PUBLICATIONS PUBLICATIONS

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Bipolar linear Diophantine fuzzy EDAS for multi-attribute group decision-making

J. Vimala^a, S. Nithya Sri^a, Nasreen Kausar^b, Brikena Vrioni^{c,*}, Dragan Pamucar^{d,e,f}, Vladimir Simic^{g,h}

Abstract

The formation of new properties for Bipolar Linear Diophantine Fuzzy Set (\mathcal{BLDFS}) enhances the evaluation procedure by including control parameters and meticulously accumulating positive as well as negative opinions. While previous approaches encounter difficulties in accurately grasping uncertainties, the design and development of a novel Bipolar Linear Diophantine Fuzzy Evaluation based on Distance from Average Solution ($\mathcal{BLDFEDAS}$) approach aim to bridge the gap in the existing research. An application of implementing this approach is presented by case analysis on choosing the best Forensic Decision Intelligence (\mathcal{FDI}) system, as the significance of forensic science in the court system has yet to be demonstrated. Further, a novel Bipolar Linear Diophantine Fuzzy Multi-Attributive Border Approximation Area Comparison ($\mathcal{BLDFMABAC}$) methodology is provided to uplift the effectiveness of results by $\mathcal{BLDFEDAS}$. By rigorously incorporating control parameters and bipolarity, the field substantially progresses and establishes a robust framework for tackling ambiguity in decision support systems.

Keywords: Bipolar linear Diophantine fuzzy set, evaluation based on distance from average solution, multi-attributive border approximation area comparison, multi-attribute group decision-making.

2020 MSC: 03B52, 03E72, 08A72.

©2025 All rights reserved.

1. Introduction

The complexity of Decision-making problems grows in this competitive world. Therefore, it becomes harder for an individual decision expert to make a well-informed choice. Multi-Attribute Decision-Making(\mathcal{MADM}) and Multi-Criteria Decision-Making(\mathcal{MCDM}) have wider approaches in many fields of science, which has made researchers work more on it [51]. These \mathcal{MADM} methods were developed with many operators to handle vagueness. In the field of digital transformation, aggregation operator

*Corresponding author

Email address: brikena.vrioni@yahoo.com (Brikena Vrioni)

doi: 10.22436/jmcs.038.01.03

Received: 2024-07-17 Revised: 2024-09-15 Accepted: 2024-09-29

^aDepartment of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India.

^bDepartment of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Esenler, 34220, Istanbul, Turkey.

^cSchool of Arts and Sciences, American International University, Kuwait.

^dDepartment of Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia.

^eDepartment of Industrial Engineering and Management, Yuan Ze University, Taoyuan City, 320315, Taiwan.

^fDepartment of Mechanics and Mathematics, Western Caspian University, Baku, Azerbaijan.

⁹University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, Belgrade, 11010, Serbia.

^hDepartment of Computer Science and Engineering, College of Informatics, Korea University, Seoul, 02841, Republic of Korea.

was discussed for linear diophantine fuzzy [27]. Jana et al. discussed Dombi aggregation operators [24] and Dombi prioritized aggregation operators [25] in a bipolar fuzzy set. Lee developed operations based on bipolar-valued fuzzy sets [33]. Asif et al. examined Pythagorean fuzzy set through Hamacher aggregation operator [6]. Frank Choquet Bonferroni mean operators were deliberated by Wang et al. [52]. Aggregation operator named Sugeno-Weber was explored for spherical fuzzy by Hussain and Ullah [17]. To provide satisfying results, it is necessary to integrate the opinions of various skilled experts. As a result, Multi-Attribute Group Decision-making to choose (MAGDM) and Multi-Criteria Group Decisionmaking (MCGDM) offer a high potential and structured approach for evaluating multiple conflicting criteria. Many decision-making strategies coped with uncertainty were addressed with MAGDM and MCGDM tools like green supplier selection [2], disaster control [10], pattern classification [11], cybersecurity [37], and best airline during pandemic [50]. These tools were widely conferred through interval fuzzy [18], bipolar fuzzy [21], q-rung orthopair fuzzy [35, 51], and trapezoidal fuzzy numbers [42]. Similarity functions on fuzzy sets were well deliberated by previous studies [30, 34, 48]. In the contemporary world, there is a need for the best FDI System to be developed into an application for resolving critical cases and to lead an excellent path for finding the right decision at the earliest. Many researchers discussed well about FDI through intelligent systems [38], its effectiveness in criminal justice [28], and efficacy in investigation [46]. MAGDM strategies can be beneficial for assessing and alleviating threats concerning criminal investigation, which comprises procedural inaccuracies and legal complications, as such, the problem is set up. A MADM problem based on Krushkal's algorithm is well discussed [31]. Robot selection [19], smog mitigation [32], and material selection [47] were analyzed through MCDM methods. Also, frameworks related to multi-fuzzy were examined by recent researches [49].

1.1. Literature review

Zadeh [54] initiated Fuzzy Set (\mathcal{FS}) with belongingness area in the interval [0,1]. It was then evolved into an Intuitionistic Fuzzy Set (\mathcal{FS}) [7, 8], which demanded the total belongingness area and non-belongingness area be in [0,1]. Due to the loss of the condition, it proceeds to develop into Pythagorean Fuzzy Set (\mathcal{FS}) [53] with a square sum of belongingness area and non-belongingness area lies in [0,1]. To conquer the inability of earlier ailments, it was transitioned into q-Rung Orthopair Fuzzy Set (\mathfrak{q} - \mathfrak{ROFS}) [5] with the \mathfrak{q}^{th} sum of the condition. Upon all inefficiency to handle unpredictability, Linear Diophantine Fuzzy Set (\mathcal{LDFS}) [45] was integrated by incorporating control parameters. Bipolar Fuzzy Set (\mathcal{BFS}) [55, 56] is an interpretation of \mathcal{FS} to assist the mind of humans to take the most advantageous judgments in every instance with the analyzation of equally beneficial and detrimental consequences [9, 56]. It was further improved into Bipolar Pythagorean Fuzzy Set (\mathcal{BPFS}) [1] besides having its implications for tackling \mathcal{MADM} in various fuzzy like q-rung [36], plithogenic [43], and complex linear diophantine fuzzy [26]; \mathcal{MCDM} [40, 52]; and group decision making problems [18]. Many researchers had beneficial discussions regarding decision-making in a bipolar environment [20, 22]. An \mathcal{EDAS} [23] approach in a bipolar context was well explored by Chiranjibe Jana and Madhumangal Pal. Jana [21] also evaluated the bipolar fuzzy \mathcal{MABAC} process.

Amongst many conventional decision-making approaches, \mathcal{EDAS} is a beneficial technique in resolving multi-attribute group decision-making (\mathcal{MASDM}). It was advanced by Ghorabee [16] and further extended by other researchers [23]. Unlike other approaches like \mathcal{VIKOR} [12, 42], \mathcal{TOPSJS} [3, 12, 15], $\mathcal{ELECTRE}$ [3, 4], \mathcal{SWARA} - \mathcal{COPRAS} [13], \mathcal{CIFS} - \mathcal{COPRAS} [44], \mathcal{CODAS} [29], etc., \mathcal{EDAS} [35] excels well at choosing optimal options. It is extremely effective when there are competing criteria in \mathcal{MASDM} problems. On comparing to those others, \mathcal{EDAS} is based on the average solution from positive and negative distances (PDA & NDA) instead of ideal solutions. It offers possibilities to broaden this strategy with numerous tactics. These enable \mathcal{EDAS} to serve as a suitable auxiliary and provide credible decision-making outputs. \mathcal{MABAC} was originally presented by Pamucar and Irovic [41]. It considers competing characteristics when making decisions. A substantially more tangible and effective clumping of data can be acquired by proactively taking into account the benefit of Border Approximation Region (\mathcal{BAR}) to consider the decision maker's ineffability and fuzziness of the preference context. \mathcal{MABAC} was applied to

various applications as it can be easily paired with other strategies. Table 1 shows the comparison of literature based on different components.

Component	LDFS [45]	BFS [55, 56]	BLDFS(proposed)
Novelty	Generalized fuzzy	Incorporation of both	Bipolar fuzzy model
	model with con-	positive and negative	with control param-
	trol parameters	information	eters
Methodology	Linear Diophan-	Bipolar fuzzy	Bipolar linear dio-
	tine fuzzy set		phantine fuzzy
Strengths	Simplicity	Enhanced uncertainty	Flexible, robust
		management	
Scalability	Limited	Moderate	High

Table 1: Literature-Comparative table.

1.2. Motivation and contribution

A fascinating approach to the idea of dealing with ambiguity is that, with the advancement of pairing bipolarity and control parameters, a developed methodology named \mathcal{BLDFS} [39] is designed new operations and properties. This tool will be valuable in addressing difficulties in the real world by acquiring the benefits and drawbacks of any circumstances and incorporating control parameters influencing our choice to make the best option. Weighted Average Operator is proposed in a novel way which can be further developed into many operators, like Hamacher Operators or Einstein Operators. Even there are many Decision-making approaches exist in the literature, there is a wide scarcity of research on fuzzy \mathcal{EDAS} . To bridge the research disparity, a classic decision-making approach \mathcal{EDAS} is indulged with \mathcal{BLDFS} based on an analogous \mathcal{EDAS} in bipolar surroundings and utilized to an \mathcal{MAGDM} problem. The proposed methodology contributes by enriching the understanding of the method. The aim of making the right choice can be dealt with by our technique. When compared to other \mathcal{MADM} or \mathcal{MCDM} methods, this novel technique can deal with any conflicting issues and provides us a prioritizing option because of the PDA and NDA. Also, it has the ability to handle both quantitative as well as qualitative ambiguous information. In today's modern world, critical issues show the significance of bipolarity. The positive and negative evaluations simultaneously enable a flexible and nuanced analysis of conflicting criteria.

Beyond fuzzy, the ambiguous circumstances in deciding upon an appropriate \mathcal{FDI} system exist, and no previous work has addressed them. So, the proposed new technique significantly uplifts as a best decision support tool in \mathcal{FDI} systems. The imperative need to prioritize the selection of best \mathcal{FDI} is motivated by its crucial role in criminal operations. Inefficiencies, delays, and accuracies in the case can intensify the effects of crime scenes leading to more difficulties like losing of crucial evidence, wrongful convictions, wastage of resources, misjudgment, etc. The major reason for choosing the application is that accurate and timely decisions are vital in increasing complex criminal investigations. With the integrated positive and negative evaluations it is more flexible in selecting \mathcal{FDI} . The proposed technology streamlines the decision process thereby reducing delays which could lead to loss of critical evidence, delayed justice, and wrongful convictions.

The major novelty of the study is the innovative introduction of \mathcal{EDAS} and \mathcal{MABAC} methods from a \mathcal{BLDFS} . A specific development of complex problems in the field of \mathcal{FDI} , which has never been addressed before under uncertain conditions. The incorporation of control parameters offers a better theoretical framework in the field of fuzzy. The advanced algorithm offers effective and timely solutions to practical problems and serves as a robust decision support tool, which represents an important step forward in both the forensic department and fuzzy set theory. There are many conflicting and uncertain factors in the challenging field of forensics. The proposed approach addresses these challenges more extensively. It not only improves the robustness and flexibility of the forensic department but also bridges a crucial gap in the application of fuzzy set theory to forensic decision intelligence. A combination of

strategic planning, and resource allocation through the proposed methods can minimize the impact of delays in judgments. The nomenclature of this study is given in Table 2.

Table 2: Nomenclature. Notation Notion FS Fuzzy set JFS Intuitionistic fuzzy set PFS Pythagorean fuzzy set q-ROFSq-Rung orthopair fuzzy set LDFS Linear Diophantine fuzzy set BFS Bipolar fuzzy set Bipolar pythagorean fuzzy set BPFS BLDFS Bipolar linear Diophantine fuzzy Set BLDFEDAS Bipolar linear Diophantine fuzzy evaluation based on distance from average solution Bipolar linear Diophantine fuzzy multi-attributive border approximation area comparison BLDFMABACMAGDM Multi-attribute group decision-making FDI Forensic decision intelligence G Discourse universe Н Belongingness area R Non-belongingness area Control parameters E, L

1.3. Flow of manuscript

- In Section 2, we reexamine some essential concepts to fabricate our model.
- Section 3 comprises of our implemented postulation with definitions, fundamental operations, properties, and propositions.
- In Section 4, BLDFEDAS approach is developed in the form of an algorithm.
- \bullet Section 5 and its subsections consist of the problematic utilization of the proposed methodology by opting for an effectual FDI system.
- An corroboration of BLDFEDAS by BLDFMABAC is given in Section 6.
- Section 7 contains the discussion and conclusion part with future research plans.

2. Preliminaries

We recall certain fundamental descriptions that will be beneficial for subsequent concepts. G is the discourse universe throughout this manuscript.

Definition 2.1 ([54]). On G, \mathcal{FS} is defined as $\mathcal{B} = (i, H_{\mathcal{B}}(i) : i \in G)$, where $H_{\mathcal{B}}(i)$ is the belongingness area of $\mathcal{B} \in [0, 1]$.

Example 2.2. Let $G = \{i_1, i_2\}$ be two routes. A person wants to choose the best route to his destination based on the path. Then an \mathcal{FS} is given as

$$\mathcal{B} = ((i_1, 0.8), (i_2, 0.4) : i_1, i_2 \in \mathsf{G}).$$

Definition 2.3 ([45]). On G, \mathcal{LDFS} is defined as,

$$S = (i, H_S(i), R_S(i), E_S(i), L_S(i) : i \in G),$$

where $H_S(i)$, $R_S(i)$, and $E_S(i)$, $L_S(i)$ are the belongingness area, non-belongingness area, and control parameters of $S \in [0,1]$. It has a requirement that $0 \leq H_S(i)$ $E_S(i) + R_S(i)$ $E_S(i) + E_S(i)$ and $0 \leq E_S(i) + E_S(i)$ equivalent in the second of the second

Definition 2.4 ([55, 56]). On G, \mathcal{BFS} is defined as

$$\mathcal{H} = \left(i, \mathsf{H}^{\mathcal{P}}_{\mathcal{H}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{H}}(i) : i \in \mathsf{G}\right),$$

where $H_{\mathcal{H}}^{\mathcal{P}}(i)$ is the positive belongingness area and $H_{\mathcal{H}}^{\mathcal{N}}(i)$ is the negative belongingness area of \mathcal{H} lies in [0,1] and [-1,0] subsequently.

Example 2.5. Consider Example 2.2. A BFS is given as

$$\mathcal{B} = ((i_1, 0.8, -0.2), (i_2, 0.4, -0.6) : i_1, i_2 \in \mathsf{G}).$$

Definition 2.6 ([1]). On G, \mathcal{BPFS} is defined as

$$\mathcal{L} = \left(i, \mathsf{H}^{\mathcal{P}}_{\mathcal{L}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{L}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{L}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{L}}(i) : i \in \mathsf{G}\right),$$

where $\mathsf{H}^{\mathcal{P}}_{\mathcal{L}}(i)$, $\mathsf{R}^{\mathcal{P}}_{\mathcal{L}}(i)$, $\mathsf{H}^{\mathcal{N}}_{\mathcal{L}}(i)$, and $\mathsf{R}^{\mathcal{N}}_{\mathcal{L}}(i)$ are the positive belongingness area, non-belongingness area, negative belongingness area, and non-belongingness area of \mathcal{L} lies in [0,1] and [-1,0] subsequently. It is mandatory that $0 \leq (\mathsf{H}^{\mathcal{P}}_{\mathcal{L}}(i))^2 + (\mathsf{R}^{\mathcal{P}}_{\mathcal{L}}(i))^2 \leq 1$ and $-1 \leq (\mathsf{H}^{\mathcal{N}}_{\mathcal{L}}(i))^2 + (\mathsf{R}^{\mathcal{N}}_{\mathcal{L}}(i))^2 \leq 0$.

Definition 2.7 ([1]). Let a group of \mathcal{BPFV} , \mathfrak{J}_s , be defined by $\mathfrak{J}_s = (\mathsf{H}_s^{\mathfrak{P}}, \mathsf{R}_s^{\mathfrak{P}}, \mathsf{H}_s^{\mathfrak{N}}, \mathsf{R}_s^{\mathfrak{N}})$, where $s = 1, 2, \ldots, j$. Then

$$\mathcal{L}_{f}(\mathfrak{J}_{1},\mathfrak{J}_{2},\ldots,\mathfrak{J}_{s})$$

$$=\sum_{s=1}^{j}\mathfrak{f}_{s}\mathfrak{J}_{s}=\left[\left(\sqrt{1-\prod_{s=1}^{j}(1-(\mathsf{H}_{s}^{\mathfrak{P}})^{2})^{\mathfrak{f}_{s}}}\right),\left(\prod_{s=1}^{j}(\mathsf{R}_{s}^{\mathfrak{P}})^{\mathfrak{f}_{s}}\right),-\left(\prod_{s=1}^{j}(-\mathsf{H}_{s}^{\mathfrak{N}})^{\mathfrak{f}_{s}}\right),-\left(\sqrt{1-\prod_{s=1}^{j}(1-((-\mathsf{R}_{s}^{\mathfrak{N}})^{2}))^{\mathfrak{f}_{s}}}\right)\right],$$

where the weight for \mathfrak{J}_s , $s=1,2,\ldots,\mathfrak{j}$ is given as $\mathfrak{f}=[\mathfrak{f}_1,\mathfrak{f}_2,\ldots,\mathfrak{f}_{\mathfrak{j}}]^{\mathfrak{T}}$ with $\mathfrak{f}_s\succ 0$ and $\sum_{s=1}^{\mathfrak{j}}\mathfrak{f}_s=\mathfrak{1}$ is a Bipolar Pythagorean Fuzzy Weighted Average (\mathfrak{BPFWA}) operator.

Definition 2.8 ([45]). Consider a Linear Diophantine Fuzzy Value (\mathcal{LDFV}), O. The scoring value, $\mathcal{SV}(0)$, is given as

$$\mathcal{SV}(\mathfrak{O}) = \frac{[(\mathsf{H}_{\mathfrak{O}} - \mathsf{R}_{\mathfrak{O}}) + (\mathsf{E}_{\mathfrak{O}} - \mathsf{L}_{\mathfrak{O}})]}{2}, \ \forall \mathcal{SV}(\mathfrak{O}) \in [-1,1].$$

Definition 2.9 ([45]). Consider a \mathcal{LDFV} , \mathcal{W} . The accuracy value, $\mathcal{AV}(\mathcal{W})$, is given as

$$\mathcal{AV}(\mathcal{W}) = \frac{\left[\frac{(H_{\mathcal{W}} + R_{\mathcal{W}})}{2} + (E_{\mathcal{W}} + L_{\mathcal{W}})\right]}{2}, \ \forall \mathcal{AV}(\mathcal{W}) \in [0,1].$$

Definition 2.10 ([21]). Consider two \mathfrak{BFS} , then the \mathfrak{BF} normalized hamming distance is given by

$$d_{\mathcal{BFNHD}} = \frac{((|\mathsf{H}_{1}^{\mathcal{P}} - \mathsf{H}_{2}^{\mathcal{P}}| + |\mathsf{H}_{1}^{\mathcal{N}} - \mathsf{H}_{2}^{\mathcal{N}}|)}{2}.$$

3. Some operators and functions on \mathcal{BLDFS}

An emerging concept \mathcal{BLDFS} is implemented, and some operations & functions describing \mathcal{BLDFS} environment are offered in this part.

Definition 3.1. \mathcal{BLDFS} w is a portion on the discourse universe G,

$$\mathbf{w} = \left\{ \left(i, (\mathbf{H}_{\mathbf{w}}^{\mathcal{P}}(i), \mathbf{R}_{\mathbf{w}}^{\mathcal{P}}(i), \mathbf{H}_{\mathbf{w}}^{\mathcal{N}}(i), \mathbf{R}_{\mathbf{w}}^{\mathcal{N}}(i)), (\mathbf{E}_{\mathbf{w}}^{\mathcal{P}}(i), \mathbf{L}_{\mathbf{w}}^{\mathcal{P}}(i), \mathbf{E}_{\mathbf{w}}^{\mathcal{N}}(i), \mathbf{L}_{\mathbf{w}}^{\mathcal{N}}(i)) \right) : i \in \mathbf{G} \right\},$$

where

- $H_w^{\mathcal{P}}(i)$ and $R_w^{\mathcal{P}}(i)$ are positive belongingness and non-belongingness area, $E_w^{\mathcal{P}}(i)$ and $L_w^{\mathcal{P}}(i)$ are the control parameters in [0,1] to a \mathcal{BLDFS} w.
- $H_w^{\mathcal{N}}(i)$ and $R_w^{\mathcal{N}}(i)$ are negative belongingness and non-belongingness area, $E_w^{\mathcal{N}}(i)$ and $L_w^{\mathcal{N}}(i)$ are the control parameters in [-1,0] to a \mathcal{BLDFS} w.

The succeeding prerequisites are ought to be met. For all $i \in G$:

- (i) $0 \leq \mathsf{E}^{\mathcal{P}}_{\mathsf{w}}(i)\mathsf{H}^{\mathcal{P}}_{\mathsf{w}}(i) + \mathsf{L}^{\mathcal{P}}_{\mathsf{w}}(i)\mathsf{R}^{\mathcal{P}}_{\mathsf{w}}(i) \leq 1;$
- (ii) $0 \leq \mathsf{E}_{\mathsf{w}}^{\mathcal{N}}(i)\mathsf{H}_{\mathsf{w}}^{\mathcal{N}}(i) + \mathsf{L}_{\mathsf{w}}^{\mathcal{N}}(i)\mathsf{R}_{\mathsf{w}}^{\mathcal{N}}(i) \leq 1;$
- (iii) $0 \leq \mathsf{E}_{\mathsf{w}}^{\mathcal{P}}(i) + \mathsf{L}_{\mathsf{w}}^{\mathcal{P}}(i) \leq 1;$ (iv) $-1 \leq \mathsf{E}_{\mathsf{w}}^{\mathcal{N}}(i) + \mathsf{L}_{\mathsf{w}}^{\mathcal{N}}(i) \leq 0.$

BLDFS is represented in the form of graph in Figure 1, through which the broader scope of the extended fuzzy set is seen.

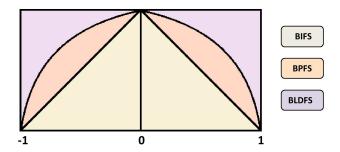


Figure 1: Graphical representation of the BLDFS.

A Portion

$$w = \left\{ \left((H_w^{\mathcal{P}}, R_w^{\mathcal{P}}, H_w^{\mathcal{N}}, R_w^{\mathcal{N}}), (E_w^{\mathcal{P}}, L_w^{\mathcal{P}}, E_w^{\mathcal{N}}, L_w^{\mathcal{N}}) \right) \right\},$$

represents bipolar linear Diophantine fuzzy values (\mathcal{BLDFV}).

Example 3.2. Consider a squad of boutique $G = \{i_1, i_2\}$. A \mathcal{BLDFV} can be given as $\mathbf{w} = \{(i_1, (0.7, 0.1, -0.4, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1$ -0.3), (0.6, 0.4, -0.8, -0.1)), $(i_2, (0.8, 0.2, -0.6, -0.1), (0.5, 0.3, -0.3, -0.2))$ }, where the control parameters are considered to be $E_{\mathbf{w}}^{\mathcal{P}} = quality \ cloth$, $L_{\mathbf{w}}^{\mathcal{P}} = not \ a \ quality \ cloth$, $E_{\mathbf{w}}^{\mathcal{N}} = inferiority \ cloth$ and $L_{\mathbf{w}}^{\mathcal{N}} = not \ an \ inferiority$ cloth.

Definition 3.3. Consider two BLDFS

$$\begin{split} & \mathcal{K} = \left\{ \left(i, (\mathsf{H}_{\mathcal{K}}^{\mathcal{P}}(i), \mathsf{R}_{\mathcal{K}}^{\mathcal{P}}(i), \mathsf{H}_{\mathcal{K}}^{\mathcal{N}}(i), \mathsf{R}_{\mathcal{K}}^{\mathcal{N}}(i)), (\mathsf{E}_{\mathcal{K}}^{\mathcal{P}}(i), \mathsf{L}_{\mathcal{K}}^{\mathcal{P}}(i), \mathsf{E}_{\mathcal{K}}^{\mathcal{N}}(i), \mathsf{L}_{\mathcal{K}}^{\mathcal{N}}(i)) \right) | i \in \mathsf{G} \right\}, \\ & \mathcal{M} = \left\{ \left(i, (\mathsf{H}_{\mathcal{M}}^{\mathcal{P}}(i), \mathsf{R}_{\mathcal{M}}^{\mathcal{P}}(i), \mathsf{H}_{\mathcal{M}}^{\mathcal{N}}(i), \mathsf{R}_{\mathcal{M}}^{\mathcal{N}}(i)), (\mathsf{E}_{\mathcal{M}}^{\mathcal{P}}(i), \mathsf{L}_{\mathcal{M}}^{\mathcal{P}}(i), \mathsf{E}_{\mathcal{M}}^{\mathcal{N}}(i), \mathsf{L}_{\mathcal{M}}^{\mathcal{N}}(i)) \right) : i \in \mathsf{G} \right\}. \end{split}$$

Then, the subsequent operations are valid.

- (a) $\mathcal{K} \subseteq \mathcal{M} \iff \mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i) \preceq \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i), \, \mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i) \succeq \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i), \, \mathsf{E}^{\mathcal{P}}_{\mathcal{K}} \preceq \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i), \, \mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i) \succeq \mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i), \, \mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i) \succeq \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i), \, \mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i) \preceq \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i), \, \mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i) \preceq \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i).$
- (b) $\mathcal{K} = \mathcal{M} \iff \mathcal{K} \subseteq \mathcal{M} \text{ and } \mathcal{M} \subseteq \mathcal{K}$.

- $\begin{array}{ll} \text{(c)} \ \mathcal{K} = \mathcal{M} \ \longleftrightarrow \ \mathcal{K} \subseteq \mathcal{M} \ \text{dist} \ \mathcal{H} \subseteq \mathcal{K}. \\ \text{(c)} \ \mathcal{K}^{\mathcal{C}} = \left\{ \left(i, (\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i)), (\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i))\right) : } i \in \mathsf{G} \right\}. \\ \text{(d)} \ \mathcal{K} \ \cap \ \mathcal{M} = \left\{ (i, (\min(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i))) \right\}. \\ \text{(e)} \ \mathcal{K} \ \cup \ \mathcal{M} = \left\{ (i, (\max(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \min(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \min(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \max(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i))) \right\}. \\ \text{(e)} \ \mathcal{K} \ \cup \ \mathcal{M} = \left\{ (i, (\max(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \min(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i)), \max(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i))) \right\}. \\ \text{(max}(\mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i)), \min(\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i))) \right\}. \end{array}$

Definition 3.4. A **BLDFS** on **G** is called

- (i) Null: $\mathcal{K}_{\mathcal{N}} = \{(i, (0, 1, 0, -1), (0, 1, 0, -1)) : i \in G\};$
- (ii) Absolute: $\mathcal{K}_{\mathcal{A}} = \{(i, (1, 0, -1, 0), (1, 0, -1, 0)) : i \in G\}.$

Proposition 3.5. Consider a BLDFS, K. Then

- (a) $(\mathcal{K}^{\mathcal{C}})^{\mathcal{C}} = \mathcal{K}$;
- (b) $(\mathfrak{K}_{\mathcal{A}})^{\mathfrak{C}} = \mathfrak{K}_{\mathfrak{N}};$
- (c) $(\mathfrak{K}_{\mathcal{N}}) \subseteq \mathfrak{K}$;
- (d) $\mathcal{K} \subseteq (\mathcal{K}_{\mathcal{A}})$.

Proposition 3.6. Let

$$\mathcal{K}_{\mathfrak{r}} = \left\{ \left(i, (\mathsf{H}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{P}}(i), \mathsf{R}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{P}}(i), \mathsf{H}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{N}}(i), \mathsf{R}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{N}}(i)), (\mathsf{E}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{P}}(i), \mathsf{L}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{P}}(i), \mathsf{E}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{N}}(i), \mathsf{L}_{\mathcal{K}_{\mathfrak{r}}}^{\mathcal{N}}(i))\right) \colon i \in \mathsf{G} \right\}, \ \mathfrak{r} = \mathsf{1}, \mathsf{2}, \mathsf{3}, \mathsf{3}, \mathsf{3}, \mathsf{4}, \mathsf$$

be a three BLDFS. Then

- (a) $\mathcal{K}_1 \cup \mathcal{K}_2 = \mathcal{K}_2 \cup \mathcal{K}_1$;
- (b) $\mathcal{K}_1 \cap \mathcal{K}_2 = \mathcal{K}_2 \cap \mathcal{K}_1$;
- (c) $\mathcal{K}_1 \cup (\mathcal{K}_2 \cup \mathcal{K}_3) = (\mathcal{K}_1 \cup \mathcal{K}_2) \cup \mathcal{K}_3$;
- (d) $\mathcal{K}_1 \cap (\mathcal{K}_2 \cap \mathcal{K}_3) = (\mathcal{K}_1 \cap \mathcal{K}_2) \cap \mathcal{K}_3$.

Proof. Since the mar and min functions are associative and commutative, the proof holds simply.

Proposition 3.7. Let a two BLDFS on G be, K and M. Then De Morgan's law holds, i.e.,

- (a) $(\mathfrak{K} \cap \mathfrak{M})\mathfrak{C} = \mathfrak{K}^{\mathfrak{C}} \cup \mathfrak{M}^{\mathfrak{C}};$
- (b) $(\mathfrak{K} \cup \mathfrak{M})^{\mathfrak{C}} = \mathfrak{K}^{\mathfrak{C}} \cap \mathfrak{M}^{\mathfrak{C}}$.

Proof.

$$(\mathbf{a})(\mathfrak{K}\cap\mathfrak{M})^{\mathfrak{C}} = \left\{ \left(i, (\min(\mathsf{H}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{H}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \max(\mathsf{R}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{R}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \max(\mathsf{H}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{H}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{R}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{R}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \\ \left. \left(\min(\mathsf{E}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{E}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \max(\mathsf{L}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \max(\mathsf{E}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{E}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i))) \right) \right\}^{\mathfrak{C}} \\ \left((\mathfrak{K}\cap\mathfrak{M})^{\mathfrak{C}} = \left\{ \left(i, (\max(\mathsf{R}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{R}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \min(\mathsf{H}^{\mathfrak{P}}_{\mathfrak{K}}(i), \mathsf{H}^{\mathfrak{P}}_{\mathfrak{M}}(i)), \min(\mathsf{R}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{R}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \max(\mathsf{H}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{H}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \max(\mathsf{H}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{H}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \max(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \max(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{K}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i), \mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i)), \min(\mathsf{L}^{\mathfrak{N}}_{\mathfrak{M}}(i), \mathsf{L}^{\mathfrak{N}}_{$$

By Definition 3.3 (c),

$$\begin{split} \mathcal{K}^{\mathfrak{C}} &= \left\{ \left(i, (\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i)), (\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i) \mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i)) \right) : i \in \mathsf{G} \right\}, \\ \mathcal{M}^{\mathfrak{C}} &= \left\{ \left(i, (\mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), (\mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i) \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i)) \right) : i \in \mathsf{G} \right\}. \end{split}$$

By Definition 3.3 (e),

$$\mathcal{K}^{\mathcal{C}} \cup \mathcal{M}^{\mathcal{C}} = \left\{ \left(i, (\max(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \ \min(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \ \min(\mathsf{R}^{\mathcal{R}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \ \max(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \\ \left. \left(\max(\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i)), \ \min(\mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \ \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i)), \ \min(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i)), \max(\mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i))) \right) \right\}. \tag{3.2}$$

From equations (3.1) and (3.2), we have $(\mathfrak{K} \cap \mathfrak{M})^{\mathfrak{C}} = \mathfrak{K}^{\mathfrak{C}} \cup \mathfrak{M}^{\mathfrak{C}}$. Hence the proof.

$$(b)(\mathcal{K}\cup\mathcal{M})^{\mathfrak{C}} = \left\{ \left(i, (\max(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \min(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \min(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \, \max(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \\ \left. (\max(\mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \, \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \min(\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \min(\mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i)), \, \max(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i))) \right) \right\}^{\mathfrak{C}} \\ (\mathcal{K}\cup\mathcal{M})^{\mathfrak{C}} = \left\{ \left(i, (\min(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \max(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \max(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \, \min(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \\ \left. (\min(\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \max(\mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \, \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i)), \, \max(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i)), \, \min(\mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i))) \right) \right\}.$$

By Definition 3.3 (c),

$$\begin{split} & \mathcal{K}^{\mathfrak{C}} = \left\{ \left(i, (\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i)), (\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i) \mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i)) \right) : i \in \mathsf{G} \right\}, \\ & \mathcal{M}^{\mathfrak{C}} = \left\{ \left(i, (\mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), (\mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i) \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i)) \right) : i \in \mathsf{G} \right\}. \end{split}$$

By Definition 3.3 (d),

$$\mathcal{K}^{\mathcal{C}} \cap \mathcal{M}^{\mathcal{C}} = \left\{ \left(i, (\min(\mathsf{R}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{H}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{R}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{R}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{H}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{H}^{\mathcal{N}}_{\mathcal{M}}(i)), \\ \left. \left(\min(\mathsf{L}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{E}^{\mathcal{P}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{P}}_{\mathcal{M}}(i)), \max(\mathsf{L}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{L}^{\mathcal{N}}_{\mathcal{M}}(i)), \min(\mathsf{E}^{\mathcal{N}}_{\mathcal{K}}(i), \mathsf{E}^{\mathcal{N}}_{\mathcal{M}}(i))) \right) \right\}.$$

From equation (3.3) & (3.4), we have $(\mathcal{K} \cup \mathcal{M})^{\mathcal{C}} = \mathcal{K}^{\mathcal{C}} \cap \mathcal{M}^{\mathcal{C}}$. Hence the proof.

Definition 3.8. Let us consider a two \mathcal{BLDFV} , \mathcal{K} and \mathcal{M} . Let $\pi \ge 0$, then some fundamental operators are given below:

$$\begin{split} \mathcal{K}^{\pi} &= \left\{ \left. \left((\mathsf{H}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, 1 - (1 - \mathsf{R}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, - (1 - (1 - (-\mathsf{H}_{\mathcal{K}}^{\mathfrak{N}}))^{\pi}), - (-\mathsf{R}_{\mathcal{K}}^{\mathfrak{N}})^{\pi} \right), \left((\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, 1 - (1 - (-\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}}))^{\pi}), - (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}})^{\pi} \right) \right\}, \\ &\pi \mathcal{K} = \left\{ \left. \left((1 - (1 - \mathsf{H}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, (\mathsf{R}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, - (-\mathsf{H}_{\mathcal{K}}^{\mathfrak{N}})^{\pi}, - (1 - (1 - (-\mathsf{R}_{\mathcal{K}}^{\mathfrak{N}}))^{\pi}) \right) \left(1 - (1 - \mathsf{E}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, - (-\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}})^{\pi}, - (-\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}})^{\pi}, - (1 - (1 - (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}))^{\pi}) \right) \right\}, \\ &\mathcal{K} \boxtimes \mathcal{M} = \left\{ \left(((\mathsf{H}_{\mathcal{K}}^{\mathfrak{P}}).(\mathsf{H}_{\mathcal{M}}^{\mathfrak{P}})), (\mathsf{R}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{R}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{R}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{R}_{\mathcal{M}}^{\mathfrak{P}}), - ((-\mathsf{H}_{\mathcal{K}}^{\mathfrak{N}}) + (-\mathsf{H}_{\mathcal{M}}^{\mathfrak{N}}) - (-\mathsf{H}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{H}_{\mathcal{M}}^{\mathfrak{N}})), - (\mathsf{R}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{R}_{\mathcal{M}}^{\mathfrak{N}}) \right) \\ &\left(((\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}}).(\mathsf{E}_{\mathcal{M}}^{\mathfrak{P}})), (\mathsf{L}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{L}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{L}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{L}_{\mathcal{M}}^{\mathfrak{P}}), - ((-\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}}) + (-\mathsf{E}_{\mathcal{M}}^{\mathfrak{N}}) - (-\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{E}_{\mathcal{M}}^{\mathfrak{N}})), - (\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{L}_{\mathcal{M}}^{\mathfrak{N}}) \right) \right\}, \\ &(i\nu) \mathcal{K} \boxplus \mathcal{M} = \left\{ \left((\mathsf{H}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{H}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{H}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{H}_{\mathcal{M}}^{\mathfrak{P}}), ((\mathsf{R}_{\mathcal{K}}^{\mathfrak{P}}).(\mathsf{R}_{\mathcal{M}}^{\mathfrak{P}})), - (\mathsf{H}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{H}_{\mathcal{M}}^{\mathfrak{N}}), - ((-\mathsf{R}_{\mathcal{K}}^{\mathfrak{N}}) + (-\mathsf{R}_{\mathcal{M}}^{\mathfrak{N}}) - (-\mathsf{R}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{R}_{\mathcal{M}}^{\mathfrak{N}})) \right\}, \\ &\left((\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{E}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{E}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{E}_{\mathcal{M}}^{\mathfrak{P}}), ((\mathsf{L}_{\mathcal{K}}^{\mathfrak{P}}).(\mathsf{L}_{\mathcal{M}}^{\mathfrak{P}})), - (\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{E}_{\mathcal{M}}^{\mathfrak{N}}), - ((-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) + (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) - (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) \right\}, \\ &\left((\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{E}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{E}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{E}_{\mathcal{M}}^{\mathfrak{P}}), ((\mathsf{L}_{\mathcal{K}}^{\mathfrak{P}}).(\mathsf{L}_{\mathcal{M}}^{\mathfrak{P}})), - (\mathsf{E}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{E}_{\mathcal{M}}^{\mathfrak{N}}), - ((-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) + (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) - (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}) - (-\mathsf{L}_{\mathcal{K}}^{\mathfrak{N}}.\mathsf{L}_{\mathcal{M}}^{\mathfrak{N}}) \right) \right\}, \\ &\left((\mathsf{E}_{\mathcal{K}}^{\mathfrak{P}} + \mathsf{E}_{\mathcal{M}}^{\mathfrak{P}} - \mathsf{E}_{\mathcal{K}}^{\mathfrak{P}}.\mathsf{E}_$$

3.1. Some fundamental functions on BLDFS

The scoring value, accuracy value and \mathcal{BLDFWA} operator are established in this section.

Definition 3.9. Consider a \mathcal{BLDFV} , \mathcal{K} .

(i) The scoring value SV(X) is given as

$$\mathcal{SV}(\mathcal{K}) = \frac{\left\{ ((\mathsf{H}_{\mathcal{K}}^{\mathcal{P}} - \mathsf{R}_{\mathcal{K}}^{\mathcal{P}}) + (\mathsf{E}_{\mathcal{K}}^{\mathcal{P}} - \mathsf{L}_{\mathcal{K}}^{\mathcal{P}})) - ((\mathsf{H}_{\mathcal{K}}^{\mathcal{N}} - \mathsf{R}_{\mathcal{K}}^{\mathcal{N}}) + (\mathsf{E}_{\mathcal{K}}^{\mathcal{N}} - \mathsf{L}_{\mathcal{K}}^{\mathcal{N}})) \right\}}{4}, \forall \mathcal{SV}(\mathcal{K}) \in [-1, 1].$$

(ii) The accuracy value $\mathcal{AV}(\mathcal{K})$ is given as

$$\mathcal{AV}(\mathcal{K}) = \frac{\left\{\left(\left(\frac{1}{2}(\mathsf{H}_{\mathcal{K}}^{\mathcal{P}} + \mathsf{R}_{\mathcal{K}}^{\mathcal{P}})\right) + \left(\mathsf{E}_{\mathcal{K}}^{\mathcal{P}} + \mathsf{L}_{\mathcal{K}}^{\mathcal{P}}\right)\right) - \left(\left(\frac{1}{2}(\mathsf{H}_{\mathcal{K}}^{\mathcal{N}} + \mathsf{R}_{\mathcal{K}}^{\mathcal{N}})\right) + \left(\mathsf{E}_{\mathcal{K}}^{\mathcal{N}} + \mathsf{L}_{\mathcal{K}}^{\mathcal{N}}\right)\right)\right\}}{4}, \forall \mathcal{AV}(\mathcal{K}) \in [0, 1].$$

Consider two \mathcal{BLDFV} , \mathcal{K} and \mathcal{M} . Then if

- (1) $SV(M) \prec SV(K)$, then $M \prec K$;
- (2) SV(M) > SV(K), then M > K;
- (3) SV(M) = SV(K), then
 - (a) $\mathcal{AV}(\mathcal{M}) \prec \mathcal{AV}(\mathcal{K})$, then $\mathcal{M} \prec \mathcal{K}$;
 - (b) $\mathcal{AV}(\mathcal{M}) \succ \mathcal{AV}(\mathcal{K})$, then $\mathcal{M} \succ \mathcal{K}$;

(c)
$$\mathcal{AV}(\mathcal{M}) = \mathcal{AV}(\mathcal{K})$$
, then $\mathcal{M} = \mathcal{K}$.

Definition 3.10. Let a group of \mathcal{BLDFV} , \mathfrak{J}_s be defined by, $\mathfrak{J}_s = \{(\mathsf{H}_s^{\mathfrak{P}}, \mathsf{R}_s^{\mathfrak{P}}, \mathsf{H}_s^{\mathfrak{N}}, \mathsf{R}_s^{\mathfrak{N}}), (\mathsf{E}_s^{\mathfrak{P}}, \mathsf{L}_s^{\mathfrak{P}}, \mathsf{E}_s^{\mathfrak{N}}, \mathsf{L}_s^{\mathfrak{N}})\}$, where $s = 1, 2, \ldots, \mathfrak{j}$. Then

$$\begin{split} \boldsymbol{L}_{\boldsymbol{\mathfrak{f}}}(\mathfrak{J}_{1},\mathfrak{J}_{2},\ldots,\mathfrak{J}_{s}) &= \sum_{s=1}^{j} \boldsymbol{\mathfrak{f}}_{s} \mathfrak{J}_{s} \\ &= \left[\left(\left(1 - \prod_{s=1}^{j} (1 - \boldsymbol{H}_{s}^{\mathcal{P}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), \left(\prod_{s=1}^{j} (\boldsymbol{R}_{s}^{\mathcal{P}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), - \left(\prod_{s=1}^{j} (-\boldsymbol{H}_{s}^{\mathcal{N}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), - \left(1 - \prod_{s=1}^{j} (1 - (-\boldsymbol{R}_{s}^{\mathcal{N}}))^{\boldsymbol{\mathfrak{f}}_{s}} \right) \right), \\ &\left(\left(1 - \prod_{s=1}^{j} (1 - \boldsymbol{\mathsf{E}}_{s}^{\mathcal{P}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), \left(\prod_{s=1}^{j} (\boldsymbol{\mathsf{L}}_{s}^{\mathcal{P}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), - \left(\prod_{s=1}^{j} (-\boldsymbol{\mathsf{E}}_{s}^{\mathcal{N}})^{\boldsymbol{\mathfrak{f}}_{s}} \right), - \left(1 - \prod_{s=1}^{j} (1 - (-\boldsymbol{\mathsf{L}}_{s}^{\mathcal{N}}))^{\boldsymbol{\mathfrak{f}}_{s}} \right) \right) \right], \end{split}$$

where the weight for \mathfrak{J}_s , $s=1,2,\ldots,j$ is given as $\mathfrak{f}=[\mathfrak{f}_1,\mathfrak{f}_2,\ldots,\mathfrak{f}_j]^{\mathfrak{T}}$ with $\mathfrak{f}_s\succ 0$ and $\sum_{s=1}^{\mathfrak{f}}\mathfrak{f}_s=1$ is a \mathcal{BLDFWA} operator.

Example 3.11. Let $\mathfrak{J}_1 = \{(0.3, 0.8, -0.3, -0.4)(0.6, 0.1, -0.4, -0.3)\}$ and $\mathfrak{J}_2 = \{(0.5, 0.1, -0.7, -0.7)(0.6, 0.2, -0.3, -0.4)\}$. Then,

$$\mathcal{L}_f = \{(0.6534, 0.1860, -0.5729, -0.6592)(0.6, 0.1614, -0.3391, -0.3591)\}.$$

4. Bipolar linear Diophantine fuzzy EDAS approach

This part contains an approach for addressing an \mathcal{MAGDM} issue by means of Bipolar Linear Diophantine Fuzzy Weighted Average (\mathcal{BLDFWA}) operator through \mathcal{EDAS} .

Let us consider a group of η alternatives $\{\mathcal{L}_1,\mathcal{L}_2,\ldots,\mathcal{L}_\eta\}$ and a group of \mathfrak{t} attributes $\{\mathcal{T}_1,\mathcal{T}_2,\ldots,\mathcal{T}_\mathfrak{t}\}$ associated with $\{\mathcal{I}_1,\mathcal{I}_2,\ldots,\mathcal{I}_\mathfrak{t}\}$ weight vectors. Let $\{\mathcal{Q}_1,\mathcal{Q}_2,\ldots,\mathcal{Q}_E\}$ experts with corresponding vector to be $\{\mathcal{U}_1,\mathcal{U}_2,\ldots,\mathcal{U}_E\}$, then the evaluation matrix of the $\mathcal{BLDFEDAS}$ is given by

$$\xi = [\mathcal{L}_{\mathfrak{as}}^{E}]_{\eta \times \mathfrak{t}} = \left\{ ((H_{\mathfrak{as}}^{\mathcal{P}})^{E}, (R_{\mathfrak{as}}^{\mathcal{P}})^{E}, (H_{\mathfrak{as}}^{\mathcal{N}})^{E}, (R_{\mathfrak{as}}^{\mathcal{N}})^{E}), ((E_{\mathfrak{as}}^{\mathcal{P}})^{E}, (L_{\mathfrak{as}}^{\mathcal{P}})^{E}, (L_{\mathfrak{as}}^{\mathcal{N}})^{E}) \right\}_{\eta \times \mathfrak{t}},$$

 $\mathfrak{a}=1,2,\ldots,\eta,\,\mathfrak{s}=1,2,\ldots,\mathfrak{t},\,\mathsf{E}=1,2,\ldots,\digamma.$

An algorithmic approach on BLDFEDAS is as follows.

Step 1. The \mathcal{BLDF} matrix formulation evaluated by $\xi = [\mathcal{L}_{\mathfrak{as}}^E]_{\eta \times \mathfrak{t}}$ is given by

$$\xi = \begin{bmatrix} \mathcal{T}_{1} & \mathcal{T}_{2} & \cdots & \mathcal{T}_{t} \\ \{((H_{11}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{P}})^{\mathsf{E}}, (H_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), & \{((H_{12}^{\mathcal{P}})^{\mathsf{E}}, (R_{12}^{\mathcal{P}})^{\mathsf{E}}, (H_{12}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}), & \cdots & \{((H_{11}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{11}^{\mathcal{P}})^{\mathsf{E}}, (L_{11}^{\mathcal{N}})^{\mathsf{E}}, (E_{11}^{\mathcal{N}})^{\mathsf{E}}, (L_{11}^{\mathcal{N}})^{\mathsf{E}})\} & ((E_{12}^{\mathcal{P}})^{\mathsf{E}}, (L_{12}^{\mathcal{N}})^{\mathsf{E}}, (L_{12}^{\mathcal{N}})^{\mathsf{E}})\} & \cdots & ((E_{1t}^{\mathcal{P}})^{\mathsf{E}}, (L_{1t}^{\mathcal{N}})^{\mathsf{E}}, (R_{1t}^{\mathcal{N}})^{\mathsf{E}}, (L_{1t}^{\mathcal{N}})^{\mathsf{E}}), \\ \{((H_{21}^{\mathcal{P}})^{\mathsf{E}}, (R_{21}^{\mathcal{P}})^{\mathsf{E}}, (H_{21}^{\mathcal{N}})^{\mathsf{E}}, (R_{21}^{\mathcal{N}})^{\mathsf{E}}), & \{((H_{22}^{\mathcal{P}})^{\mathsf{E}}, (R_{22}^{\mathcal{N}})^{\mathsf{E}}, (H_{22}^{\mathcal{N}})^{\mathsf{E}}, (R_{22}^{\mathcal{N}})^{\mathsf{E}}), & \cdots & \{((H_{2t}^{\mathcal{P}})^{\mathsf{E}}, (R_{2t}^{\mathcal{N}})^{\mathsf{E}}, (H_{2t}^{\mathcal{N}})^{\mathsf{E}}, (R_{2t}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{P}})^{\mathsf{E}}, (L_{21}^{\mathcal{P}})^{\mathsf{E}}, (L_{21}^{\mathcal{N}})^{\mathsf{E}}, (L_{21}^{\mathcal{N}})^{\mathsf{E}}), & ((E_{22}^{\mathcal{P}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), & ((E_{22}^{\mathcal{P}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), & ((E_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}, (L_{22}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{P}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), & ((E_{22}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal{N}})^{\mathsf{E}}), & ((E_{22}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}, (R_{12}^{\mathcal{N}})^{\mathsf{E}}), \\ ((E_{21}^{\mathcal{N}})^{\mathsf{E}}, (R_{11}^{\mathcal$$

which is an expression of \mathcal{BLDF} information. This \mathcal{L}_{η} alternative information is dependent on \mathcal{T}_{t} attributes of \mathcal{Q}_{E} experts.

Step 2. Aggregate the matrix \mathcal{L}_{as} using the proposed \mathcal{BLDFWA} operator and is given by

$$\xi = [\mathcal{L}_{\mathfrak{as}}]_{\eta \times \mathfrak{t}} = \begin{bmatrix} \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ ((\mathsf{H}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{H}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{N}})), & \{((\mathsf{H}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{H}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{N}})), & \cdots & \{((\mathsf{H}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{H}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{R}_{\mathfrak{1}}^{\mathfrak{N}})), \\ ((\mathsf{E}_{\mathfrak{p}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}})), \\ (((\mathsf{E}_{\mathfrak{p}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{p}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{N}}), (\mathsf{E}_{\mathfrak{1}}^{\mathfrak{$$

where the alternative information is based on the attributes by all the experts.

Step 3. Average solution (AS) is computed based on the attributes proposed,

$$\begin{split} \mathcal{A} \mathcal{S} &= \frac{\left[\sum_{\mathfrak{a}=1}^{\eta} \mathcal{I}_{\mathfrak{s}} \mathcal{L}_{\mathfrak{a}\mathfrak{s}}\right]}{\eta} = \left[\left(\left(1 - \prod_{\mathfrak{a}=1}^{\eta} ((1 - H_{\mathcal{K}}^{\mathfrak{P}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), \left(\prod_{\mathfrak{a}=1}^{\eta} ((H_{\mathcal{K}}^{\mathfrak{P}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), - \left(\prod_{\mathfrak{a}=1}^{\eta} ((-H_{\mathcal{K}}^{\mathfrak{N}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), \\ &- \left(1 - \prod_{\mathfrak{a}=1}^{\eta} ((1 - (-H_{\mathcal{K}}^{\mathfrak{N}}))^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right)\right), \left(\left(1_{\mathfrak{a}=1}^{\eta} ((1 - E_{\mathcal{K}}^{\mathfrak{P}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), \left(\prod_{\mathfrak{a}=1}^{\eta} ((L_{\mathcal{K}}^{\mathfrak{P}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), \\ &- \left(\prod_{\mathfrak{a}=1}^{\eta} ((-E_{\mathcal{K}}^{\mathfrak{N}})^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right), - \left(1 - \prod_{\mathfrak{a}=1}^{\eta} ((1 - (-L_{\mathcal{K}}^{\mathfrak{N}}))^{\mathcal{I}_{\mathfrak{s}}})^{1/\eta}\right)\right)\right]. \end{split}$$

Step 4. With the use of AS, PDA and NDA are computed with the help of the below formula:

$$[\mathsf{PDA}_{\mathfrak{s}}]_{\eta X \mathfrak{t}} = \frac{\mathfrak{max}(0, (\mathcal{L}_{\mathfrak{as}} - \mathcal{AS}_{\mathfrak{s}}))}{\mathcal{AS}_{\mathfrak{s}}}, \qquad [\mathsf{NDA}_{\mathfrak{s}}]_{\eta X \mathfrak{t}} = \frac{\mathfrak{max}(0, (\mathcal{AS}_{\mathfrak{s}} - \mathcal{L}_{\mathfrak{as}})}{\mathcal{AS}_{\mathfrak{s}}}.$$

For flexibility, we employ scoring value as below:

$$[\mathsf{PDA}_{\mathfrak{s}}]_{\eta X \mathfrak{t}} = \frac{\mathfrak{max}(0, (\mathcal{SV}(\mathcal{L}_{\mathfrak{as}}) - \mathcal{SV}(\mathcal{AS}_{\mathfrak{s}})))}{\mathcal{SV}(\mathcal{AS}_{\mathfrak{s}})}, \qquad [\mathsf{NDA}_{\mathfrak{s}}]_{\eta X \mathfrak{t}} = \frac{\mathfrak{max}(0, (\mathcal{SV}(\mathcal{AS}_{\mathfrak{s}}) - \mathcal{SV}(\mathcal{L}_{\mathfrak{as}})))}{\mathcal{SV}(\mathcal{AS}_{\mathfrak{s}})}.$$

Step 5. Determine the weighted sums SPDA & SNDA of PDA & NDA by using the formula:

$$\mathsf{SPDA}_{\mathfrak{a}} = \sum_{\mathfrak{s}=1}^{\mathfrak{t}} \mathfrak{I}_{\mathfrak{s}} \mathsf{PDA}_{\mathfrak{a}\mathfrak{s}}, \quad \mathsf{SNDA}_{\mathfrak{s}} = \sum_{\mathfrak{s}=1}^{\mathfrak{t}} \mathfrak{I}_{\mathfrak{s}} \mathsf{NDA}_{\mathfrak{a}\mathfrak{s}}.$$

Step 6. Normalize the equations of Step 5 as follows:

$$\mathsf{NSPDA}_{\mathfrak{a}} = \frac{\mathsf{SPDA}_{\mathfrak{a}}}{\mathfrak{mar}_{\mathfrak{a}}(\mathsf{SPDA}_{\mathfrak{a}})}, \quad \mathsf{NSNDA}_{\mathfrak{a}} = \frac{\mathsf{SNDA}_{\mathfrak{a}}}{\mathfrak{mar}_{\mathfrak{a}}(\mathsf{SNDA}_{\mathfrak{a}})}.$$

Step 7. Calculate the evaluation score (ES) for each equations of Step 6 as

$$\mathcal{ES}_{\mathfrak{a}} = \frac{(\mathsf{NSPDA}_{\mathfrak{a}}) - (1 - \mathsf{NSNDA}_{\mathfrak{a}})}{2}.$$

Step 8. The alternatives are ordered based on the \mathcal{ES} , which paves to choose the best one. Figure 2 represents the diagramatic outline of the proposed $\mathcal{BLDFEDAS}$ algorithm.

CONSTRUCT A SOLUTION DETERMINE THE SOLUTION SCORE 1 02 03 04 05 07 08 AGGREGATE USING FIND PDA & NDA NORMALIZE THE CHOOSE THE BEST

WORKFLOW CHART - EDAS

Figure 2: Algorithmic approach - BLDFEDAS

WEIGHTED SUM

ALTERNATIVE

5. MAGDM problem based on FDI system

BLDFWA OPERATOR

This part gives an in-depth overview of ${\cal FDI}$ system, its technologies, and benefactors in extremely crucial situations. An advantageous technology is analyzed in choosing one of the best ${\cal FDI}$ among several systems through an ${\cal MAGDM}$ problem.

5.1. Outline of FDI system

The forensic department plays a major role in the justice system for crimes as they offer scientific support to help with inquiries and judicial actions. Generally, these departments have different teams to analyze from different perspectives. Special teams of the department investigate crime scenes to collect samples and document proofs. They have multiple responsibilities, like gathering, conserving, and evaluating virtual and real evidence from crime sites, which include forensic photography, weapons, analyzing DNA, and recognizing fingerprints. In contemporary society, forensics is a much-needed department to be developed into artificial intelligence, despite its vital role in solving sophisticated criminal probes, protecting justice, and guarding the safety of the public. In an era of evolving criminal tactics and increased complexity of offenses, FDI is a crucial component in fighting crimes. Developing an application with the concept of ordering, and prioritizing cases, along with the steps to follow up to solve any critical cases easily and in justice, is essential to upholding the law in the complex world. The technologies of an FDI system should be fed up with innovative and knowledgable ideas like task prioritizing, reconstructing a reality crime scene into a virtual one, making decisions with provided shreds of evidence, identification through suspicion with accuracy, and visualizing 3-D video development to smoothen workflow process. Linking through social media data provides vast data to the system for updating itself with location and behaviors. It can easily integrate data, visualize crime patterns, predict crime spots, and track crime movements, offering a secure collection of evidence and enhancing trustworthiness in legal proceedings. Applications developed with the best of such technology reduce time, especially in complex cases, cost, the availability of multiple crews of experts, and separate laboratories for different purposes like DNA tests, imaging, etc. Some of the key features & benefits of the technology are as below.

- * Based on urgency, resource availability, and solvability, cases are prioritized and evidence is hierarchized.
- * With real-time updates, it processes data and provides visualizations for jurors and investigators to visit crime sites virtually, and assessment reports will be generated to guide and predict decisions.

Also, the process of the cases is updated automatically, and final reports are developed automatically to be submitted clearly in court.

- * Supports investigation strategies with consideration of human-like intelligence, risks, and time constraints. Shares safe communication among the investigators to enhance coordination.
- * Metrics depending on performance and feedback will be incorporated for the effective leading of cases.
- * Recovers deleted data easily and Saves long-term data securely so that maintenance at risk of fraud can be avoided, reducing costs.
- * Provide decisions that are far more accountable and transparent with geospatial analysis.
- * Identify individuals with high accuracy through advanced technologies like iris scanning, facial recognition, and foot recognition, and by analyzing voices, which are all crucial in modern crimes.
- * Upholds ethical and legal conviction in forensic practice.

By harnessing such technology, it affords a powerful toolset for resolving the intricate issues of contemporary law enforcement and forensics investigations.

5.2. Numerical procedure

The forensic department confronts two teams of experts, \mathcal{F}_1 = Forensic and Data Scientists and \mathcal{F}_2 = Ethicists and Legal Experts to develop an \mathcal{FDI} system into an application for solving critical complex issues. So, five different \mathcal{FDI} systems \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 , \mathcal{E}_4 , and \mathcal{E}_5 are developed by different forensic teams and are analyzed to opt for the best among them. Four kinds of factors, notably, \mathcal{I}_1 = Real-time Data Processing, \mathcal{I}_2 = Predictive Analysis, \mathcal{I}_3 = Cognitive Computing and \mathcal{I}_4 = Geospatial Analysis are considered. The weights of the attributes are chosen to be (0.4, 0.2, 0.3, 0.1) correspondingly. In a similar manner, the weights of the experts are chosen as (0.4, 0.6). The linguistic scale of the issue detection is given in Table 3.

Table 3: Linguistic scale					
$E^{\mathfrak{P}}$ $L^{\mathfrak{P}}$			$E^{\mathfrak{N}}$	$L^{\mathcal{N}}$	
$\overline{\mathbb{J}_{1}}$	Effective	Not effective	Weak	Not weak	
\mathfrak{I}_{2}	Accurate	Not accurate	Erraneous	Not erraneous	
\mathcal{I}_3	Minimum	Not minimum	Maximum	Not maximum	
\mathcal{I}_{4}	More efficient	Not more efficient	Less efficient	Not less efficient	

Step 1. The Matrix based on the decision of \mathcal{F}_1 and \mathcal{F}_2 are given in Tables 4 and 5.

	Table 4: Decision grid of expert \mathcal{F}_1 .				
	\mathcal{I}_{1}	\mathcal{I}_2	\mathcal{I}_3	J_4	
ϵ_{1}	$\{(0.7, 0.4, -0.5, -0.8),$	$\{(0.5, 0.2, -0.3, -0.6),$	$\{(0.6, 0.4, -0.5, -0.7),$	$\{(0.5, 0.3, -0.4, -0.6),$	
	(0.8, 0.2, -0.3, -0.6)	(0.7, 0.2, -0.2, -0.5)	(0.7, 0.2, -0.3, -0.6)	(0.7, 0.1, -0.4, -0.4)	
$\epsilon_{\scriptscriptstyle 2}$	$\{(0.8, 0.3, -0.5, -0.7),$	$\{(0.6, 0.2, -0.5, -0.7),$	$\{(0.6, 0.3, -0.5, -0.7),$	$\{(0.7, 0.4, -0.6, -0.6),$	
	(0.8, 0.2, -0.4, -0.5)	(0.8, 0.2, -0.4, -0.5)	(0.7, 0.2, -0.3, -0.5)	(0.5, 0.2, -0.5, -0.4)	
\mathcal{E}_3	$\{(0.6, 0.5, -0.2, -0.9),$	$\{(0.4, 0.3, -0.3, -0.7),$	$\{(0.6, 0.4, -0.4, -0.6),$	$\{(0.5, 0.4, -0.3, -0.7),$	
	(0.8, 0.2, -0.2, -0.7)	(0.6, 0.3, -0.2, -0.6)	(0.6, 0.3, -0.3, -0.6)	(0.6, 0.2, -0.4, -0.5)	
\mathcal{E}_4	$\{(0.5, 0.3, -0.2, -0.6),$	$\{(0.3, 0.2, -0.2, -0.5),$	$\{(0.3, 0.8, -0.3, -0.4),$	$\{(0.7, 0.3, -0.5, -0.6),$	
	(0.5, 0.2, -0.3, -0.6)	(0.4, 0.3, -0.2, -0.5)	(0.6, 0.1, -0.4, -0.3)	(0.7, 0.2, -0.3, -0.6)	
\mathcal{E}_{5}	$\{(0.7, 0.4, -0.4, -0.8),$	$\{(0.6, 0.2, -0.3, -0.4),$	$\{(0.5, 0.8, -0.7, -0.8),$	$\{(0.6, 0.5, -0.4, -0.8),$	
	(0.4, 0.5, -0.2, -0.7)	(0.3, 0.4, -0.3, -0.6)	(0.5, 0.5, -0.1, -0.8)	(0.7, 0.1, -0.5, -0.3)	

Table 5: Decision grid of expert \mathcal{F}_2 .

	\mathfrak{I}_{1}	$\mathfrak{I}_{\mathtt{2}}$	\mathfrak{I}_3	J_4
\mathcal{E}_{1}	$\{(0.8, 0.2, -0.6, -0.9),$	$\{(0.6, 0.2, -0.4, -0.7),$	$\{(0.4, 0.3, -0.4, -0.2),$	$\{(0.5, 0.4, -0.6, -0.7),$
	(0.8, 0.1, -0.5, -0.3)	(0.8, 0.1, -0.3, -0.6)	(0.6, 0.2, -0.3, -0.1)	(0.7, 0.3, -0.4, -0.5)
\mathcal{E}_{2}	$\{(0.8, 0.2, -0.7, -0.8),$	$\{(0.6, 0.2, -0.4, -0.6),$	$\{(0.6, 0.2, -0.5, -0.6),$	$\{(0.7, 0.4, -0.6, -0.7),$
	(0.8, 0.1, -0.6, -0.2)	(0.8, 0.1, -0.3, -0.5)	(0.7, 0.1, -0.3, -0.1)	(0.8, 0.2, -0.4, -0.5)
\mathcal{E}_3	$\{(0.7, 0.3, -0.4, -0.9),$	$\{(0.5, 0.3, -0.6, -0.7),$	$\{(0.5, 0.3, -0.3, -0.2),$	$\{(0.6, 0.4, -0.5, -0.6),$
	(0.7, 0.1, -0.3, -0.3)	(0.7, 0.2, -0.4, -0.6)	(0.6, 0.2, -0.3, -0.1)	(0.6, 0.4, -0.3, -0.4)
\mathcal{E}_4	$\{(0.4, 0.2, -0.6, -0.7),$	$\{(0.4, 0.3, -0.5, -0.6),$	$\{(0.5, 0.1, -0.7, -0.7),$	$\{(0.4, 0.2, -0.6, -0.7),$
	(0.6, 0.3, -0.5, -0.4)	(0.5, 0.3, -0.4, -0.5)	(0.6, 0.2, -0.3, -0.4)	(0.4, 0.4, -0.3, -0.5)
\mathcal{E}_{5}	$\{(0.6, 0.2, -0.4, -0.7),$	$\{(0.5, 0.2, -0.3, -0.6),$	$\{(0.7, 0.1, -0.4, -0.7),$	$\{(0.8, 0.1, -0.3, -0.8),$
	(0.8, 0.2, -0.3, -0.6)	(0.7, 0.3, -0.2, -0.6)	(0.8, 0.1, -0.2, -0.7)	(0.9, 0.1, -0.2, -0.5)

Step 2. The aggregated matrix with the use of \mathcal{BLDFWA} operator is given in Table:6.

Table 6: Aggregated matrix using BLDFWA operator.

		e o. Aggregated matrix us		
	\mathcal{I}_{1}	\mathcal{I}_2	\mathfrak{I}_3	\mathcal{I}_4
$\mathcal{E}_{\mathtt{l}}$	$\{(0.7648, 0.2640,$	$\{(0.5627, 0.2,$	$\{(0.4899, 0.3365,$	$\{(0.5, 0.3618,$
	-0.5579, -0.8680),	-0.3565, -0.6634),	-0.4373, -0.4597),	-0.5167, -0.6592),
	(0.8, 0.1320,	(0.7648, 0.1320,	(0.6434, 0.2,	(0.7, 0.2259,
	-0.4075, -0.4403)	-0.2550, -0.5627)	-0.3, -0.3493)	-0.4, -0.4591)
\mathcal{E}_{2}	$\{(0.8, 0.2352,$	$\{(0.6, 0.2,$	$\{(0.6, 0.2352,$	{(0.7, 0.4,
	-0.6118, -0.7648),	-0.4373, -0.6434),	-0.5, -0.6434),	-0.6, -0.6592),
	(0.8, 0.1320,	(0.8, 0.1320,	(0.3365, 0.5,	(0.7114, 0.2,
	-0.5101, -0.3371)	-0.3365, -0.5	-0.3, -0.2886)	-0.4391, -0.4591)
\mathcal{E}_3	$\{(0.6634, 0.3680,$	$\{(0.4621, 0.3,$	{(0.6, 0.3366,	{(0.5626, 0.4,
	-0.3031, -0.9),	-0.4548, -0.7),	-0.3366, -0.3937),	-0.4165, -0.6392),
	(0.7450, 0.1320,	(0.6634, 0.2352,	(0.6, 0.2352,	(0.6, 0.3268,
	-0.2550, -0.5012)	-0.3031, -0.6	-0.4547, -0.3493)	-0.3391, -0.4391)
\mathcal{E}_4	{(0.4421, 02416,	$\{(0.3618, 0.2615,$	$\{(0.6534, 0.1860,$	$\{(0.5452, 0.2416,$
-	-0.4260, -0.6592),	-0.3719, -0.5592),	-0.5729, -0.6592),	-0.5592, -0.6592),
	(0.5626, 0.2615,	(0.4621, 0.3,	(0.6, 0.1614,	(0.5452, 0.3268,
	-0.4165, -0.4768)	-0.3162, -0.5	-0.3391, -0.3591)	-0.3, -0.5392)
\mathcal{E}_{5}	$\{(0.6434, 0.2869,$	$\{(0.5426, 0.2,$	$\{(0.6319, 0.5068,$	$\{(0.7360, 0.2885,$
_	-0.4, -0.7393),	-0.3, -0.5167),	-0.5130, -0.7393),	-0.3391, -0.8),
	(0.6896, 0.3371,	(0.5789, 0.3418,	(0.7114, 0.2885,	(0.8448, 0.1,
	-0.2590, -0.6392)	-0.2390, -0.6)	-0.1589, -0.7393)	-0.3120, -0.4165)

Step 3. The AS is computed as

```
\begin{split} \mathcal{AS}_1 &= (0.6840, 0.2753, -0.4459, -0.8058, 0.7319, 0.1825, -0.3559, -0.4887)\,,\\ \mathcal{AS}_2 &= (0.5127, 0.2288, -0.3798, -0.6225, 0.6757, 0.2112, -0.2875, -0.5547)\,,\\ \mathcal{AS}_3 &= (0.5986, 0.3019, -0.4645, -0.5988, 0.5947, 0.2557, -0.2942, -0.5405)\,,\\ \mathcal{AS}_4 &= (0.6204, 0.3320, -0.4761, -0.6901, 0.6996, 0.2171, -0.3541, -0.4642)\,. \end{split}
```

Step 4. The scoring value is employed in Table:7.

	Table 7: Table of scoring value.				
SV	\mathcal{I}_{1}	$\mathfrak{I}_{\mathtt{2}}$	\mathfrak{I}_3	\mathfrak{I}_4	
\mathcal{E}_{1}	0.2064	0.0952	0.0853	0.1026	_
\mathcal{E}_{2}	0.3132	0.1746	0.2002	0.1830	
\mathcal{E}_3	0.0163	0.0120	0.1691	0.0282	
\mathcal{E}_4	0.0520	-0.0217	0.1999	0.0457	
\mathcal{E}_{5}	-0.0026	0.0005	-0.0646	0.1567	
AS	0.1163	0.0596	0.0637	0.1117	

With the use of Table:7, PDA and NDA are computed in Tables 8 and 9.

Table 8: Table of PDA.					
	\mathfrak{I}_{1}	\mathcal{I}_{2}	\mathcal{I}_3	J_4	
ε_{1}	0.7747	0.5973	0.3390	0.0000	
\mathcal{E}_{2}	1.6930	1.9295	2.1428	0.6383	
\mathcal{E}_3	0.0000	0.0000	1.6546	0.0000	
\mathcal{E}_{4}^{-}	0.0000	0.0000	2.1381	0.0000	
\mathcal{E}_{5}	0.0000	0.0000	0.0000	0.4028	

	Table 9: Table of NDA.					
	\mathcal{I}_{1}	\mathcal{I}_{2}	\mathcal{I}_3	I_4		
\mathcal{E}_{1}	0.0000	0.0000	0.0000	0.0814		
$\epsilon_{\scriptscriptstyle 2}$	0.0000	0.0000	0.0000	0.0000		
\mathcal{E}_3	0.8598	0.7986	0.0000	0.7475		
\mathcal{E}_{4}^{-}	0.5528	1.4546	0.0000	0.5908		
\mathcal{E}_{5}^{\cdot}	1.0223	0.9916	2.0141	0.0000		

Step 5. The SPDA and SNDA values are given as SPDA₁ = 0.5310, SNDA₁ = 0.0081, SPDA₂ = 1.7697, $SNDA_2 = 0$, $SPDA_3 = 0.4963$, $SNDA_3 = 0.5783$, $SPDA_4 = 0.6414$, $SNDA_4 = 0.5711$, $SPDA_5 = 0.0402$, $SNDA_5 = 1.2114.$

Step 6. The NSPDA and NSNDA values are given as $NSPDA_1 = 0.3$, $NSNDA_1 = 0.0066$, $NSPDA_2 = 1$, $\mathsf{NSNDA}_2 = 0$, $\mathsf{NSPDA}_3 = 0.2804$, $\mathsf{NSNDA}_3 = 0.4773$, $\mathsf{NSPDA}_4 = 0.3624$, $\mathsf{NSNDA}_4 = 0.4714$, $\mathsf{NSPDA}_5 = 0.4714$ 0.0227, NSNDA₅ = 1.

Step 7. The AS value is given as $ES_1 = -0.3467$, $ES_2 = 0$, $ES_3 = -0.1211$, $ES_4 = -0.0831$, $ES_5 = -0.4386$. Step 8. Hence, $\mathcal{E}_2 \succ \mathcal{E}_4 \succ \mathcal{E}_3 \succ \mathcal{E}_1 \succ \mathcal{E}_5$ (Figure 3).

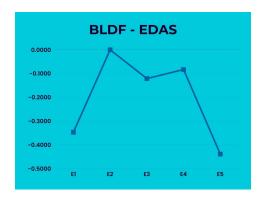


Figure 3: Graphical representation of the obtained result through BLDFEDAS.

6. Bipolar linear Diophantine fuzzy MABAC approach

An \mathcal{MABAC} approach for a \mathcal{BLDF} is developed and compared to the proposed approach of $\mathcal{BLDFEDAS}$ to check the validity of the implemented method.

Definition 6.1. Consider two \mathcal{BLDFS} , then the \mathcal{BLDF} normalized hamming distance is given by

$$d_{\mathcal{BLDFNHD}} = \frac{\left((|H_{1}^{\mathcal{P}} - H_{2}^{\mathcal{P}}| + |R_{1}^{\mathcal{P}} - R_{2}^{\mathcal{P}}| + |H_{1}^{\mathcal{N}} - H_{2}^{\mathcal{N}}| + |R_{1}^{\mathcal{N}} - R_{2}^{\mathcal{N}}|) + (|E_{1}^{\mathcal{P}} - E_{2}^{\mathcal{P}}| + |L_{1}^{\mathcal{P}} - L_{2}^{\mathcal{P}}| + |E_{1}^{\mathcal{N}} - E_{2}^{\mathcal{N}}| + |L_{1}^{\mathcal{N}} - L_{2}^{\mathcal{N}}|)\right)}{8}.$$

An algorithmic approach on BLDFMABAC is as follows:

Step 1. The \mathcal{BLDF} matrix formulation evaluated by

$$\xi = [\mathcal{L}_{\mathfrak{as}}^E]_{\eta \times \mathfrak{t}} = \left\{ ((H_{\mathfrak{as}}^{\mathcal{P}})^E, (R_{\mathfrak{as}}^{\mathcal{P}})^E, (H_{\mathfrak{as}}^{\mathcal{N}})^E, (R_{\mathfrak{as}}^{\mathcal{N}})^E), ((E_{\mathfrak{as}}^{\mathcal{P}})^E, (L_{\mathfrak{as}}^{\mathcal{P}})^E, (E_{\mathfrak{as}}^{\mathcal{N}})^E, (L_{\mathfrak{as}}^{\mathcal{N}})^E) \right\}_{\eta \times \mathfrak{t}}, (E_{\mathfrak{as}}^{\mathcal{N}})^E \in \mathbb{R}^{\mathcal{N}}$$

 $\mathfrak{a}=1,2,\ldots,\eta,\,\mathfrak{s}=1,2,\ldots,\mathfrak{t},\,\mathsf{E}=1,2,\ldots,\digamma$, is given by

$$\xi = \begin{array}{c} \mathcal{J}_{1} & \mathcal{J}_{2} & \cdots & \mathcal{J}_{t} \\ \mathcal{L}_{1} & \left\{ ((H_{11}^{\mathcal{D}})^{E}, (R_{11}^{\mathcal{D}})^{E}, (H_{11}^{\mathcal{M}})^{E}, (R_{11}^{\mathcal{M}})^{E}), & \left\{ ((H_{12}^{\mathcal{D}})^{E}, (R_{12}^{\mathcal{D}})^{E}, (H_{12}^{\mathcal{M}})^{E}, (R_{12}^{\mathcal{M}})^{E}), & \cdots & \left\{ ((H_{1t}^{\mathcal{D}})^{E}, (R_{1t}^{\mathcal{M}})^{E}, (R_{1t}^{\mathcal{M}})^{E}, (R_{1t}^{\mathcal{M}})^{E}, (R_{1t}^{\mathcal{M}})^{E}), \\ \mathcal{L}_{2} & \left\{ ((H_{11}^{\mathcal{D}})^{E}, (L_{11}^{\mathcal{D}})^{E}, (L_{11}^{\mathcal{M}})^{E}, (L_{11}^{\mathcal{M}})^{E}, (L_{11}^{\mathcal{M}})^{E}), & \left((E_{12}^{\mathcal{D}})^{E}, (L_{12}^{\mathcal{D}})^{E}, (L_{12}^{\mathcal{M}})^{E}) \right\} & \cdots & \left((E_{1t}^{\mathcal{D}})^{E}, (L_{1t}^{\mathcal{D}})^{E}, (L_{1t}^{\mathcal{M}})^{E}, (L_{1t}^{\mathcal{M}})^{E}, (L_{1t}^{\mathcal{M}})^{E}, (L_{1t}^{\mathcal{M}})^{E}) \right\} \\ \left\{ ((H_{21}^{\mathcal{D}})^{E}, (R_{21}^{\mathcal{D}})^{E}, (H_{21}^{\mathcal{M}})^{E}, (R_{21}^{\mathcal{M}})^{E}, (R_{22}^{\mathcal{M}})^{E}, (H_{22}^{\mathcal{M}})^{E}, (H_{22}^{$$

which is an expression of \mathcal{BLDF} information. This \mathcal{L}_{η} alternative information is dependent on \mathcal{T}_{t} attributes of \mathcal{Q}_{E} experts.

Step 2. Aggregate the matrix $\mathcal{L}_{\mathfrak{as}}$ using the proposed \mathcal{BLDFWA} operator and is given by

$$\xi = [\mathcal{L}_{\mathfrak{as}}]_{\eta \times \mathfrak{t}} = \begin{bmatrix} \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{L}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{t}} \\ \mathcal{I}_{\mathfrak{t}} & \mathcal{I}_{\mathfrak{$$

where the alternative information is based on the attributes by all the experts.

Step 3. The $\mathcal{BAR} \mathcal{R} = [\mathcal{V}_{\mathfrak{s}}]_{\mathfrak{n}X\mathfrak{t}}$ is computed and its matrix can be evaluated as

$$\mathcal{V}_{\mathfrak{s}} = \left[\sum_{\mathfrak{g}=1}^{\eta} \mathfrak{I}_{\mathfrak{s}} \mathcal{L}_{\mathfrak{a}\mathfrak{s}} \right]^{1/\eta}.$$

Step 4. Evaluate the distance $\mathcal{D}=[d_{\mathfrak{a}\mathfrak{s}}]_{\eta \times \mathfrak{t}}$ between the alternative and \mathcal{BAR} . Here $d(\mathcal{IL}_{\mathfrak{a}\mathfrak{s}},\mathcal{V}_{\mathfrak{s}})$ represents the mean distance from $\mathcal{IL}_{\mathfrak{a}\mathfrak{s}}$ to $\mathcal{V}_{\mathfrak{s}}$,

$$\mathbf{d}_{\mathfrak{as}} = \begin{cases} \mathbf{d}(\mathfrak{IL}_{\mathfrak{as}}, \mathcal{V}_{\mathfrak{s}}), & \text{if } \mathfrak{IL}_{\mathfrak{as}} \succ \mathcal{V}_{\mathfrak{s}}, \\ 0, & \text{if } \mathfrak{IL}_{\mathfrak{as}} \approx \mathcal{V}_{\mathfrak{s}}, \\ -\mathbf{d}(\mathfrak{IL}_{\mathfrak{as}}, \mathcal{V}_{\mathfrak{s}}), & \text{if } \mathfrak{IL}_{\mathfrak{as}} \prec \mathcal{V}_{\mathfrak{s}}, \end{cases}$$

which can be calculated with the help of Definition 6.1. With values of $d_{\mathfrak{as}}$, the following are considered. If

- 1. $d_{\mathfrak{as}} \prec O \Rightarrow \text{Lower Approximation Region } (\mathcal{L}\tilde{\mathcal{A}}\mathcal{R}) \text{ owns the alternative;}$
- 2. $d_{\mathfrak{as}} \approx O \Rightarrow \text{Border Approximation Region } (\mathfrak{B}\tilde{\mathcal{A}}\mathcal{R}) \text{ owns the alternative;}$
- 3. $d_{\mathfrak{as}} \succ O \Rightarrow \text{Upper Approximation Region } (\mathcal{UAR}) \text{ owns the alternative.}$

It is clear that the best one belongs to $(\mathcal{V}^{\mathcal{P}}(\mathcal{U}\tilde{\mathcal{A}}\mathcal{R}))$ and the worst one belongs to $(\mathcal{V}^{\mathcal{N}}(\mathcal{L}\tilde{\mathcal{A}}\mathcal{R}))$.

Step 5. The value sum of the alternative can be derived as $S_a = \sum_{s=1}^t d_{as}$.

Step 6. The alternatives are ordered based on the S, which paves to choose the optimal one. Figure 4 represents the diagramatic outline of the proposed $\mathcal{BLDFMABAC}$ algorithm.

WORKFLOW CHART - MABAC

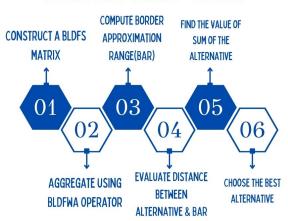


Figure 4: Algorithmic approach - BLDFMABAC.

6.1. Analyzation of comparision

The proposed problem in Section 5.2 is solved using $\mathcal{BLDFMABAC}$ approach to check the validity.

- Step 1. The Matrix besed on the decision of \mathcal{F}_1 and \mathcal{F}_2 are given in Tables 4 and 5.
- Step 2. The aggregated matrix with the use of \mathcal{BLDFWA} operator is given in Table 6.
- Step 3. The \mathcal{BAR} is computed as below:

$$\begin{split} \mathcal{V}_1 &= (0.7489, 0.2838, -0.4694, -0.8541, 0.7831, 0.1320, -0.3757, -0.4301) \,, \\ \mathcal{V}_2 &= (0.5451, 0.2290, -0.4139, -0.6698, 0.7488, 0.1600, -0.2962, -0.5561) \,, \\ \mathcal{V}_3 &= (0.5662, 0.2987, -0.4190, -0.5111, 0.6502, 0.1837, -0.3446, -0.3401) \,. \end{split}$$

- Step 4. The distance between the alternative and \mathcal{BAR} is evaluated as $d_{11}=0.4849,\ d_{12}=0.3518,\ d_{13}=-0.6113,\ d_{14}=-0.2819,\ d_{21}=0.7874,\ d_{22}=0.5017,\ d_{23}=0.9084,\ d_{24}=0.4214,\ d_{31}=-0.5273,\ d_{32}=-0.3715,\ d_{33}=0.7466,\ d_{34}=-0.4857,\ d_{41}=-0.7629,\ d_{42}=0.6539,\ d_{43}=0.6654,\ d_{44}=-0.5683,\ d_{51}=-0.6089,\ d_{52}=-0.5655,\ d_{53}=-0.9108,\ d_{54}=0.761.$
- Step 5. The value sum is derived as $S_1 = -0.007$, $S_2 = 0.3273$, $S_3 = -0.0797$, $S_4 = -0.0014$, $S_5 = -0.1655$.
- Step 6. Hence, $\mathcal{E}_2 \succ \mathcal{E}_4 \succ \mathcal{E}_1 \succ \mathcal{E}_3 \succ \mathcal{E}_5$ (Figure 5).

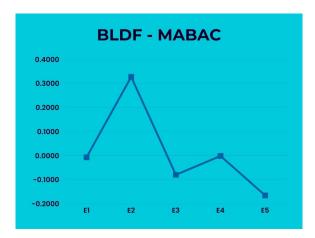


Figure 5: Graphical representation of the obtained result through BLDFMABAC.

7. Discussion and conclusion

Regarding resolving multi-attribute group decision-making, the EDAS method is one of the numerous traditional decision-making methods. It excels in selecting the best options, unlike other ways like VJKOR, TOPSIS, AHP, and ELECTRE into various extensions. It is quite successful when there are conflicting criteria in MAGDM issues. In contrast to those other methods, the EDAS relies on average solutions derived from positive and negative distances (PDA & NDA) rather than ideal ones. It provides opportunities to use a variety of strategies to expand this strategy. These make it possible for "\$DAS" to function as an appropriate auxiliary and produce credible decisions. The new novel method $\mathcal{BLDFEDAS}$ is a useful tool in handling uncertainty to resolve a MAGDM problem in a malleable manner. Also, it manipulates each circumstance in both positive and negative ways with control parameters, which gives more flexibility to our proposed method. The proposed approach is more ubiquitous than the other existing techniques. Uncertainty modeling has rapidly advanced in recent decades to tackle ambiguous inputs. And so, it paves a path to hybrid structures of fuzzy sets. On comparing the proposed BLDFEDAS to other models, there are two main advantages. First off, the computational results of EDAS for various attribute weights are quite accurate and consistent. Next, the calculations used for the outcomes are much simpler. It can foresee the zero and negative results in the average solution. Also, while comparing the results of our method to another valuable technique, BLDFMABAC, the same outcome is procured, which validates the model's accuracy even if there are inconsistent and unpredictable data. The MAGDM has a great deal of potential and a rigorous strategy to evaluate numerous competing factors in different domains of experts to offer more gratifying & pragmatic results. A few essential concepts are implemented for a new notion of BLDFS with some basic operators. The incorporation of control parameters gives an individual a wide range of preferences for the right choices. The score and accuracy function of BLDFS play a major role in the flow of the manuscript. A BLDFWAO is originated for the development of BLDFEDAS method for a MAGDM problem. The proposed technique is applied to obtain an optimal FDI system, to be integrated into an application in regards to solving serious issues as a consequence of the rapid increase of criminal activities. Similar to Bipolar Linear Diophantine Fuzzy EDAS, the outcome of Bipolar Linear Diophantine Fuzzy MABAC is obtained. Thus, the result strongly supports our innovative approach. The recommended approach can be widely used in any critical situation of our day-to-day lives to make the correct choice based on our priorities. The results of the proposed technique demonstrate flexibility and high accuracy especially when managing critical data and handling positive and negative influences. The control parameters have a significant impact on multi-attribute decision-making. The main drawback of our proposed model is that it is unable to handle parameters and sub-parameters. Also, sometimes it may not be able to deal with a wide range of attributes, which could lead to incorrect choices because of the unpredictable data. The limitation dealing with sub-parameters suggests potential possibilities for future enhancement via bipolar linear Diophantine fuzzy soft set (BLDF88), bipolar linear Diophantine fuzzy hypersoft set ($\mathcal{BLDFHSS}$), and extensions into multi-fuzzy and lattice ordered frameworks. A few future directions in various application fields include supply chain management by optimizing logistics, healthcare decision systems in optimizing plans for treatments, and smart city infrastructure.

8. Acknowledgement

The article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018, DST-PURSE 2nd Phase programme vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21.02.2017 and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17 Dt. 20.12.2018.

References

- [1] M. Akram, Bipolar pythagorean fuzzy sets and their application in multi-attribute decision making problems, Ann. Data Sci., (2021), 1–33. 1.1, 2.6, 2.7
- [2] M. Akram, Shumaiza, A. N. Al-Kenani, Multi-criteria group decision-making for selection of green suppliers under bipolar fuzzy PROMETHEE process, Symmetry, 12 (2020), 25 pages. 1
- [3] M. Akram, Shumaiza, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Comput. Appl. Math., 39 (2020), 21 pages. 1.1
- [4] M. Akram, N. Waseem, P. Liu, Novel approach in decision making with m-polar fuzzy ELECTRE-I, Int. J. Fuzzy Syst., 21 (2019), 1117–1129. 1.1
- [5] M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139–2153. 1.1
- [6] M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher Aggregation Operators for Pythagorean Fuzzy Set and its Application in Multi-Attribute Decision-Making Problem, Spectr. Oper. Res., 2 (2022), 27–40. 1
- [7] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96. 1.1
- [8] K. T. Atanassov, S. Stoeva, *Intuitionistic fuzzy sets*, In: Polish Symp. on Interval & Fuzzy Mathematics, Poznan, (1983), 23–26. 1.1
- [9] J. Chen, S. Li, S. Ma, X. Wang, m-Polar fuzzy sets: an extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 8 pages. 1.1
- [10] P. A. Ejegwa, A. Sarkar, I. C. Onyeke, New methods of computing correlation coefficient based on Pythagorean fuzzy information and their applications in disaster control and diagnostic analysis, In: Fuzzy optimization, decision-making and operations research—theory and applications Springer, Cham, (2023), 473–498. 1
- [11] P. A. Ejegwa, Y. Zhang, H. Li, Y. Feng, Novel measuring techniques with applications in pattern classification and diagnostic process under Pythagorean fuzzy environment, 2023 International Conference on New Trends in Computational Intelligence (NTCI), IEEE, 1 (2023), 28–35. 1
- [12] H. Eroğlu, R. Şahin, A neutrosophic VIKOR method-based decision-making with an improved distance measure and score function: case study of selection for renewable energy alternatives, Cogn. Comput., 12 (2020), 1338–1355. 1.1
- [13] H. Garg, J. Vimala, S. Rajareega, D. Preethi, L. Perez-Dominguez, *Complex intuitionistic fuzzy soft SWARA-COPRAS approach: An application of ERP software selection*, AIMS Math., **7** (2022), 5895–5909. 1.1
- [14] T. Gebrehiwet, H. Luo, Risk level evaluation on construction project lifecycle using fuzzy comprehensive evaluation and *TOPSIS*, Symmetry, 11 (2018), 15 pages.
- [15] M. K. Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods, Econ. Comput. Econ. Cybern. Stud. Res., 52 (2018), 121–134.
 1.1
- [16] M. K. Ghorabaee, E. K. Zavadskas, M. Amiri, Z. Turskis, Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection, Int. J. Comput. Commun. Control, 11 (2016), 358–371. 1.1
- [17] A. Hussain, K. Ullah, An Intelligent Decision Support System for Spherical Fuzzy Sugeno-Weber Aggregation Operators and Real-Life Applications, Spec. Mech. Eng. Oper. Res., 1 (2024), 177–188. 1
- [18] G. Ilieva, Group decision analysis algorithms with EDAS for interval fuzzy sets, Cybern. Inf. Technol., 18 (2018), 51–64. 1, 1.1
- [19] R. Imran, K. Ullah, Z. Ali, M. Akram, A Multi-Criteria Group Decision-Making Approach for Robot Selection Using Interval-Valued Intuitionistic Fuzzy Information and Aczel-Alsina Bonferroni Means, Spec. Decis. Mak. Appl., 1 (2024), 1–32. 1
- [20] M. Jamil, F. Afzal, A. Akgül, S. Abdullah, A. Maqbool, A. Razzaque, M. B. Riaz, J. Awrejcewicz, Einstein Aggregation Operators under Bipolar Neutrosophic Environment with Applications in Multi-Criteria Decision-Making, Appl. Sci., 12 (2022), 19 pages. 1.1
- [21] C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, Comput. Appl. Math., 40 (2021), 17 pages. 1, 1.1, 2.10

- [22] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55. 1.1
- [23] C. Jana, M. Pal, Extended bipolar fuzzy EDAS approach for multi-criteria group decision-making process, Comput. Appl. Math., 40 (2021), 15 pages. 1.1
- [24] C. Jana, M. Pal, J.-Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple attribute decision-making process, J. Ambient Intell. Humaniz. Comput., 10 (2019), 3533–3549. 1
- [25] C. Jana, M. Pal, J.-Q. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision-making, Soft Comput., 24 (2020), 3631–3646. 1
- [26] V. Jayakumar, A. B. K. Mohideen, M. H. Saeed, H. Alsulami, A. Hussain, M. Saeed, Development of Complex Linear Diophantine Fuzzy Soft set in determining a suitable Agri-drone for spraying Fertilizers and Pesticides, IEEE Access, 11 (2023), 9031–9041. 1.1
- [27] K. Jeevitha, H. Garg, J. Vimala, H. Aljuaid, A.-H. Abdel-Aty, Linear diophantine multi-fuzzy aggregation operators and its application in digital transformation, J. Intell. Fuzzy Syst., 45 (2023), 3097–3107. 1
- [28] R. D. Julian, S. F. Kelty, C. Roux, P. Woodman, J. Robertson, A. Davey, R. Hayes, P. Margot, A. Ross, H. Sibly, R. White, What is the value of forensic science? An overview of the effectiveness of forensic science in the Australian criminal justice system project, Aust. J. Forensic Sci., 43 (2011), 217–229. 1
- [29] J. Kannan, V. Jayakumar, M. Pethaperumal, Advanced Fuzzy-Based Decision-Making: The Linear Diophantine Fuzzy CODAS Method for Logistic Specialist Selection, Spec. Oper. Res., 2 (2024), 41–60. 1.1
- [30] J. Kannan, V. Jayakumar, M. Pethaperumal, N. S. Shanmugam, *Linear diophantine multi-fuzzy soft similarity measures:* An analysis on alternative-fuel, J. Intell. Fuzzy Syst., **Pre-press** (2024), 1–13. 1
- [31] A. B. Kather Mohideen, V. Jayakumar, M. Pethaperumal, J. Kannan, *An Amalgamated Kruskal's Algorithm to Ascertain the Shortest Route in the Futuristic Smart World*, J. Intell. Fuzzy Syst., **Pre-press** (2024), 16 pages. 1
- [32] S. Kousar, A. Ansar, N. Kausar, G. Freen, Multi-criteria decision-making for smog mitigation: a comprehensive analysis of health, economic, and ecological impacts, Spec. Oper. Res., 2 (2024), 53–67. 1
- [33] K. M. Lee, *Bipolar-valued fuzzy sets and their operations*, In: Proceedings of the International Conference on Intelligent Technologies, Bangkok, Thailand, (2000), 307–312. 1
- [34] R. Li, P. A. Ejegwa, K. Li, I. Agaji, Y. Feng, I. C. Onyeke, A new similarity function for Pythagorean fuzzy sets with application in football analysis, AIMS Math., 9 (2024), 4990–5014. 1
- [35] Z. Li, G. W. Wei, R. Wang, J. Wu, C. Wei, Y. Wei, EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment, Technol. Econ. Dev. Econ., 26 (2020), 86–102. 1, 1.1
- [36] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision-making, Int. J. Intell. Syst., 33 (1983), 259–280. 1.1
- [37] P. Mahalakshmi, J. Vimala, K. Jeevitha, S. N. Sri, Advancing cybersecurity strategies for multinational corporations: Novel distance measures in q-rung orthopair multi-fuzzy systems, J. Oper. Strateg. Anal., 2 (2024), 49–55. 1
- [38] R. Nagi, N. Rakesh, S. S. Reddy, K. Aravinda, R. S. Makkad, T. Vyas, An overview of application of intelligent systems in forensic investigations, J. Dent. Orofac. Res., 16 (2020), 51–57. 1
- [39] S. Nithya Sri, J. Vimala, N. Kausar, E. Ozbilge, E. Özbilge, D. Pamucar, *An MCDM approach on Einstein aggregation operators under Bipolar Linear Diophantine Fuzzy Hypersoft Set*, Heliyon, **10** (2024), 18 pages. 1.2
- [40] M. Palanikumar, N. Kausar, D. Pamucar, V. Simic, F. T. Tolasaa, Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications, Sci. Rep., 14 (2024), 17 pages. 1.1
- [41] D. Pamučar, G. Ćirović, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028. 1.1
- [42] S. Pramanik, R. Mallick, VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers, Neutrosophic Sets Syst., 22 (2018), 118–130. 1, 1.1
- [43] S. G. Quek, G. Selvachandran, F. Smarandache, J. Vimala, S. H. Le, Q.-T. Bui, V. C. Gerogiannis, *Entropy Measures for Plithogenic Sets and Applications in Multi-Attribute Decision Making*, Mathematics, **8** (2020), 17 pages. 1.1
- [44] S. Rajareega, J. Vimala, Operations on complex intuitionistic fuzzy soft lattice ordered group and CIFS-COPRAS method for equipment selection process, J. Intell. Fuzzy Syst., 41 (2021), 5709–5718. 1.1
- [45] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. 1.1, 1, 2.3, 2.8, 2.9
- [46] S. P. Rokade, G. Shrivastava, An efficacy of forensic technology in crime investigation and administration of justice: Narco analysis and DNA mapping, Int. J. Health Sci., 6 (2022), 6312–6326. 1
- [47] S. K. Sahoo, B. B. Choudhury, P. R. Dhal, A Bibliometric Analysis of Material Selection Using MCDM Methods: Trends and Insights, Spec. Mech. Eng. Oper. Res., 1 (2024), 189–205. 1
- [48] S. S. Syed Ahmad, N. Kausar, M. Palanikumar, Finding new similarities measures for Type-II Diophantine neutrosophic interval valued soft sets and its basic operations, Int. J. Neutrosophic Sci., 25 (2025), 505–517. 1
- [49] J. Vimala, H. Garg, K. Jeevitha, *Prognostication of myocardial infarction using lattice ordered linear diophantine multi-fuzzy soft set*, Int. J. Fuzzy Syst., **26** (2024), 44–59. 1
- [50] J. Vimala, P. Mahalakshmi, A. U. Rahman, M. Saeed, A customized TOPSIS method to rank the best airlines to fly during COVID-19 pandemic with q-rung orthopair multi-fuzzy soft information, Soft Comput., 27 (2023), 14571–14584.
- [51] J. Wang, G. Wei, C. Wei, Y. Wei, MABAC method for multiple attribute group decision-making under q-rung orthopair

- fuzzy environment, Def. Technol., 16 (2020), 208-216. 1
- [52] L. Wang, H.-Y. Zhang, J.-Q. Wang, Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems, Int. J. Fuzzy Sys., 20 (2018), 13–28. 1, 1.1
- [53] R. P. Yager, *Pythagorean fuzzy subsets*, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, Edmonton, AB, Canada, (2013), 57–61. 1.1
- [54] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. 1.1, 2.1
- [55] W.-R. Zhang, *Bipolar fuzzy sets*, In: 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, (1998), 835–840. 1.1, 1, 2.4
- [56] W.-R. Zhang, *Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis*, In: NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, IEEE, (1994), 305–309. 1.1, 1, 2.4