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Abstract
We present a mathematical model of pathogenic bacteria and bacteriophages, incorporating an abortive infection as a

mechanism of bacterial protection against viral infection. We identified three equilibria: the extinction equilibrium point, the
bacteriophages extinction equilibrium, and the coexistence equilibrium. The stability of these equilibria is determined by thresh-
olds. We found that the extinction equilibrium point is always unstable, while the bacteriophages extinction equilibrium is
globally asymptotically stable. The stability of the coexistence equilibrium varies, being unstable, locally asymptotically stable,
or globally asymptotically stable depending on certain thresholds. We conclude that bacterial extinction is not possible, possibly
due to the inclusion of the abortive infection, but it is feasible to maintain a low level of pathogenic bacteria.
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1. Introduction

Most bacteria are beneficial to humans, but there are some that are pathogenic and can cause serious
damage to human health. Fortunately, to counteract this, there are antibiotics that can control the dam-
age caused by these pathogenic bacteria. However, the indiscriminate use of antibiotics has led many
bacteria to develop resistance, creating a significant problem in both health and economic impact world-
wide. Currently, to address antibiotic resistance, bacteriophage therapies are being used. Bacteriophages
(phages) are viruses that attack bacteria and lyse them. On the other hand, bacteria have defense mech-
anisms against phage infection. One of these mechanisms is Abortive Infection (Abi), a phage resistance
strategy in which the infected cell commits suicide before the phage can complete its replication cycle.
Abi prevents the phage epidemic from spreading to nearby cells, thus protecting the bacterial colony
[1, 4, 12, 15].

In this paper, we formulate a model considering pathogenic bacteria with bacteriophages, incorporat-
ing the Abi effect, to determine the levels at which we could control the bacterial population or in what
conditions bacteria might survive despite bacteriophage attacks. To do this, we denote the bacterial popu-
lation by B(t) and the bacteriophage population by P(t). We assume that the bacteria grow following the
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logistic growth equation, i.e., kB
(
1 − B

N

)
, where k is the growth rate and N is the carrying capacity. The

control of pathogenic bacteria occurs due to the action of bacteriophages at a rate α BP
a+B , where α is the

infection rate of bacteria by bacteriophages and a is the half-saturation bacteria density. Additionally, we
consider that in some cases, when a bacterium is infected with a phage, it dies, and the infecting phage is
lost; this is the protection mechanism by Abi and is included in the model as δBP.

For the bacteriophages, their growth occurs at a rate θα BP
a+B , where θ is the burst size for infected

bacteria, and they decay at a rate rP. Therefore, the two compartments are described dynamically by the
following set of ordinary differential equations:

dB

dt
= kB

(
1 −

B

N

)
−α

BP

a+B
− δBP,

dP

dt
= θα

BP

a+B
− rP. (1.1)

This is a simplistic model, but it captures many characteristics of the dynamics between bacteria and
bacteriophages. There are models considering these interactions; for example, in [2], a mathematical
model of interaction between bacteriophages and bacteria is presented, which includes temperature and
pH as parameters affecting bacterial growth. In [10], the authors explore a mathematical model to evaluate
the spread of antimicrobial resistance by phages. Many other models consider viral infection by phages
and bacteria (see [3, 5, 6, 8, 9, 11, 16]). Our model includes the abortive infection of bacteria and considers
bacterial infection as a predator-prey process with a saturation effect, which the others do not.

The organization of this paper is as follows. In Section 2, the local stability analysis of the extinction
equilibrium point, bacteriophage extinction equilibrium, and coexistence equilibrium is proved. In Section
3, the global stability of equilibrium points is proved. In Section 4, numerical simulations were performed
to corroborate our analytical results. In Section 5, we discuss our results.

2. Local stability analysis

The equilibrium points are: E0 = (0, 0), E1 = (N, 0), and E2 = (B∗,P∗), where B∗ = ra
θα−r and

P∗ = kaθ
(δaθ+θα−r)

(
1 − ra

N(θα−r)

)
. For the existence of E2, we need θα > r and Q0 =

N(θα−r)
ra > 1

(equivalently, Q0 = N
B∗ > 1 or B∗ < N). We call these points E0 the extinction equilibrium, E1 the

bacteriophage extinction equilibrium, and E2 the coexistence equilibrium.
Since we are modeling microbiological species, we take the set Ω = {(B,P) : P ⩾ 0, 0 ⩽ B ⩽ N} as the

set of biological interest (it is easy to show that this set is positively invariant with respect to the system
(1.1)).

We are going to study the asymptotic stability of the system (1.1) at the extinction equilibrium E0 =
(0, 0), the bacteriophage extinction equilibrium E1 = (N, 0), and the coexistence equilibrium point E2 =
(B∗,P∗). The linearization of this system around an equilibrium E is given by x ′ = J(E)x, where x =
(B,P)T , and the matrix J is the Jacobian matrix of the system (1.1) evaluated at E, which is

J(E) =

(
k− 2kB

N − αaP
(a+B)2 − δP − αB

(a+B) − δB
θαaP
(a+B)2

θαB
(a+B) − r

)
.

It is easy to check that the eigenvalues of the Jacobian matrix evaluated at E0 are k and −r. In this way,
this point is always unstable. Now we check the point E1, and the Jacobian matrix evaluated at this point
is

J(E1) =

(
−k − αN

(a+N) − δN

0 N(θα− r)
(

1 − 1
Q0

)) .

The eigenvalues are −k and N(θα− r)
(

1 − 1
Q0

)
. The last eigenvalue can be negative, zero, or positive,

leading to the following result.

Theorem 2.1. The equilibrium E1 is locally asymptotically stable if Q0 < 1 and unstable if Q0 > 1.
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Remark 2.2. Observe that when Q0 = 1, the Jacobian matrix has a zero eigenvalue, so we cannot conclude
the stability in this case. We will discuss this in the next section.

Theorem 2.3. The coexistence equilibrium E2 is

1. locally asymptotically stable if 1 < Q0 ⩽ 2 (equivalently N
2 ⩽ B∗ < N);

2. locally asymptotically stable if Q0 > 2 (B∗ < N/2) and Q1 =
(θα−r)2(Nθα+ra)

2raθα(θα−r)+ra2αθ2δ+N(θα−r)3 < 1;
3. unstable if Q0 > 2 (B∗ < N/2) and Q1 > 1;
4. a Hopf bifurcation exists if Q0 > 2 (B∗ < N/2) and Q1 = 1.

Proof. The Jacobian matrix evaluated at E2 is

J(E2) =

(
k− 2kB∗

N − αaP∗

(a+B∗)2 − δP∗ − αB∗

(a+B∗) − δB∗

θαaP∗

(a+B∗)2
θαB∗

(a+B∗) − r

)
=

(
k− 2kB∗

N − αaP∗

(a+B∗)2 − δP∗ − αB∗

(a+B∗) − δB∗

θαaP∗

(a+B∗)2 0

)
,

the characteristic polynomial is det(J(E2) − λI) = λ2 − Tr(J(E2))λ+ det J(E2) = 0, where Tr(J(E2)) is the
trace of J(E2) and det J(E2) is the determinant of J(E2). If Tr(J(E2)) < 0 and det J(E2) > 0, we will have
that the roots of this polynomial have negative real part. In fact,

det J(E2) =
θαaP∗

(a+B∗)2

(
αB∗

(a+B∗)
+ δB∗

)
is positive and

Tr(J(E2)) = k−
2kB∗

N
−

αaP∗

(a+B∗)2 − δP∗ = k

(
1 −

2B∗

N

)
−

αaP∗

(a+B∗)2 − δP∗. (2.1)

Then, if the inequalities in item 1 are satisfied, we conclude that the trace is negative, and in this way, we
check 1. For the other items, we proceed as follows: first, we assume that B∗ < N/2, as this is the only
scenario where the trace can be positive or zero. Second, we substitute the values of B∗ and P∗ in (2.1) to
obtain:

Tr(J(E2)) = k

(
1 −

2
N

ra

θα− r

)
−

αa

(a+ ra
θα−r)

2
kaθ

(δaθ+ θα− r)

(
1 −

ra

N(θα− r)

)
− δ

kaθ

(δaθ+ θα− r)

(
1 −

ra

N(θα− r)

)
= k

(
1 −

2
N

ra

θα− r

)
−

k(θα− r)2

θα(δaθ+ θα− r)

(
1 −

ra

N(θα− r)

)
− δ

kaθ

(δaθ+ θα− r)

(
1 −

ra

N(θα− r)

)
=

k

N(θα− r)θα(δaθ+ θα− r)
{N(θα− r)θα(δaθ+ θα− r) − 2raθα(δaθ+ θα− r)

−
[
(θα− r)2 + δaθ2α

]
[N(θα− r) − ra]

}
=

k

N(θα− r)θα(δaθ+ θα− r)

×
{
N(θα− r)2θα− 2raθα(θα− r) − ra2αθ2δ−N(θα− r)3 + (θα− r)2ra

}
=

k
[
2raθα(θα− r) + ra2αθ2δ+N(θα− r)3

]
N(θα− r)θα(δaθ+ θα− r)

[
(θα− r)2(Nθα+ ra)

2raθα(θα− r) + ra2αθ2δ+N(θα− r)3 − 1
]

=
k
[
2raθα(θα− r) + ra2αθ2δ+N(θα− r)3

]
N(θα− r)θα(δaθ+ θα− r)

(Q1 − 1) .

From this we have Tr(J(E2)) < 0 if Q1 < 1, Tr(J(E2)) > 0 if Q1 > 1, and Tr(J(E2)) = 0 if Q1 = 1, from which
the items 2, 3, and 4 will follow.
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3. Global stability analysis

We are going to prove that the bacteriophage extinction equilibrium E1 and coexistence equilibrium
E2 are globally asymptotically stable.

Theorem 3.1. If Q0 ⩽ 1, the equilibrium E1 is globally asymptotically stable.

Proof. P ⩾ 0 and 0 < B ⩽ N. According to the first equation of (1.1), we have

dB

dt
< kB

(
1 −

B

N

)
=⇒ B <

N

e−kt + 1
=⇒ lim sup

t→∞ B ⩽ N.

We start analyzing the case when Q0 = 1, i.e., N(θα− r) = ra. According to the second equation of (1.1),
we get

dP

dt
=

P

a+B
(θαB− ra− rB) =

P

a+B
(B(θα− r) − ra)

=
P

a+B
(B(θα− r) −N(θα− r)) =

P

a+B
[(B−N)(θα− r)] .

Then for P ⩾ 0 and 0 < B ⩽ N, we have dP
dt ⩽ 0, therefore, P(t) → 0 as t → ∞. Now, we consider the case

Q0 < 1. From the second equation of (1.1), we have

dP

dt
=

P

a+B
(θαB− ra− rB) <

P

a
(θαB− ra− rB)

=
P

a
(B(θα− r) − ra)

< rP

(
N(θα− r)

ra
− 1
)

=⇒ P < c2e
r
(
N(θα−r)

ra −1
)
t
= c2e

r(Q0−1)t.

Since Q0 < 1 and P ⩾ 0, then lim
t→∞P = 0. Therefore, for all ϵ ∈ (0, 1), there exists T such that if t ⩾ T , then

0 < P < ϵ. According to the first equation of (1.1), we get:

dB

dt
> kB

(
1 −

B

N

)
−

α

a
Bϵ− δBϵ =⇒ B >

N(k− αϵ
a − δϵ)

e−(k−αϵ
a −δϵ)t + 1

=⇒ lim inf
t→∞ B ⩾ N.

Therefore, lim
t→∞B = N. In other words, the equilibrium E1 is globally asymptotically stable if Q0 ⩽ 1.

Theorem 3.2. The set Ω1 defined by

Ω1 =

{
(B,P) :

N

2
⩽ B < N,P > 0

}
is positively invariant with respect to the solutions of the system (1.1), when 1 < Q0 ⩽ 2 (see Figure 1).

Proof. We start with P > 0, B = N. Then, in the equations of system (1.1), we have:

dB

dt
= −α

NP

a+N
− δNP < 0,

dP

dt
= θα

NP

a+N
− rP = P

(
N(θα− r) − ra

a+N

)
= raP

(
Q0 − 1
a+N

)
> 0.

This means that any solution with initial conditions P > 0, B = N, tends to move toward the set Ω1. Now,
we consider P > 0, B = N

2 , and we will prove that all the solutions get inside the set Ω1. In fact,

dP

dt
= θα

N
2 P

a+ N
2

− rP = P

(
N
2 (θα− r) − ra

a+ N
2

)
= raP

(
Q0
2 − 1
a+ N

2

)
=⇒ P = e

ra

(
Q0

2 −1

a+N
2

)
t

> 0,
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which shows that P decays exponentially provided 1 < Q0 ⩽ 2. Therefore, P(t) > 0. From this, we have
that there exists ϵ > 0 such that 0 < P < ϵ and

dB

dt
= kB

(
1 −

B

N

)
−α

BP

a+B
− δBP > kB

(
1 −

B

N

)
−α

Bϵ

a+B
− δBϵ > 0.

This means that starting at B = N
2 , the function B starts to increase, i.e., the solution of the system enters

inside of Ω1. Now we take a point P > 0 and N
2 < B < N, and we have

P

a+ N
2

(
N

2
(θα− r) − ra

)
<

dP

dt
=

P

a+B
(B(θα− r) − ra) <

P

a+N
(N(θα− r) − ra) .

This implies that

0 < c1e
t

a+N
2
(N

2 (θα−r)−ra)
< P < c2e

t
a+N (N(θα−r)−ra) or 0 < c1e

rat

a+N
2

(
Q0

2 −1
)
< P < c2e

rat
a+N (Q0−1).

Using a similar argument as before, we have that there exists υ > 0 such that

kB

(
1 −

B

N

)
−α

Bυ

a+B
− δBυ <

dB

dt
< kB

(
1 −

B

N

)
,

which implies that N
2 < B < N. This means that any initial condition starting with P > 0 and N

2 < B < N

will stay in Ω1. In this way, the set Ω1 is positively invariant.

N

2

N

B

P E2

E0

E1

Figure 1: The figure illustrates the set Ω1 and phase plane when 1 < Q0 ⩽ 2.

Theorem 3.3. If 1 < Q0 ⩽ 2 (equivalently N
2 ⩽ B∗ < N), the coexistence equilibrium E2 is globally asymptotically

stable.

Proof. We are going to show that this system has no periodic orbits in the region Ω1. Denote the right-
hand side of (1.1) by (Q(B,P),R(B,P)), i.e.,

Q(B,P) = kB

(
1 −

B

N

)
−α

BP

a+B
− δBP, R(B,P) = θα

BP

a+B
− rP.
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We will show that the function ϕ(B,P) = 1
P is a Dulac function by showing that ∂

dB

(
Q
P

)
+ ∂

dP

(
R
P

)
< 0 for

all B > 0 and P > 0 in Ω1. In fact,

∂

dB

(
Q

P

)
+

∂

dP

(
R

P

)
=
k

P

(
1 −

2B
N

)
−

αa

(a+B)2 − δ.

By the condition B ⩾ N
2 , we have

∂

dB

(
Q

P

)
+

∂

dP

(
R

P

)
< 0,

which is negative for all B > 0 and P > 0 in Ω1. Thus, the system (1.1) does not have periodic orbits in
the set Ω1. Since the equilibria E0 and E1 are unstable, E2 becomes the only stable attractor of the system
when 1 < Q0 ⩽ 2, i.e., the interior of Ω1 becomes the basin of attraction of E2. Consequently, E2 is globally
asymptotically stable.

A summary of the dynamics is presented in the next image.

Figure 2: The dynamics of the equilibrium points E1 and E2

4. Numerical simulations

For the numerical simulations, we used the parameters listed in Table 1. In Figure 3, the global
asymptotic stability when Q0 ⩽ 1 is shown. The interpretation of this result is that the Abi protection
mechanism was successful against bacteriophage infection [7, 14]. In Figure 4, the global asymptotic
stability when 1 < Q0 ⩽ 2 is shown. Note that in this case, the condition 1 < Q0 ⩽ 2 implies N

2 ⩽ B∗ < N.
If B∗ is very close to N, P∗ will be approximately zero due to its definition, which is a similar situation to
the previous one, i.e., the Abi protection mechanism was again successful. In Figure 5, the local stability
is shown when Q0 > 2 and Q1 < 1. Observe that this implies B∗ < N

2 , and by the equation of P∗, if B∗ is
very close to zero, P∗ is close to its maximum value kaθ

δaθ+θα−r . This is the best scenario because the level
of bacteria can be kept below a threshold where it is no longer harmful [9]. Meanwhile, in Figures 6 and
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7, we show the instability of point E2, which indicates that we cannot predict the concentration of bacteria
and phages [8, 13].

Table 1: Model parameters.
Parameter Definition Value
k Growth rate for bacteria 0.056
N Carrying capacity 3.2
α α is infection rate of bacteria by bacteriophages 1.002* 0.18♦ 0.518⋆ 0.8♠♣

a Half-saturation bacteria density 10.63*♦⋆ 0.63♠ 2.63♣

r Decay rate of bacteriophages 0.03*♦⋆ 0.2♠ 0.001♣

δ Abortive infection rate 0.01* 0.05♦⋆ 0.00006♠ 0.055775♣

θ Burst size for infected bacteria 0.1* 0.8♦⋆♠ 0.09♣

* For E1
For E2 in Theorem 2.3: Item 1 ♦, Item 2 ⋆, Item 3 ♠, Item 4 ♣

Figure 3: Dynamics of phage extinction equilibrium E1 when (Q0 ⩽ 1). In the left figure, the red lines correspond to E. Coli, and
the black tones correspond to phages.

Figure 4: Stability of the coexistence equilibrium when 1 < Q0 ⩽ 2 (Case 1 from Theorem 2.3 and Theorem 3.3). In the left
figure, the red lines correspond to E. Coli, and the black tones correspond to phages.
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Figure 5: Stability of the coexistence equilibrium when Q0 > 2 and Q1 < 1 (Case 2 from Theorem 2.3). In the left figure, the red
lines correspond to E. Coli, and the black tones correspond to phages.

Figure 6: Instability of the coexistence equilibrium E2 when Q0 > 2 and Q1 > 1 (Case 3 from Theorem 2.3). In the left figure, the
red lines correspond to E. Coli, and the black tones correspond to phages.

Figure 7: Instability of the coexistence equilibrium when Q0 > 2 and Q1 = 1. We have a limit cycle when Q1 = 1 (Case 4 from
Theorem 2.3). In the left figure, the red lines correspond to E. Coli, and the black tones correspond to phages.
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5. Discussion

In the realm of epidemiology or virus-host models, the condition Q0 < 1 denotes the potential for
disease elimination or the elimination of the causative virus. However, in mathematical models concerning
phage-pathogen bacteria interactions, this scenario is deemed unfavorable, as the primary objective is the
control or suppression of pathogenic bacteria. Within our model, the equilibrium of phage extinction is
globally asymptotically stable under the condition Q0 ⩽ 1. This observation indicates that, irrespective
of the initial viral load of phages, bacteria demonstrate the capacity to eradicate them through abortive
mechanisms or alternative pathways [14]. Consequently, this circumstance amplifies the probability of
bacterial resistance against such phages. To address this issue effectively, the exploration of diverse
phages exhibiting heightened lytic potential becomes imperative for control purposes.

When the condition Q0 > 1 is met, the existence of a coexistence equilibrium is observed. This equi-
librium can be globally asymptotically stable under the condition 1 < Q0 ⩽ 2, or locally asymptotically
stable under the condition Q0 > 2 and Q1 < 1, and unstable for Q0 > 2 and Q1 > 1 or Q0 = 1. Con-
sequently, within the framework of our model, complete eradication of the pathogenic bacteria is not
attainable; rather, it is feasible to maintain its presence at a level where its potential danger is mitigated.

In conclusion, our model analysis indicates that the dynamics of phage-pathogen bacteria interactions
are not markedly influenced by the initial viral load, but rather by the thresholds Q0 and Q1. The potential
for virus elimination or the control of pathogenic bacteria is determined by these parameters, with Q0 < 1
denoting the potential for phage elimination and Q0 > 1 indicating the coexistence of phages and bacteria.
The worst scenarios are when Q0 ⩽ 1 and 1 < Q0 ⩽ 2, because the bacteria are very close to or equal to
the maximum level N, while the phages are near extinction or zero, which means that the abortive effect
was successful [7, 14]. The best scenario is when Q0 > 2 and Q1 < 1, because we can have a very low
amount of bacteria, where it is no longer harmful [9]. On the other hand, when Q0 > 2 and Q1 > 1, or
Q0 = 1, we can have an outbreak of bacteria or a periodic occurrence of bacteria [8, 13].

It is evident that the need for exploring and utilizing phages with heightened lytic potential is crucial
for the effective control and suppression of pathogenic bacteria. Our model highlights the complexity of
these interactions and emphasizes the importance of considering various scenarios to devise strategies for
mitigating potential dangers posed by pathogenic bacteria. However, further refinement and integration
of empirical data are necessary to enhance the model’s predictive capabilities and inform the development
of effective phage-based control strategies against antibiotic-resistant bacteria.
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