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Abstract
The multi-dividing ontology learning algorithm is specially designed for tree-structured ontology graphs, and has become

a paradigm of graph-based ontology learning. In view of the disturbance of ontology data, this paper proposes perturbation
multi-dividing ontology learning approach. Assuming that the perturbed ontology data are drawn from the same distribution
as before, the error bound of perturbation multi-dividing ontology learning is given in such hypothesis. Finally, we analyze
flaws in theoretical results and gaps with practical applications, and raise the open problem for future study.
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1. Introduction

Ontology is an efficient tool for conceptual structured management and semantic computing, which
has been a salient field in artificial intelligence (See Gao et al. [9, 11, 12]). In terms of graph structure,
ontology describes the relationship between concepts, and is used in medicine, biology and other fields
due to its powerful efficiencies. Specifically, the structured data in ontology is formulated by a (directed)
graph, where each concept represented by a vertex and each edge represents the direct correlation between
two concepts. Let G = (V(G),E(G)) be a graph corresponding to a specific ontology O. The target of
ontology learning is to get an optimal ontology function f : V(G) → R with the help of the ontology
sample set and optimizer. In classification setting, f is a classifier which assigns each vertex a label in
ontology graph. While in information retrieval setting, f is a score function, and the similar ones between
ontology concepts (their corresponding vertices denoted by v and v ′) are measured by |f(v) − f(v ′)|.

Ontology and related derivative algorithms are applied in various fields of artificial intelligence and
introduced into various engineering applications. Bozic [4] conceptualized ontologies for input generation
and output processing by a metamorphic testing trick. Dubslaff et al. [8] proposed and implemented
an approach for the quantitative analysis of ontologized procedures in terms of standard description

∗Corresponding author
Email address: gaowei@ynnu.edu.cn (Wei Gao)

doi: 10.22436/jmcs.039.03.02

Received: 2024-05-08 Revised: 2024-07-29 Accepted: 2025-02-28

http://dx.doi.org/10.22436/jmcs.039.03.02
http://dx.doi.org/10.22436/jmcs.039.03.02
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.039.03.02&domain=pdf


W. Gao, J. Zhou, J. Math. Computer Sci., 39 (2025), 325–337 326

logic reasoning and probabilistic model checking tricks. Osman et al. [14] focused on the heterogeneity
problem, and conducted a comprehensive survey from all ontology integration aspects. Sinha et al.
[17] provided a comprehensive overview of the extant data mining ontologies. Anand and Kumar [2]
identified various uncertainties in ontology by means of different classification of ontology. Abbes et al.
[1] proposed an ontology-based fuzzy melanoma diagnosis system, where the qualitative characteristics
are obtained by fuzzy classifier. Xue et al. [20] introduced an interactive compact memetic algorithm
based semiautomatic ontology matching approach. Buoncompagni et al. [5] determined a new model
to be tested on an ontology network representing knowledge to enable smart homes to perform human
activity recognition online. In Yang et al. [21], an ontology learning technology was introduced to extract
systems engineering ontology from existing standards. Lu et al. [13] introduced the GOPPRRE ontologies
to create the model-based systems engineering formalisms in a domain-specific modeling tool. More
related works on ontology and data representation can be referred to [18, 19].

Most of the existing ontology algorithms are designed according to the specific application back-
ground, or in light of the characteristics of semantic computing. However, due to the need for structured
storage, ontologies are stored in ontology graphs. The graph structure depicts the internal relationship
between ontology concepts, and its topological features contain the structured information of the en-
tire ontology concept distribution. In order to learn ontology functions from structural information, a
multi-dividing ontology learning algorithm, an ontology learning strategy dedicated to tree structure,
is proposed, and its deformation under various frameworks is studied in depth. In details, ontology
concepts are divided into k parts according to the structural features of a particular tree-shaped ontol-
ogy graph, and the classes levels are determined by the analysis of the relationship between the various
classes. The advantage and merit lie in that concepts are subdivided and sorted according to their classifi-
cation. Similar classes are arranged closed. The greater the gap between concept categories, the difference
between the corresponding categories is even bigger.

Simply speaking, the multi-dividing ontology learning algorithm divides all vertices into k classes
(rates), marked as 1, 2, . . . , k. Under the ontology function f, the vertices with small rate labels have
higher corresponding values than those with larger rate labels. That is to say, f(va) > f(vb) if va belongs
to rate a and vb belongs to rate b with 1 ⩽ a < b ⩽ k. Correspondingly, the ontology sample set is
also divided into k classes for learning the ontology function. This approach has been verified to have
high efficiency for ontology learning algorithms on tree-structured ontology graphs. In recent years,
the theoretical analysis of multi-dividing ontology learning algorithms have become one of the main
streams in ontology studies. Gao and Farahani [10] determined the generalization bounds and uniform
bounds for convex ontology loss function multi-dividing ontology algorithms. Gao et al. [12] analyzed the
partial multi-dividing ontology learning algorithm from the perspective of statistical learning theory. Zhu
and Hua [22] proposed statistical analysis of multi-dividing ontology learning algorithm in two-sample
setting.

Since only a small number of papers have analyzed the multi-dividing ontology learning algorithm,
the theoretical results in most of the settings are still unknown, which inspires us to study the statistical
characteristics of the multi-dividing ontology learning algorithm under more specific frameworks. In
this paper, we consider the multi-dividing ontology learning algorithm in the novel setting such that
the ontology data in each pair of rates are perturbation (due to various factors such as collection errors,
subjective labeling, and malicious poisoning in actual datasets, perturbation is inevitably present in the
constructed dataset). The rest parts of paper are organized as follows. The notations and setting of
perturbation multi-dividing ontology learning are presented in the next section. Next, the theoretical
analysis of perturbation multi-dividing ontology setting is determined. Finally, we discuss the defects
and the open problem in this new multi-dividing ontology learning setting.
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2. Setting

The purpose of this section is to give a framework for perturbation multi-dividing ontology learning
algorithm, including model descriptions and the related mathematical terminologies.

2.1. Standard multi-dividing ontology learning

Assume that each concept in ontology is a vertex in ontology graph, and all its information is extracted
and represented in a d dimension vector. The ontology function f : V → R is essentially a dimensional
reduction map f : Rd → R (d ∈ N). Let V ⊆ Rd be a vertex space (instance space) for ontology graph G,
and the vertices in V are drawn independently and randomly according to certain unknown distribution
D. Assume k ⩾ 2 is an integer. In the multi-dividing ontology setting, ontology vertices are divided into
k classes (corresponding to k rates) and the order (rank) of these k rates is determined by the experts.

Formally, the learner is inferred to an ontology training set S = (S1,S2, · · · ,Sk) ∈ Vn1 × Vn2 × · · · ×
Vnk , which consists of a sequence of ontology training samples Sa = (va1 , . . . , vana

) ∈ Vna (1 ⩽ a ⩽ k).
Here, n1, . . . ,nk ∈ N∪ {0}, and

∑k
i=1 ni is called the total multi-dividing ontology sample size. In light of

ontology sample S, a real-valued ontology function f : Rp → R is learned, which satisfies f(va) > f(vb)
for any pair of (a,b), where 1 ⩽ a < b ⩽ k.

The standard multi-dividing ontology expected framework can be formulated as

f∗ = arg min
f∈F

k−1∑
a=1

k∑
b=a+1

P(va,vb)∼Da×Db(f(va) > f(vb)),

where F is an ontology function space (such as Reproducing Kernel Hilbert Space) and Da is underlying
conditional distributions for each rate. The corresponding empirical version with multi-dividing ontology
sample set S = (S1,S2, . . . ,Sk) ∈ Vn1 × Vn2 × · · · × Vnk is given by

f∗ = arg min
f∈F

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

I(f(vai ) > f(vbj )).

Since I is a binary discrete function, which is non-derivative, makes it very difficult to directly optimize the
aforementioned multi-dividing ontology learning model. The common trick to deal with this problem is
to replace the binary function with a continuous ontology loss function, and for the purpose of theoretical
analysis, such ontological loss function is always assumed to be a smooth convex function satisfying the
Lipschitz condition from a theoretical point of view. Formally, a multi-dividing ontology loss function is
a function l : RV ×V ×V → R+ ∪ {0} that assigns, for ontology function f : Rd → R and va, vb in rate pair
(a,b) with 1 ⩽ a < b ⩽ k, a non-negative real number l(f, va, vb) interpreted as the loss of multi-dividing
ontology function f in its relative order of va and vb. The expected multi-dividing ontology error (risk) on
the tree-shaped ontology graph G for an ontology function f : Rd → R associated with the loss function
l is formulated by

Rl,D(f) =

k−1∑
a=1

k∑
b=a+1

Eva∼Da,vb∼Db{l(f, va, vb)},

where Da is the conditional distribution of D on Va. Its corresponding empirical multi-dividing ontology
error (risk) on the tree-shaped ontology graph G for an ontology function f : Rd → R associated with the
loss function l and multi-dividing ontology sample S = (S1,S2, . . . ,Sk) ∈ Vn1 ×Vn2 × · · · ×Vnk is defined
by

R̂l,S(f) =

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

l(f, vai , vbj ).
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2.2. Perturbation multi-dividing ontology learning
In this paper, we consider the perturbation multi-dividing ontology expected framework and its cor-

responding empirical version, where for each pair of (a,b) with 1 ⩽ a < b ⩽ k, the ontology samples in
rate a and rate b are perturbation. Our setting is simplified in, which only ontology samples in rate a

are assumed to be perturbed for each pair of (a,b), and this hypothesis can be reversed (only consider
the ontology samples in lower rate b are perturbed in each pair of (a,b) with 1 ⩽ a < b ⩽ k). For each
va in rate a ∈ {1, . . . ,k− 1}, its neighborhood is denoted by N(va) = {va

′
: va

′
− va ∈ B}, where B is

a symmetric, convex, and closed set, which is usually defined as a ball with certain kind of norm, for
example, lq-ball with q ⩾ 1.

Let F be the space of multi-dividing ontology functions and l(f, va, vb) be the ontology loss function
for any f ∈ F, va ∈ Va, vb ∈ Vb, where a,b ∈ N and 1 ⩽ a < b ⩽ k. The perturbation multi-dividing
ontology expected risk of ontology function f ∈ F is defined as

R
per
l,D (f,B) =

k−1∑
a=1

k∑
b=a+1

Eva∼Da,vb∼Db{ max
va ′∈N(va)

l(f, va
′
, vb)}. (2.1)

Associated with multi-dividing ontology sample set S = (S1,S2, . . . ,Sk) ∈ Vn1 × Vn2 × · · · × Vnk , the
perturbation multi-dividing ontology empirical risk of ontology function f ∈ F is defined as

R̂
per
l,S (f,B) =

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

max
va ′∈N(va

i )
l(f, va

′
i , vbj ). (2.2)

For convenience, assume that for each perturbation pair (a,b) with 1 ⩽ a < b ⩽ k, vai and vbj are inde-
pendently drawn according to the underlying discrete distributions Da

na
and Db

nb
, respectively. Hence,

the perturbation multi-dividing ontology empirical risk of ontology function f ∈ F (2.2) can be re-written
by

R̂
per
l,Dn1,...,nk

(f,B) =

k−1∑
a=1

k∑
b=a+1

Eva∼Da
na ,vb∼Db

nb
{ max
va ′∈N(va

i )
l(f, va

′
, vbj )}.

When we focus on one pair (a,b), then the partial version of above definitions are defined by

R
per,a,b
l,D (f,B) = Eva∼Da,vb∼Db{ max

va ′∈N(va)
l(f, va

′
, vb)},

R̂
per,a,b
l,Sa,Sb (f,B) =

1
nanb

na∑
i=1

nb∑
j=1

max
va ′∈N(va

i )
l(f, va

′
i , vbj ),

and
R̂
per,a,b
l,Dna ,nb

(f,B) = Eva∼Da
na ,vb∼Db

nb
{ max
va ′∈N(va

i )
l(f, va

′
, vbj )},

respectively.

3. Preliminaries

To get our main result in perturbation multi-dividing ontology learning setting, we need to prepare
some new notations and observations.

3.1. New concepts and remarks
Define a mapping for each perturbation pair (a,b),

Ψa,b
f,vb(v

a) = va,b,∗ = arg max
va ′∈N(va)

l(f, va
′
, vb),

where va ∈ Va. Acted as a perturbation multi-dividing ontology sample, the rate of va,b,∗ keeps a, i.e.,
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the label of va,b,∗ is the same as va since it’s from the neighborhood va. We have

R
per
l,D (f,B) =

k−1∑
a=1

k∑
b=a+1

Eva∼Da,vb∼Db{ max
va ′∈N(va)

l(f, va
′
, vb)}

=

k−1∑
a=1

k∑
b=a+1

Eva∼Da,vb∼Db{l(f, va,b,∗, vb)}

=

k−1∑
a=1

k∑
b=a+1

Eva,b,∗∼Da ′ ,vb∼Db{l(f, va,b,∗, vb)}

=

k−1∑
a=1

k∑
b=a+1

Eva∼Da ′ ,vb∼Db{l(f, va, vb)} = Rl,D ′ (f),

(3.1)

where Da ′
= Ψa,b

f,vb#Da is the pushforward of Da by Ψa,b
f,vb for the given pair (a,b), and D

′
is regarded

as the overall pushforward of D in which Da is replaced by Da ′
for each pair of (a,b). The expression

of (3.1) implies that the perturbation multi-dividing ontology learning risk (2.1) can be estimated by the
standard multi-dividing ontology learning risk with respect to Da ′

and Db for each pair of (a,b) with
1 ⩽ a < b ⩽ k.

To characterize Da ′
, we show that Da ′

is located in a certain ball, which centers at Da. We apply the
tricks proposed by Celik et al. [6], Panaretos and Zemel [15], Chen and Niles-Weed [7], Shi and Wang
[16], and Assa and Plataniotis [3] to deal with it. Let P(Z) be the Borel probability measure space on
Z = V × Y, where Y = {1, . . . ,k} indicates the rate of each ontology data except the top root vertex (such
vertex is an artificially added virtual vertex, for instance, in famous gene ontology, the top root vertex is
“GO” and the top root vertex in plant ontology is “PO”). Let

d
p
Z(z, z ′) = d

p
Z((v,y), (v ′,y ′)) = d

p
V(v, v ′) + d

p
Y(y,y ′),

where dV is the metric in d dimensional vector space and dY is the direct distance between labels. For
instance, if va ∈ Va and vb ∈ Vb, then dY(v

a, vb) = |a− b|. We assume that dV satisfies the following
translation property: dV(v, v ′) = dV(v− v ′, 0). Let

Pp(Z) = {D ∈ P(Z) : Ez∼D[dp
Z(z, z ′)] < ∞, z ′ ∈ Z,p ⩾ 1}.

For any two probability measures D1,D2 ∈ Pp(Z), let Υ(D1,D2) be the set of all measures on V × Y with
marginal distributions D1 and D2 on the first two factors. Then, the p-th Wasserstein distance between
D1 and D2 is defined by

WDp(D1,D2) = inf
D∈Υ(D1,D2)

(EZ×Z ′∼D[dp
Z(z, z ′)])

1
p .

Hence, when rate a is located in small class for pair (a,b), the Wasserstein distance between Da and Da ′

is calculated by

WDp(D
a,Da ′

) = inf
D∈Υ(Da,Da ′

)
(EVa×Va ′

∼D[dp
Z(v

a, va
′
)]

1
p ,Da,Da ′ ∈ Pp(V

a)),

where Υ(Da,Da ′
) is the set of all measures on Va × Va with marginal distributions Da and Da ′

, and

Pp(V
a) = {Da ∈ P(Va) : Ev∼Da [dp

V(v
a, va

′
)] < ∞, va

′ ∈ Va}.

In addition, the Wasserstein ball of Da with radius ρ is

Bρ,p(D
a) = {Da ′ ∈ Pp(V

a) : WDp(D
a,Da ′

) ⩽ ρ}.
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Then, the local worse-case multi-dividing ontology learning risk of ontology function f can be defined by

R
per
l,ρ,p(f) =

k−1∑
a=1

k∑
b=a+1

sup
Da ′∈Bρ,p(Da)

Rl,Da,Db(f).

It’s partial version for the fixed pair (a,b) is defined by

R
per

l,ρ,p,Db(D
a, f) = sup

Da ′∈Bρ,p(Da)

Rl,Da,Db(f).

Denote ρB = supv∈B dV(v, 0) by the radius of the adversary set B. For any f ∈ F, D
′

(totally pushforward
by Da ′

= Ψa,b
f,vb#Da forward rate a in each pair of (a,b)), in light of translation property, the definition of

Ψa,b
f,vb and ρB, and the definition of Wasserstein distance, we have

WDp
p(D

a,Da ′
) ⩽ Eva∼Da [dp

V(v
a,Ψa,b

f,vb(v
a))] = Eva∼Da [dp

V(v
a, va,b,∗)] ⩽ ρ

p
B, (3.2)

which implies WDp(D
a,Da ′

) ⩽ ρB.
To further simplify the notation, we only consider p = 1 in our multi-dividing ontology learning

setting, and denote the partial expected version by R
per,a,b
ρB,Db (Da, f) = R

per,a,b
ρB,1,Db(D

a, f). In this way, the

expression (3.2) reveals R
per,a,b
l,Da,Db(f,B) ⩽ R

per,a,b
l,ρB,Db(D

a, f) for any f ∈ F, and hence R
per
l,D (f,B) ⩽ R

per
l,ρB

(f).
The idea is to get the upper bound of Rper

l,D (f,B) via obtaining the upper bound of Rper
l,ρB

(f). For this
purpose, we present several useful intermediate conclusions in the next subsection.

3.2. Some intermediate derivation results
Set

Ga,b = {ga,b : ga,b(va, vb) = l(f, va, vb), f ∈ F, va ∈ Va, vb ∈ Vb},

Ωλ,ga,b,Db(va) = sup
va ′∈Va

{Evb∼Db(ga,b(va
′
, vb) − λdV(v

a ′
, va))}, (3.3)

where λ is a non-negative real number. Let ga,b ∈ G be a semi-continuous function, then for λ ⩾ 0, we get

R
per,a,b
l,ρB,Db(D

a,ga,b) = min
λ

{λρB + Eva∼Da [Ωλ,ga,b,Db(va)]}. (3.4)

In fact, for each pair of (a,b), set Ξa,b(va) =
∫
Vb g

a,b(va, vb)Dbdvb,

ζa,b
P = sup

Da ′∈P(Va)

{∫
Va

Ξa,b(va)Da ′
dva : WDp(D

a,Da ′
) ⩽ ξ

}
,

ζa,b
D = inf

λ⩾0

{
λξp −

∫
Va

[ inf
Va ′∈Va

(λdp(va, va
′
) − Ξa,b(va))]dDa(va)

}
.

Since ga,b(va, vb) is an upper semi-continuous function for each pair (a,b), the growth rate of Ξa,b(va)

is zero if Va is bounded, and otherwise lim supd(va,v ′)→∞ Ξa,b(va)−Ξa,b(v ′)
d(va,v ′) , which is bounded, where

v ′ ∈ Va is given. It follows that ζa,b
P = ζa,b

D by the weak duality and strong duality theory, and thus (3.4)
holds. Set g ∈ G as the generalized extension of ga,b such that g|(a,b) = ga,b, i.e., its restriction on pair
(a,b) is ga,b, and G is the conditional distribution of G.

In order to obtain the desired theoretical results using statistical learning theory, we need to make
some theoretical assumptions mathematically. First, the ontology instance space should be bounded, i.e.,
the diameter of V is finite. Second, for each pair (a,b), the upper semi-continue function ga,b is bounded,
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that is, for any va ∈ Va and vb ∈ Vb, we have 0 ⩽ ga,b ⩽ Ma,b < ∞. Next, for any pair (a,b), function
ga,b, va ∈ Va and vb ∈ Vb, va

′ ∈ Va, there exists a constant λa,b satisfying

ga,b(va
′
, vb) − ga,b(va, vb) ⩽ λa,bdV(v

a ′
, va). (3.5)

Note that parameter λa,b depends on the pairwise perturbation ontology data va, vb and the function
ga,b. For each pair of (a,b), let

Φga,b,Da
na ,Db

nb
(λa,b) = Eva

i ∼D
a
n1

{
sup

va ′∈Va

Evb
j ∼D

b
nb
[ga,b(va

′
, vbj ) − λa,bdVa(vai , va

′
) − ga,b(vai , vbj )]

}
.

Then the assumption (3.5) holds if and only if for any ga,b ∈ G and any Sa, Sb, we have {λa,b :
Φga,b,Da

na ,Db
nb
(λa,b) = 0} ̸= ∅. For each pair of (a,b), set

λa∗,b
ga,b,Da

na ,Db
nb

= inf{λa,b : Φga,b,Da
na ,Db

nb
(λa,b) = 0}.

As the function ga,b is determined by multi-dividing ontology function f, Φga,b,Da
na ,Db

nb
(λa,b) and

λa∗,b
ga,b,Da

na ,Db
nb

defined above can be further denoted by Φf,Da
na ,Db

nb
(λa,b) and λa∗,b

f,Da
na ,Db

nb

. For any pair

of (a,b) and ga,b ∈ Ga,b, set

λ
a,b

= arg min
λa,b⩾0

{λa,bρB + Eva
i ∼D

a
na
Ωλa,b,ga,b,Db

nb
(vai )}

and

λ = arg min
λ⩾0

k−1∑
a=1

k∑
b=a+1

{λρB + Eva
i ∼D

a
na
Ωλ,ga,b,Db

nb
(vai )}.

Moreover, we set

λmax = max
(a,b),1⩽a<b⩽k

{λa∗,b
ga,b,Da

na ,Db
nb

}, Mmax = max
(a,b),1⩽a<b⩽k

{Ma,b}.

Hence, λ ∈ [0, k(k−1)Mmax
2 ] if ρBλa∗,b

ga,b,Da
na ,Db

nb

⩾ Ma,b for each pair of (a,b). Otherwise, λ ∈ [0, k(k−1)λmax

2 ].

To simplify notation, we set

λ
a,b ∈ [ιbga,b,Da

na ,Db
nb

, ιaga,b,Da
na ,Dnb

] and λ ∈ [ιg,Db,Db , ιg,Db,Da ].

For a given standard ontology sample set S = {v1, v2, . . . , vn} and a real-valued ontology function space F,
the empirical Rademacher complexity of ontology function space F with respect to otology sample set S
is denoted by

Rn(F) =
1
n

E[sup
f∈F

n∑
i=1

σit(vi)],

where σ1, . . . ,σn are independent random variables uniformly selected from {−1, 1}. For each pair of
(a,b), set 0 ⩽ λa,b

1 ⩽ λa,b
2 , define

Λa,b = {Ωλa,b,ga,bDb : λa,b ∈ [λa,b
1 , λa,b

2 ],ga,b ∈ Ga,b,Db ∈ P(Vb)}, D(Va) = max
va
i ,va

j

d(vai , vaj ),

and

C(Ga,b) =

∫∞
0

√
logN(Ga,b, ∥ · ∥∞,

x

2
)dx,
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where N(Ga,b, ∥ · ∥∞, x
2 ) is the cover number of function space Ga,b with respect to l∞-norm and radius

x
2 . Set

C(G) = max
(a,b):1⩽a<b⩽k

C(Ga,b), ∆ = max
(a,b):1⩽a<b⩽k

{λa,b
2 − λa,b

1 }.

Let Λ be a general function space in multi-dividing ontology learning setting, where the restriction on
a specific pair (a,b) is Λ|(a,b) = Λa,b. Then, the empirical Rademacher complexity of Λ for rate a

(a ∈ {1, ·,k− 1}) in multi-dividing ontology learning setting (given multi-dividing ontology sample set
S = (S1,S2, . . . ,Sk) ∈ Vn1 × Vn2 × · · · × Vnk) is described by

Rna(Λ) ⩽
12C(G)
√
na

+
12∆D(Va)

√
na

. (3.6)

For any va,∗ ∈ Va, let
Ga,∗,b = {ga,b : ga,b(va,∗, vb),ga,b ∈ Ga,b, vb ∈ Vb},

where Ga,b is defined in (3.3). Let Rnb
(Ga,∗,b) be the expected Rademacher complexity of Ga,∗,b in multi-

dividing ontology setting. Then

Rnb
(Ga,∗,b) ⩽

12C(Ga,b)
√
nb

. (3.7)

4. Main result and proof

Our first main result manifested as follows, which focuses on the pairwise function g for every rate
pair in perturbation multi-dividing ontology learning algorithm setting.

Theorem 4.1. Assume the hypothesis defined in the last section are satisfied. Set

[ιa,b
1 , ιa,b

2 ] = ∪ga,b,Da
na ,Db

nb
[ιbga,b,Da

na ,Db
nb

, ιaga,b,Da
na ,Dnb

], Θa,b
ρB

= ιa,b
2 − ιa,b

1 .

Then, for any g ∈ G, then the following inequality hold with possibility at least 1 − δ,

R
per
l,D (g,B) =

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

l(f, vai , vbj ) +
4∑

i=1

χi,

where

χ1 =

k−1∑
a=1

k∑
b=a+1

λa∗,b
ga,b,Da

na ,Db
nb

ρB,

χ2 =

k−1∑
a=1

k∑
b=a+1

24C(Ga,b)(
1

√
na

+
1

√
nb

),

χ3 =

k−1∑
a=1

k∑
b=a+1

Ma,b(

√
log 1

δ

2na
+

√
log 1

δ

2nb
),

and

χ4 =

k−1∑
a=1

k∑
b=a+1

24
na

Θa,b
ρB

D(Va).
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Proof of Theorem 4.1. For each pair of (a,b) with 1 ⩽ a < b ⩽ k, the partial term of χi (i ∈ {1, 2, 3, 4}) are
denoted by χa,b

1 , χa,b
2 , χa,b

3 , and χa,b
4 , respectively. Hence,

χ1 =

k−1∑
a=1

k∑
b=a+1

χa,b
1 , χ2 =

k−1∑
a=1

k∑
b=a+1

χa,b
2 , χ3 =

k−1∑
a=1

k∑
b=a+1

χa,b
3 , χ4 =

k−1∑
a=1

k∑
b=a+1

χa,b
4 .

Note that

R
per,a,b
ρB,Db (Da,ga,b) − R̂

per,a,b
ρB,Db

n2
(Da

n1
,ga,b)

= R
per,a,b
ρB,Db (Da,ga,b) − R̂

per,a,b
ρB,Db

n2
(Da,ga,b) + R̂

per,a,b
ρB,Db

n2
(Da,ga,b) − R̂

per,a,b
ρB,Db

n2
(Da

n1
,ga,b).

Re-define
Λa,b = {Ωλa,b,ga,bDb

nb
: λa,b ∈ [λa,b

1 , λa,b
2 ],ga,b ∈ Ga,b,Db

nb
∈ P(Vb)}.

In terms of [ιa,b
1 , ιa,b

2 ] ⊂ [0, Ma,b

ρB
], (3.6), and |Ω| ⩽ Ma,b, we acquire the following inequality with possi-

bility at least 1 − δ,

R̂
per
l,ρB,Dn1,n2,...,nk

(D,g) − R̂
per
l,ρB,Dn1,n2,...,nk

(Dn1,n2,...,nk
,g)

=

k−1∑
a=1

k∑
b=a+1

{
R̂
per,a,b
l,ρB,Db

n2
(Da,ga,b) − R̂

per,a,b
l,ρB,Db

n2
(Da

n1
,ga,b)

}

= min
λ

k−1∑
a=1

k∑
b=a+1

{
λρB +

∫
Va

Ωλ,ga,b,Db(va)dDa(va)

}
−

{
λρB +

1
na

na∑
i=1

Ωλ,ga,b,Db(vai )

}

⩽
k−1∑
a=1

k∑
b=a+1

{∫
Va

Ωλ,ga,b,Db(va)dDa(va) −
1
na

na∑
i=1

Ωλ,ga,b,Db(vai )

}

⩽
k−1∑
a=1

k∑
b=a+1

sup
Ω∈Λa,b

{∫
Va

Ω(va)dDa(va) −
1
na

na∑
i=1

Ω(vai )

}

⩽
k−1∑
a=1

k∑
b=a+1

2R̂na(Λ
a,b) +Ma,b

√
log 1

δ

2na


⩽

k−1∑
a=1

k∑
b=a+1

24C(G)
√
na

+Ma,b

√
log 1

δ

2na
+ χa,b

4

 .

Set

λ̂a,b = arg min
λa,b⩾0

{
λa,bρB + Eva∼Da [Ωλa,b,ga,b,Db

nb
(vai )]

}
,

va,b,∗ = arg sup
va ′∈Va

[Evb∼Dbga,b(va
′
, vb) − λ̂a,bdV(v

a ′
, va)].

Using (3.7), we deduce the following inequality with probability at least 1 − δ:

R
per
l,ρB,D(D,g) − R̂

per
l,ρB,Dn1,n2,...,nk

(D,g)

=

k−1∑
a=1

k∑
b=a+1

{
R
per,a,b
l,ρB,Db(D

a,ga,b) − R̂
per,a,b
l,ρB,Db

n2
(Da,ga,b)

}
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= min
λ

k−1∑
a=1

k∑
b=a+1

{
λρB +

∫
Va

Ωλ,ga,b,Db(va)dDa(va)

}
−

{
λ̂ρB +

∫
Va

Ω
λ̂,ga,b,Db

nb

(va)dDa(va)

}

⩽
k−1∑
a=1

k∑
b=a+1

{∫
Va

Ωλ,ga,b,Db(va)dDa(va) −

∫
Va

Ω
λ̂,ga,b,Db

nb

(va)dDa(va)

}

=

k−1∑
a=1

k∑
b=a+1

{ ∫
Va

{
sup

va ′
∼Da

[Evb∼Dbga,b(va
′
, vb) − λ̂dV(v

a ′
, va)]

− sup
va ′

∼Da

[Evb
j ∼D

b
nb
ga,b(va

′
, vbj ) − λ̂dV(v

a ′
, va)]

}
dDa(va)

}

⩽
k−1∑
a=1

k∑
b=a+1

 sup
ga,b∈Ga,b

[

∫
Va

ga,b(va,b,∗, vb)dDb(vb) −
1
n2

n2∑
j=1

(va,b,∗, vbj )]


⩽

k−1∑
a=1

k∑
b=a+1

2R̂n2(D
a,b,∗) +Ma,b

√
log 1

δ

2nb

 .

Combining two parts together, we infer

R
per,a,b
ρB,Db (Da,ga,b) − R̂

per,a,b
ρB,Db

n2
(Da

n1
,ga,b) ⩽ χa,b

2 + χa,b
3 + χa,b

4

and
R̂
per
l,ρB,Dn1,n2,...,nk

(D,g) − R̂
per
l,ρB,Dn1,n2,...,nk

(D,g) ⩽ χ2 + χ3 + χ4,

holds with probability at least 1 − δ. On the other hand, in light of (3.4), we obtain

R̂
per
l,ρB,Dn1,n2,...,nk

(D,g)

=

k−1∑
a=1

k∑
b=a+1

R̂
per,a,b
ρB,Db

n2
(Da

na
,ga,b)

= min
λ

k−1∑
a=1

k∑
b=a+1

{λρB + Eva
i ∼D

a
na
[Ωλ,ga,b,Db

nb
(vai )]}

= min
λ

k−1∑
a=1

k∑
b=a+1

{λρB + Eva
i ∼D

a
na
[Ωλ,ga,b,Db

nb
(vai ) − Evb

j ∼D
b
nb
[ga,b(vai , vbj )]]}

+

k−1∑
a=1

k∑
b=a+1

{Eva
i ∼D

a
na
[Evb

j ∼D
b
nb
[ga,b(vai , vbj )]]}

= min
λ

k−1∑
a=1

k∑
b=a+1

{λρB +Φga,b,Da
na ,Db

nb
(λ)}+

k−1∑
a=1

k∑
b=a+1

{
1

nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj )}

⩽
k−1∑
a=1

k∑
b=a+1

{λaga,b,Da
na ,Db

nb

ρB +Φga,b,Da
na ,Db

nb
(λaga,b,Da

na ,Db
nb

) +
1

nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj )}

=

k−1∑
a=1

k∑
b=a+1

{λaga,b,Da
na ,Db

nb

ρB +
1

nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj )}

=

k−1∑
a=1

k∑
b=a+1

{χa,b
1 +

1
nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj )}.
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Therefore

R
per,a,b
ρB,Db (Da,ga,b) ⩽

1
nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj ) +
4∑

i=1

χa,b
1 ,

and thus

R
per
ρB,D(D,g) ⩽

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

ga,b(vai , vbj ) +
4∑

i=1

χ1.

Therefore, the desired conclusion is derived.

The main result on perturbation multi-dividing ontology learning algorithm is stated in the following
theorem.

Theorem 4.2. Suppose for any g,g ′ ∈ G, there is a constant L satisfying ∥g− g ′∥∞ ⩽ L∥f− f ′∥∞. Under the
condition in Theorem 4.1, we have

R
per
l,D (f,B) =

k−1∑
a=1

k∑
b=a+1

1
nanb

na∑
i=1

nb∑
j=1

l(f, vai , vbj ) +
4∑

i=1

χi,

with possibility at least 1 − δ.

Proof of Theorem 4.2. Let {f1, . . . , fq} be the center of balls with radius x
2L , which covers ontology func-

tion space F. For any multi-dividing ontology function f ∈ F, there exists f ′ ∈ {f1, . . . , fq} such that
∥f− f ′∥∞ ⩽ x

2L , and hence ∥g ′ − g∥∞ ⩽ L∥f− f ′∥∞ ⩽ x
2 , N(G, ∥ · ∥∞, x

2 ) ⩽ N(F, ∥ · ∥∞, x
2L), and C(G) ⩽∫∞

0

√
logN(F, ∥ · ∥∞, x

2L)dx = LC(F). Then the desired result follows from the conclusion in Theorem
4.1.

5. Conclusion, discussion, and open problem

In practical applications, most of the ontology graph structures are trees or approximate tree structures
due to concept classification. The multi-dividing ontology learning algorithm is specially designed for
the tree structure, and each branch below the top-level vertex becomes a class. This is the reason for the
success of the multi-dividing ontology learning algorithm.

In our article, we proposed the perturbation multi-dividing ontology learning algorithm and deter-
mined its generalized risk bounds under certain conditions in terms of statistical learning theory ap-
proach. Since multi-dividing ontology learning algorithms are widely used in tree-structured ontology
graphs, the algorithms and theoretical analysis presented in this paper have potential guiding roles for
practical applications.

The biggest flaw in the theoretical analysis of this paper is the assumption that for each pair of vertex
classes, the perturbation of va still obeys the same distribution Da, the entire framework is discussed
under the assumption of independent and identical distribution (in short, IID), and the non-IID case is not
considered. However, in practical applications, the heterogeneity of ontology data is a common problem
and becomes the most crucial challenge in ontology learning. For the same concept set, different users
build ontologies according to their own needs, and these constructed ontologies are often heterogeneous
due to the difference between expert cognition and model sizes. Even between different branches within
the same ontology, the corresponding ontology data are likely to be heterogeneous. For instance, the
“live” ontology is depicted in Figure 1.
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Figure 1: The “live” ontology.

To apply multi-dividing ontology learning approach, set k = 3 since there are three components below
top vertex “live”, which correspond to “animal”, “plant” and “microorganism”, respectively. Clearly,
the ontology data in these three rates are heterogeneous due to huge differences between these three
organisms. Even more, the corresponding ontology data of mammal, bird, reptile, and fish in the second-
level division may also be heterogeneous, because the gap between each species is obvious.

Finally, perturbation often results in heterogeneous data. For example, in image processing, a new
image dataset is obtained by rotating the image by a fixed angle, which is heterogeneous with the original
data. Another instance, the perturbation is generalized by affine transformation (ϑa,ϖa), where the
ontology data vai is changed by ϑavai +ϖa. However, the new ontology data is heterogeneous with the
original ontology data.

In our perturbation multi-dividing ontology learning setting, the whole ontology data has a under-
lying distribution D, and ontology data in each rate drawn according to Da, which is a conditional
distribution of D. In addition, our theoretical analysis is based on a basic assumption that the perturbed
data follows the same distribution as the original data. Therefore, there is a certain degree of defects in
our analysis, and it’s still an open problem of perturbation multi-dividing ontology learning algorithm
in heterogeneity hypothesis. Further study is needed on the non-IID ontology learning algorithm and
specifically in (perturbation) multi-dividing ontology learning.
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