambda_1y\| = \|x+\lambda_2y\|, \qquad for \ all \ \lambda_1, \lambda_2 \in K, |\lambda_1| = |\lambda_2| \\ \text{Clearly, in any Banach space, Eq. (1.1) is equivalent to} \\ (1.2) & \|\lambda x + \mu y\| = \||\lambda|x + |\mu|y\|, \qquad for \ all \ \lambda, \mu \in K \\ \text{Hence, we introduce the following definition:} \end{array}$

Definition 1. A finite or infinite sequence $(x_n)_{n \in L}$ in a Banach space E is said to be orthogonal if

(1.6)
$$\|\sum_{n \in L} a_n x_n\| = \|\sum_{n \in L} |a_n| x_n\|, \quad \text{for each } \sum_{n \in L} a_n x_n \in E.$$

If in addition $||x_n|| = 1$ for all $n \in L$ then $(x_n)_{n \in L}$ is said to be orthonormal. We write $x \perp y$ if x is orthogonal to y.

It is clear from the definition that $(x_n)_{n \in L}$ is orthogonal in E if and only if $(x_n)_{n \in L}$ is orthogonal in $[x_n : n \in L]$.

Note that Definition 1 is an extension of the usual notion of orthogonality since in a Hilbert space H, $x \perp y$ in our sense if and only if $\langle x, y \rangle = 0$, where $\langle ., . \rangle$ denotes the inner product in H.

Theorem 2. [6] Given a sequence $(x_n)_{n \in L}$ in E, the following are equivalent: (i) The sequence $(x_n)_{n \in L}$ is orthogonal in E.

(ii) For each pair of sequences $(b_n)_{n \in L}$ and $(c_n)_{n \in L}$ in K satisfying $|b_n| = |c_n|$ for all $n \in L$, $\sum_{n \in L} c_n x_n$ converges if and only if $\sum_{n \in L} b_n x_n$ converges and if both converge,

$$\|\sum_{n\in L}b_nx_n\| = \|\sum_{n\in L}c_nx_n\|$$

Hossein Asnaashari Eivary/ TJMCS Vol .2 No.4 (2011) 698-701

2. CHARACTERIZATION OF COMPACT OPERATORS

Let L(F, E) denote the set of bounded linear operators from the normed space F into the Banach space E. It is known that if F and E are Hilbert spaces, then $T \in L(F, E)$ is compact, if and only if, T is the limit in L(F, E) of a sequence of finite-rank operators [2]. This gives a convenient and practical characterization of compact operators in Hilbert spaces. We show here that the same characterization still holds true for any Banach space E that admits an orthonormal Schauder basis and any normed space F. More precisely, we have:

Theorem 3. Suppose that $\{e_n\}_{n=1}^{\infty}$ is an orthonormal Schauder basis of the Banach space E and that F is a normed space. For each positive integer k, let P_k be the projection on $[e_n : 1 \le n \le k]$ defined by

$$P_k(\sum_{n=1}^{\infty} \alpha_n e_n) = \sum_{n=1}^k \alpha_n e_n, \qquad \sum_{n=1}^{\infty} \alpha_n e_n \in E.$$

Then, an operator $T \in L(F, E)$ is compact, if and only if, $P_k \circ T$ converges to T in L(F, E).

proof. The sufficiency part follows from the fact that for every Banach space E and every normed space F, the limit in L(F, E) of a sequence of finite-rank operators is a compact operator [3].

Now, suppose that $T \in L(F, E)$ is compact. For each positive integer k, let $T_k = P_k \circ T$. Note that since $\{e_n\}_{n=1}^{\infty}$ is orthonormal, it follows by Theorem 2 that $P_k \in L(E)$ and $||P_k|| = 1$ for all k. Clearly we have, since $\{e_n\}_{n=1}^{\infty}$ is a Schauder basis of E,

$$\lim_{k \to \infty} P_k(y) = y, \qquad for \ each \ y \in E$$

Let B be the closed unit ball in F. Since T is compact, it follows that K = cl(T(B)) is a compact subset of E. We need to show that

$$\lim_{k \to \infty} \sup_{x \in B} \|T_k(x) - T(x)\| = 0.$$

Suppose this is not true. Then there exist $\varepsilon > 0$, a subsequence $\{T_{k_j}\}$, and a sequence $\{x_{k_j}\}$ in B such that

(*) $||T_{k_j}(x_{k_j}) - T(x_{k_j})|| > \varepsilon$, for all j Since K is compact, there exists a subsequence of $\{x_{k_j}\}$, say $\{x_{k_j}\}$, such that the sequence $\{T(x_{k_j})\}$ converges in K to some $y \in K$. Then we have, since $||P_{k_j}|| = 1$ for all j,

$$\begin{aligned} \|T_{k_j}(x_{k_j}) - T(x_{k_j})\| &\leq \|P_{k_j}(T(x_{k_j})) - P_{k_j}(y)\| + \|T(x_{k_j}) - P_{k_j}(y)\| \\ &\leq \|T(x_{k_j}) - y\| + \|T(x_{k_j}) - P_{k_j}(y)\| \end{aligned}$$

Hossein Asnaashari Eivary/ TJMCS Vol .2 No.4 (2011) 698-701

Letting $j \to \infty$, we obtain, since $\{T(x_{k_j})\}$ and $\{P_{k_j}(y)\}$ both converge to y, that

$$\lim_{j \to \infty} \|T_{k_j}(x_{k_j}) - T(x_{k_j})\| = 0,$$

which contradicts (*).

As a corollary we have,

Corollary 4. If E is a Banach space that admits an orthonormal Schauder basis and F is a normed space, then an operator $T \in L(F, E)$ is compact if and only if it is the limit in L(F, E) of a sequence of finite-rank operators.

References

- [1] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1(1935), 169172.
- [2] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985.
- [3] F. Hirsch and G. Lacombe, Elements of functional analysis, Springer-Verlag, New York, 1999.
- [4] R.C.James, Orthogonality in normed linear spaces, Duke Math. J.12 (1945), 291302.
- [5] B. D. Roberts, On the geometry of abstract vector spaces, Tohoku Math. J. **39**(1934), 4259.
- [6] F. B. Saidi, An extension of the notion of orthogonality to Banach Spaces, J. of Mathematical Analysis and Applications 267(2002), 2947.
- [7] I. Singer, Unghiuri abstracte si functii trigonometrice n spatii Banach, Bul. Stiint. Acad. R. P. R. Sect . Stiint. Mat. Fiz. 9(1957), 2942.