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Abstract 
In this paper, we propose a numerical algorithm based on Runge-Kutta methods to and solution of nonlin- 
ear fuzzy differential equations (FDEs) such that it solution satisffes solution found via differential 
inclusions. Our interpretation of the FDEs is a family of fuzzy differential inclusions. The method is 
illustrated by some examples. 
 
Keywords: Nonlinear Fuzzy differential equations, Fuzzy differential inclusions, H-difference, 

Runge-Kutta methods. 
 

1. Introduction 
Fuzzy set theory is an approach for modeling of uncertainty which is existence in environment. This 
theory has application in the golden mean [1], quantum optics and gravity [2]. 
Particularly, the concept of differentiability of fuzzy function is important in many applications. This 
concept is initially introduced based on Zadeh's extension principle, then further research were done by 
Puri and Ralescu [3]. 
In many papers, using of Hakuhara derivative to find solution of FDEs. It is shown that the solution of 
many FDEs hasn't existed. Thereby a generalization derivative was given for fuzzy mappings enlarging 
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the class of differentiable fuzzy mappings by Bede and Gal in [4,5], and Chalco-Cano and Flores use from 
this concept to 
solve FDEs in [6,7,8]. For solving the FDE, x'(t)=f(t,x(t)) , 

0x(0)  x , is shown that when g(x) is 

nondecreasing or nonincreasing the solution of FDEs is exists. 
In this paper we consider this problem when g(x) is no ones. We proposed an algorhtim that tries to find 
the solution. 
This paper has been organized as follows :  Section 2 contains the basic material to be used in the rest of 
the article, in section 3 we shall see that this definition of fuzzy lateral H-derivative leads us to interpret a 
FDE in two different forms, generating new solutions for FDE, in section 4,we present a numerical 
procedure for solving the fuzzy initial value problem x'(t)=f(t,x(t)) , 

0x(0)  x , when f is 

decreasing(increasing) or not decreasing(not increasing). Finally, numerical algorithms of calculating 
approximates to these solutions where designed. 

 
2. Basic concepts 
Let X  be a Banach space. We denote by K(X)  the family of all nonempty compact subsets of X . If 

A,B K(X)  and R , then the operations of addition and scalar multiplication are defined as,  

A B { a b | a A , b B}     ,  A { a | a A }    . 

A fuzzy set u  on a universe set X  is a mapping u : X [0,1] . Then u(x)  is interpreted as the degree of  

membership of a element x  in the fuzzy set u  for each x X . 

If X  is a Banach space and u  is a fuzzy set on X , We define  [u] { x X | u(x) }      the  -level of u , 

for 0 1   . For 0   the support of u  is defined as 0[u] supp(u) { x X | u(x) 0 }    , where A  

denotes the closure of A X . 

A fuzzy set u  on X  is called compact if  [u] K(X) , [0,1] . Also, u  is called convex if  [u]  is a 

convex set for all [0,1] . We will denote by F(X)  the space of all compact and convex fuzzy sets on X .  

If u F(R) be, then u  is called a fuzzy interval and the $\alpha$-level set [u]  is a nonempty compact 

interval for all [0,1] . 

If nu,v F(R )  and R , then the following properties are true : 

[u v] [u] [v]     ,  [ u] [u]    ,  [0,1] . 

Also, the Hausdorff metric H  on nK(R )  can be extended to nF(R )  by the following definition 

 
[0,1]

D(u,v) sup H [u] , [v] 



 ,  nu,v F(R )  . 

 

3. Fuzzy differential equations 

Definition 1. Let nu,v F(R ) be. If there exists nw F(R )  such that u v w  , then w  is called the H-

difference of u and v and denoted by u Ө v. 

Definition 2. Let be nF:[0,T] F(R ) , and 0t [0,T] , we say that F is differentiable at 0t  if : 

(I): It exists an element n
0F (t ) F(R )   such that, for all h 0  suffciently near to 0, there are 

0F(t h) Ө 0F(t ) , 0F(t )Ө 0F(t h)  and the limits (in D-metric) 

0 0 0 0
0

h 0 h 0

F(t h) F(t ) F(t ) F(t h)
lim lim F (t ) (1)

h h  

   
   

(II): It exists an element n
0F (t ) F(R )  such that, for all h < 0 suffciently near to 0, there are 

0F(t h) Ө 0F(t ) , 0F(t )Ө 0F(t h)  and the limits (in D-metric) 
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0 0 0 0
0

h 0 h 0

F(t h) F(t ) F(t ) F(t h)
lim lim F (t ) (2)

h h  

   
   

Theorem 1. Let F:[0,T] F(R) be a function and denote [F(t)] [f (t) , g (t)]
  , for each [0,1] . Then, 

(1) If F is differentiable in the first form (I), then f  and g  are differentiable functions and 

                     [F (t)] [f (t) , g (t)] (3)
 

     

(2) If F is differentiable in the second form (II), then f  and g  are differentiable functions and 

                    [F (t)] [g (t) , f (t)] (4)
 

    

Proof.  see demonstration of Theorem 5 in [6]. 
Let q :[0,T] F(R) F(R)  be a function. consider the following fuzzy differential equation: 

                 
0

X (t) q(t,X(t))
(5)

X(0) X

 



  

Let [X(t)] [f (t) , g (t)]
  , 0 0

0[X ] [f , g ]
  and [q(t,X(t))] [k (t,f (t),g (t)) , l (t,f (t),g (t))]

      .  

If X(t) is differentiable in the first form (I), then from (3) we have [X (t)] [f (t) , g (t)]
 

   and the problem 

 (5) is changed to: 

        
0

0

f (t) k (t , f (t) , g (t)) f (0) f
(6)

g (t) l (t , f (t) , g (t)) g (0) g

     

     

   

  

 

and if X(t) is differentiable in the second form (II), then from (4) we have [X (t)] [g (t) , f (t)]
 

   and the 

problem (5) is changed to: 

        
0

0

f (t) l (t , f (t) , g (t)) f (0) f
(7)

g (t) k (t , f (t) , g (t)) g (0) g

     

     

   

  

 

4. Fuzzy differential inclusions 
In this section the FDE is interpret as a fuzzy differential inclusion. In the FDE (5), q :[0,T] F(R) F(R)   

is 
obtained by Zadeh's extension principle from a differentiable function, qs :[0,T] R R  . 

We interpret the fuzzy initial value problem (5) as family of differential inclusions 

0y (t) [q(t , y (t))] , y (0) [X ] , 0 1 (8) 

  
      

0y (t) qs(t , y (t)), y (0) [X ] , 0 1 (9)

  
       

The attainable sets is defined as A (t) { y (t) | y (t) is a solution of (9)}   . A more complete account can be 

found in [14,21,23].  

Theorem  2.  Let  n

0X F(R )  and let    be an open subset of  nR R  containing  
0{0} supp(X ) . Suppose 

that  nq : F(R )  is use and compact. Let the boundedness assumption hold, for all  
0 0x supp(X )  and 

the inclusion  
0

0y (t) [q(t , y(t))] , y(0) supp(X )    

Then, the attainable sets A (t)
 of the family of inclusions (9) are the level sets of a fuzzy set  A(t) , 

[21,23]. 

Theorem 3.  Let  U  be an open set in nR  and n

0X F(R ) . Suppose that  qs  is continuous, that for each  

c U  there exists one unique solution  x( ,c)  of problem (9) and that  x(t , )  is continuous in U  for each 

t [0,T] . Then : 

If  qs  is nondecreasing with respect to the second argument then, using the first form (I), the fuzzy 

solution of (5) and the solution via differential inclusions are identical. 
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If  qs  is nonincreasing with respect to the second argument then, using the derivative in the second form 

(II), the fuzzy solution of (5) and the solution via differential inclusions are identical. 
Proof.  see demonstration of Theorem 7,8 in [6]. 
 

5. Numerical Algorithm 

Let f , g  be as mention in Theorem 1 , denote dq(t,x) qs(t,x)
x





. 

In the following we proposed an algorithm which based on second order Runge-Kutta method. 
Algorithm . 

1 . choose m , n  two integer number. let 
1

h
m

  , t

T
h

n
 . 

2 . Repeat steps 3 12  for i 0, ,m   : 

3 . (m i)h  , 1 2 0y (0) [y (0) , y (0)] [X ]     . 

4 . Repeat steps 5 12  for j 1, ,n   : 

5 . tt jh . 

6. if 1dq(t,y (t)) 0 , then repeat steps 7 9 , else repeat 10 12 . 

7 . 1 t 1 2k h k (t , y (t) , y (t))   , 1 t 1 2l h l (t , y (t) , y (t))   . 

8 . 2 t t 1 1 2 1k h k (t h , y (t) k , y (t) l )      , 2 t t 1 1 2 1l h l (t h , y (t) k , y (t) l )      . 

9 . 1 t 1 1 2

1
y (t h ) y (t) (k k )

2
     , 2 t 2 1 2

1
y (t h ) y (t) (l l )

2
     . 

10 . 1 t 1 2k h l (t , y (t) , y (t))   , 1 t 1 2l h k (t , y (t) , y (t))   . 

11 . 2 t t 1 1 2 1k h l (t h , y (t) k , y (t) l )      , 2 t t 1 1 2 1l h k (t h , y (t) k , y (t) l )       

12 . 1 t 1 1 2

1
y (t h ) y (t) (k k )

2
     , 2 t 2 1 2

1
y (t h ) y (t) (l l )

2
     . 

6. Numerical Example 
Let us consider the nonlinear fuzzy problem, 

2X (t) t X(t) 4tX(t) 3X(t) t [0,2]

X(0) (0,1,1)

     



 

Approximation solution of Example 1 , for t 0 , 0.02 , 0.04 , 0.06  are tabulated in Table 1 :  

 
                       Table 1: Approximation solution of Example 1 

  t 0  t 0.02  t 0.04  t 0.06  

0 [-1.0 , 1.0] [-1.0627 , 1.0627] [-1.1292 , 1.1292] [-1.2000 , 1.2000] 
0.1 [-0.9 , 0.9] [-0.9564 , 0.9564] [-1.0163 , 1.0163] [-1.0800 , 1.0800] 
0.2 [-0.8 , 0.8] [-0.8501 , 0.8501] [-0.9034 , 0.9034] [-0.9600 , 0.9600] 
0.3 [-0.7 , 0.7] [-0.7439 , 0.7439] [-0.7905 , 0.7905] [-0.8400 , 0.8400] 
0.4 [-0.6 , 0.6] [-0.6376 , 0.6376] [-0.6775 , 0.6775] [-0.7200 , 0.7200] 
0.5 [-0.5 , 0.5] [-0.5313 , 0.5313] [-0.5646 , 0.5646] [-0.6000 , 0.6000] 
0.6 [-0.4 , 0.4] [-0.4251 , 0.4251] [-0.4517 , 0.4517] [-0.4800 , 0.4800] 
0.7 [-0.3 , 0.3] [-0.3188 , 0.3188] [-0.3388 , 0.3388] [-0.3600 , 0.3600] 
0.8 [-0.2 , 0.2] [-0.2125 , 0.2125] [-0.2258 , 0.2258] [-0.2400 , 0.2400] 
0.9 [-0.1 , 0.1] [-0.1063 , 0.1063] [-0.1129 , 0.1129] [-0.1200 , 0.1200] 
1 [0.0 , 0.0] [0.0 , 0.0] [0.0 , 0.0] [0.0 , 0.0] 
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7. Conclusion 
In this paper we present some results on fuzzy differential equation with generalized derivative. Also, 
we obtain new method for solving the differential equations that are not strictly increasing or strictly 
decreasing. 
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