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Abstract

In this paper, we extend the usual notion of orthogonality to Banach spaces. Also,
we establish a characterization of compact operators on Banach spaces that admit
orthonormal Schauder bases.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper K is the field of real or complex numbers, E is a Banach
space over K and norm denoted by ||.||, and (z,,) = (2,)Y_; = (2)ner is a finite
or infinite sequence in E, where either N is a positive integer and L = {1,2,..., N}
or N =occ and L = {1,2,...}. For J(# 0) C L, the closure of the span of the
set{x, : n € J} is denoted by [z, : n € J].

The reader is referred to [2] for undefined terms and notation.

The notion of orthogonality goes a long way back in time. Usually this notion is
associated with Hilbert spaces or, more generally, inner product spaces. Various
extensions have been introduced through the decades. Thus, for instance, = is
orthogonal to y in F

(a) In the sense of (G. Birkhoff [1)) if for every a € K

[l + ayll = ||zl
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(b) In the sense of (B. D. Roberts [5]) if for every o € K

lz +ayll = |z — ayll;

(c) In the isosceles sense (R. C. James [4]) if

o +yll = llz —yl;

(d) In the Pythagorean sense (R. C. James [4]) if

lz = ylI* = llzl* + llyll*;

(e) In the sense of (I. Singer [7]) if

z Y z Y
b o = e =

]l 1yl ]l 1lyll

One of the natural and simple properties of orthogonality in a Hilbert space H that
one would like to hold true in a Banach space is that x is orthogonal to y in H if

and only if

(1.1) HJJ—F)\lyH = HJJ—F)\Q:UH, fO’I“ all )\1,/\2 EK,|)\1‘ = ‘)\gl
Clearly, in any Banach space, Eq. (1.1) is equivalent to

(1.2) 1Az + pyll = [z + [yl forall A\, pe K

Hence, we introduce the following definition:
Definition 1. A finite or infinite sequence (2, )ner in a Banach space E is said to
be orthogonal if

(1.6) I Z any| = || Z |an|zn]l, for each Z anxn € E.

neL neL nelL
If in addition ||z,| = 1 for all n € L then (x,)ner is said to be orthonormal. We

write x L y if x is orthogonal to y.

It is clear from the definition that (z,,)ney is orthogonal in F if and only if (2, )ner
is orthogonal in [z, : n € L.

Note that Definition 1 is an extension of the usual notion of orthogonality since in
a Hilbert space H , L y in our sense if and only if (z,y) = 0, where (.,.) denotes
the inner product in H.

Theorem 2. [6] Given a sequence (z,,)ncr, in F, the following are equivalent:

(i) The sequence (z,,)ner is orthogonal in E.

(ii) For each pair of sequences (b, )necpand (¢, )ner in K satisfying |b,| = |c,| for all
n €L, Z Cny converges if and only if Z bz, converges and if both converge,
neL neL
| Z bzl = || Z enn|
neL nel
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2. CHARACTERIZATION OF COMPACT OPERATORS

Let L(F, E) denote the set of bounded linear operators from the normed space
F into the Banach space E. It is known that if F' and E are Hilbert spaces, then
T € L(F,E) is compact, if and only if, T is the limit in L(F, E) of a sequence of
finite-rank operators [2]. This gives a convenient and practical characterization of
compact operators in Hilbert spaces. We show here that the same characterization
still holds true for any Banach space E that admits an orthonormal Schauder basis
and any normed space F. More precisely, we have:
Theorem 3. Suppose that {e,}>2; is an orthonormal Schauder basis of the Ba-
nach space E and that F' is a normed space. For each positive integer k, let Pj be
the projection on [e, : 1 < n < k] defined by

0o k [e's)
Py( Zanen) = Zanen, Zanen c k.
n=1 n=1 n=1

Then, an operator T' € L(F, F) is compact, if and only if, Py o T converges to T in
L(F,E).

proof . The sufficiency part follows from the fact that for every Banach space F
and every normed space F, the limit in L(F, E) of a sequence of finite-rank opera-
tors is a compact operator [3].

Now, suppose that T € L(F,E) is compact. For each positive integer k, let
T, = P, oT. Note that since {e,}> is orthonormal, it follows by Theorem 2
that P, € L(E) and ||Px|]| = 1 for all k. Clearly we have, since {e,}>2, is a
Schauder basis of FE,

lim Py(y) =y, foreachy e E

k— o0

Let B be the closed unit ball in F. Since T is compact, it follows that K = cl(T(B))
is a compact subset of . We need to show that

lim sup ||Tx(x) — T'(z)| = 0.
k—oo xEB

Suppose this is not true. Then there exist ¢ > 0, a subsequence {7%;}, and a
sequence {; } in B such that

(+) T (on,) — (i) > =, for all ]
Since K is compact, there exists a subsequence of {xy,}, say {xy,}, such that the
sequence {T'(xy,) }converges in K to some y € K. Then we have, since || Py, | = 1
for all 7,
[ Th, ;) = T )l < NPr, (T (k) = Pry I+ 1T (;) — Pry (9)]
< T Gwy) =yl + 1T (n,) = Py (9l
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Letting j — oo, we obtain, since {T'(x,)} and {Py;(y)} both converge to y, that

Jim (| T, () — T, )| =0,

which contradicts (x).

As a corollary we have,

Corollary 4. If F is a Banach space that admits an orthonormal Schauder basis
and F is a normed space, then an operator T € L(F, E) is compact if and only if
it is the limit in L(F, E') of a sequence of finite-rank operators.
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