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Abstract
In this research study, we concentrate on Caputo-Fabrizio operators because of their multiple applications. At first, we

proceed by providing a new identification for this operator. Subsequently, we use the recently discovered identity to develop
a set of integral inequalities via (s,m)-convex function. Moreover, in the context of integral inequalities, we demonstrate how
the results enhance and refine a great deal of prior research. Later, in order to provide an improved comprehension of the
recently discovered inequalities, we provide particular examples together with the corresponding graphs. Our findings build on
preceding research and offer insightful perspectives and strategies for addressing various scientific and mathematical issues.
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1. Introduction

Convex functions, which possess intriguing geometric and analytical properties, are widely used in
statistics, graph theory, optimization theory, mathematics and economics. Numerous characterizations
exist for convex functions having smoothness features. Readers are refer to [1, 5, 10, 20, 28, 32, 34] for ap-
plications of convex functions across various research domains. Convex functions are equally important
when investigating integral and discrete inequality. Many classical inequalities can be directly derived
from convex functions. Numerous studies have been conducted to show that inequality theory and con-
vex functions are significantly related, see [6, 14, 18, 30]. As a very useful tool, fractional calculus is a
vital keystone in mathematics and applied sciences. Caputo operators have exceptional applications in a
variety of computer science and mathematics domains. This work aims to provide integral operator in-
equalities for the class of (s,m)-convex functions. Several forms of bounds for Caputo-Fabrizio operators
are proposed. In the year 2014, Eftekhari [13] instigated (s,m)-convex function as following.
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Definition 1.1. A function χ : [0, j] −→ R, j > 0 is (s,m)-convex in the second sense, if

χ
(
ϑρ+m(1 − ρ)ϕ

)
6 ρsχ(ϑ) +m(1 − ρ)sχ(ϕ) (1.1)

holds, for s,m ∈ (0, 1], ϑ,ϕ ∈ [0, j] and ρ ∈ [0, 1].

For s = m = 1, (1.1) gives the classical convex function.
The Hermite-Hadamard inequality is the development of the idea of convexity. Since Hermite (1883)

and Hadamard (1896) separately found this inequality, other researchers have examined it in great detail
(see [3, 29]).

Theorem 1.2 ([29]). Let χ : I→ R be convex function, then

χ

(
z+w

2

)
6

1
w− z

w∫
z

χ(y)dy 6
χ(z) + χ(w)

2

holds, where z,w ∈ I.
Theorem 1.3 (Hölder’s inequality, [24]). If ζ and χ are real functions on [ϑ,ϕ] and |ζ|p, |χ|qare integrable on
[ϑ,ϕ], then

ϕ∫
ϑ

|ζ(ν)χ(ν)|dν 6 (

ϕ∫
ϑ

|ζ(ν)|pdν)
1
p (

ϕ∫
ϑ

|χ(ν)|qdν)
1
q (1.2)

holds, where 1
p + 1

q = 1 and p > 1.

Theorem 1.4 (Power-mean inequality, [24]). Let ξ, χ : [ϑ,ϕ] → R and q > 1. If |ξ|, |ξ||χ|q are integrable on
[ϑ,ϕ], then

ϕ∫
ϑ

|ξ(λ)χ(λ)|dλ 6 (

ϕ∫
ϑ

|ξ(λ)|dλ)1− 1
q (

ϕ∫
ϑ

|ξ(λ)||χ(λ)|qdλ)
1
q (1.3)

holds.

The calculus of integral and differential forms was distinctly discovered in the 17th century by Newton
and Leibniz. Since then, differentiation and integration have become important concepts in calculus and
analysis. A rich history of the Caputo fractional derivative dates back to the seventeenth century, when
semi-derivatives were first addressed by Leibniz and the Marquis de l’Hospital. Fused with fractional
differentiation and integration, it is a fundamental tool in the discipline of fractional calculus. The first
integral operator in the field of fractional calculus is the Riemann-Liouville fractional integral, which was
employed to obtain the Riemann-Liouville fractional derivative. Later, Caputo made improvements to the
Riemann-Liouville derivatives, which led to the creation of the well-known Caputo fractional derivative
formula defined as follows ([7, 31]). Let W1(ϑ,ϕ) be the Sobolev space of order one as

W1(ϑ,ϕ) = {g ∈ L2(ϑ,ϕ) : g ′ ∈ L2(ϑ,ϕ)},

where

L2(ϑ,ϕ) = {g(z) :
( ϕ∫
ϑ

g2(z)dz
) 1

2
<∞}.

Let χ ∈W1(ϑ,ϕ), ϑ < ϕ and σ ∈ [0, 1], then left derivative in the sense of Caputo-Fabrizio is:

(CFDϑ Dσχ)(z) =
T(σ)

1 − σ

z∫
ϑ

χ ′(h)e
−σ(z−h)σ

1−σ dh,
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z > σ and the corresponding integral operator is

(CFϑ Iσχ)(z) =
1 − σ

T(σ)
χ(z) +

σ

T(σ)

z∫
ϑ

χ(v)dv.

For σ = 0 and σ = 1 the left derivatives are defined as (CFDϑ D0χ)(z) = χ ′(z) and (CFDϑ I1χ)(z) = χ(z)−χ(ϑ),
respectively. For the right derivative operator

(CFDϕ Dσχ)(z) =
−T(σ)

1 − σ

ϕ∫
z

χ ′(l)e
−σ(l−z)σ

1−σ dl,

z < ϕ and the corresponding integral operator is

(CFIσϕχ)(z) =
1 − σ

T(σ)
χ(z) +

σ

T(σ)

ϕ∫
z

χ(v)dv.

T(σ) > 0 is a normalization function, and T(0) = T(1) = 1.
Kavurmaci et al. determined the following identity, which is generalized in the form of Caputo-

Fabrizio integrals in this paper.

Lemma 1.5 ([19]). Consider the differentiable function χ : [ϑ,ϕ]→ R, if χ ′ is integrable on [ϑ,ϕ] and u ∈ [ϑ,ϕ],
then

(u− ϑ)χ(ϑ) + (ϕ− u)χ(ϕ)

(ϕ− ϑ)
−

1
ϕ− ϑ

ϕ∫
ϑ

χ(v)dv

=
(u− ϑ)2

ϕ− ϑ

1∫
0

($− 1)χ ′($u+ (1 −$)ϑ)d$+
(ϕ− u)2

ϕ− ϑ

1∫
0

(1 −$)χ ′($u+ (1 −$)ϕ)d$,

(1.4)

where 0 6 $ 6 1.

Definition 1.6 (Means). Let 0 < ϑ < ϕ, for z ∈ R − {0,−1} and ϑ 6= ϕ, arithmetic mean and Stolarsky

mean are formulized as A(ϑ,ϕ) = ϑ+ϕ
2 and Lz(ϑ,ϕ) =

(
ϑz+1−ϕz+1

(z+1)(ϑ−ϕ)

) 1
z
, respectively.

Mani et al. discussed bicomplex-valued controlled metric spaces with applications to fractional differ-
ential equations [22]. They derived some applications of fuzzy b-Metric space to Fredholm integral equa-
tions [23]. Hermite-Hadamard type inequalities for uniformly p-convex and uniformly q-convex functions
are provided in [4]. Nosheen et al. introduced the Hermite-Hadamard type inequalities for the class of
(s,m)-convex functions in [26], which involve Caputo fractional derivatives and Caputo-Fabrizio integrals.
For twice differentiable h-convex functions, Vivas-Cortez et al. investigated the Hermite-Hadamard-Type
integral inequalities [36]. Xu et al. presented mathematical exploration on control of bifurcation for a
dynamical model [41]. In [38], authors gave mechanism for fractional-order three-triangle multi-delayed
neural networks. In [9], Chinnamuniyandi et al. investigated the presence of unique solutions and quasi-
uniform stability for a class of fractional-order uncertain BAM neural networks utilizing the Banach fixed
point concept, the contraction mapping principle, and analysis techniques. Some dynamics of fractional-
order dynamical systems are constructed in [11, 21, 37, 39, 40]. For more recent work on fractional
inequalities, one can see [8, 12, 15, 17, 25, 27, 33, 35].

Inspired by recently conducted studies on the Caputo-Fabrizio fractional integral operator and gener-
alizations of Hermite-Hadamard-type inequalities for various convex functions, we develop a new identity
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for the differentiable functions via Caputo-Fabrizio integrals. We are able to deduce numerous new frac-
tional inequalities for (s,m)-convex function by applying this identity to produce several new Hermite-
Hadmard-type inequalities. This work is arranged according to the following structure. In Section 2,
new Hermite-Hadamard inequalities associated with the fractional operator are proposed. In Section 3,
we examine fascinating uses associated with the trapezoidal formula. Section 4 presents bounds for the
mean of the probability density function. Difference of the arithmetic mean and Logarithmic mean are
estimated with a graphical example in Section 5. Lastly, the conclusion and future possibilities for further
research are discussed in Section 6.

2. Main results

One generalization of Lemma 1.5 is as the following.

Lemma 2.1. Consider the function χ : [ϑ,ϕ] → R differentiable on (ϑ,ϕ). If χ ′ is integrable on [mϑ,mϕ],
k ∈ [mϑ,mϕ], and m ∈ (0, 1], then next relation holds:

(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

T(ν)

ν(ϕ− ϑ)

[
(CFmϑI

νχ)(k) + (CFIνmϕχ)(k)
]
+

2(1 − ν)

(ϕ− ϑ)ν
χ(k)

=
(k−mϑ)2

ϕ− ϑ

1∫
0

($− 1)χ ′($k+m(1 −$)ϑ)d$+
(mϕ− k)2

ϕ− ϑ

1∫
0

(1 −$)χ ′($k+m(1 −$)ϕ)d$,
(2.1)

where 0 6 $ 6 1.

Proof. Let

U =
(k−mϑ)2

ϕ− ϑ

1∫
0

($− 1)χ ′($k+m(1 −ϕ)ϑ)d$+
(mϕ− k)2

ϕ− ϑ

1∫
0

(1 −$)χ ′($k+m(1 −$)ϕ)d$. (2.2)

Applying integration by parts on the right side of (2.2),

U =
(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

1
ϕ− ϑ

mϕ∫
mϑ

χ(l)dl. (2.3)

Multiplying (2.3) with
ν

T(ν)
and subtracting

2(1 − ν)χ(k)

T(ν)(ϕ− ϑ)
we get

ν

T(ν)
U−

2(1 − ν)χ(k)

T(ν)(ϕ− ϑ)

=
ν

T(ν)

[(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

1
ϕ− ϑ

mϕ∫
mϑ

χ(l)dl
]
−

2(1 − ν)χ(k)

T(ν)(ϕ− ϑ)

=
ν

T(ν)

(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

1
(ϕ− ϑ)

[
(CFmϑI

νχ)(k) + (CFIνmϕχ)(k)
]
.

(2.4)

Further simplification of (2.4) leads toward (2.1).

Remark 2.2.

(i) Putting ν = m = 1 in Lemma 2.1 we get (1.4).
(ii) Putting m = 1 in Lemma 2.1 gives [15, Lemma 2.2].
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Notations: Consider

|Y| :=
∣∣∣(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

T(ν)

ν(ϕ− ϑ)

[(
(CFmϑI

νχ)(k) + (CFIνmϕχ)(k)
)]

+
2(1 − ν)

ν(ϕ− ϑ)
χ(k)

∣∣∣
and

|K| :=
∣∣∣(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

1
(ϕ− ϑ)

mϕ∫
mϑ

χ(c)dc
∣∣∣,

throughout the remaining text.

Theorem 2.3. Let χ : [mϑ,mϕ] → R be a differentiable function on (mϑ,mϕ). If |χ ′| is (s,m)-convex function
and integrable on [mϑ,mϕ], then∣∣∣(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

T(ν)

ν(ϕ− ϑ)

[
(CFmϑI

νχ)(k) + (CFIνmϕχ)(k)
]
+

2(1 − ν)

(ϕ− ϑ)ν
χ(k)

∣∣∣
6

(k−mϑ)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϑ)|

(s+ 2)

]
+

(mϕ− k)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϕ)|

(s+ 2)

]
holds for k ∈ [mϑ,mϕ] and s,m ∈ (0, 1].

Proof. Utilizing Lemma 2.1 and properties of absolute value function,

|Y| 6
(k−mϑ)2

ϕ− ϑ

1∫
0

(1 −$)|χ ′($k+m(1 −$)ϑ)|d$+
(mϕ− k)2

ϕ− ϑ

1∫
0

(1 −$)|χ ′($k+m(1 −$)ϕ)|d$.

Since |χ ′(·)| is (s,m)-convex, therefore

|Y| 6
(k−mϑ)2

ϕ− ϑ

1∫
0

(1 −$)[$s|χ ′(k)|+m(1 −$)s|χ ′(ϑ)|]d$

+
(mϕ− k)2

ϕ− ϑ

1∫
0

(1 −$)[$s|χ ′(k)|+m(1 −$)s|χ ′(ϕ)|]d$

6
(k−mϑ)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϑ)|

(s+ 2)

]
+

(mϕ− k)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϕ)|

(s+ 2)

]
.

The repercussions of Theorem 2.3 are summed up in the following remark.

Remark 2.4. Substitution of ν = 1 in Theorem 2.3 gives

|K| =
∣∣∣(k−mϑ)χ(mϑ) + (mϕ− k)χ(mϕ)

(ϕ− ϑ)
−

1
(ϕ− ϑ)

mϕ∫
mϑ

χ(j)dj
∣∣∣

6
(k−mϑ)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϑ)|

(s+ 2)

]
+

(mϕ− k)2

ϕ− ϑ

[ |χ ′(k)|

(s+ 1)(s+ 2)
+m

|χ ′(ϕ)|

(s+ 2)

]
.

(2.5)

(a) Substituting m = 1 and m = s = 1 in (2.5), we obtain [2, Theorem 5] and [19, Theorem 4].
(b) Substituting m = s = 1 and choosing k = ϑ+ϕ

2 in (2.5), we get [19, Corollary 2].
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Theorem 2.5. Let χ : [mϑ,mϕ] → R be a differentiable function on interval (mϑ,mϕ). If |χ ′|q, q > 1, is
(s,m)-convex function and integrable on [mϑ,mϕ], then

|Y| 6 (
1

p+ 1
)

1
p (

1
s+ 1

)
1
q

[(k−mϑ)2(m|χ ′(ϑ)|q + |χ ′(k)|q)
1
q + (mϕ− k)2(m|χ ′(ϕ)|q + |χ ′(k)|q)

1
q

(ϕ− ϑ)

]
holds, for s,m ∈ (0, 1], k ∈ [mϑ,mϕ] and p−1 = 1 − q−1.

Proof. Use Lemma 2.1 and (1.2),

|Y| 6
(k−mϑ)2

ϕ− ϑ
(

1∫
0

(1 −$)pd$)
1
p (

1∫
0

|χ ′($k+m(1 −$)ϑ)|qd$)
1
q

+
(mϕ− k)2

ϕ− ϑ
(

1∫
0

(1 −$)pd$)
1
p (

1∫
0

|χ ′($k+m(1 −$)ϕ)|qd$)
1
q .

(s,m)-convexity of |χ ′|q gives

∣∣∣Y∣∣∣ 6 (
1

p+ 1
)

1
p (

1
(s+ 1

)
1
q

[(k−mϑ)2(m|χ ′(ϑ)|q + |χ ′(k)|q)
1
q + (mϕ− k)2(m|χ ′(ϕ)|q + |χ ′(k)|q)

1
q

(ϕ− ϑ)

]
.

Remark 2.6. Substituting ν = 1 in Theorem 2.5 we get

|K| 6 (
1

p+ 1
)

1
p (

1
s+ 1

)
1
q

[(k−mϑ)2(m|χ ′(ϑ)|q + |χ ′(k)|q)
1
q + (mϕ− k)2(m|χ ′(ϕ)|q + |χ ′(k)|q)

1
q

(ϕ− ϑ)

]
. (2.6)

(a) Choosing m = 1 and m = s = 1 in (2.6) we obtain [2, Theorem 6] and [19, Theorem 5], respectively.

(b) Substituting m = 1 and choosing k = ϑ+ϕ
2 in (2.6) we get [2, Corollary 4].

(c) Putting m = s = 1 and choosing k = ϑ+ϕ
2 in (2.6) we obtain [19, Corollary 3].

Theorem 2.7. Let χ : [mϑ,mϕ]→ R be a differentiable function on (mϑ,mϕ). If |χ ′|q, q > 1, is an (s,m)-convex
function and integrable on [mϑ,mϕ], then

|Y| 6
(k−mϑ)2

ϕ− ϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϑ)|q

(s+ 2)
]

1
q +

(mϕ− k)2

ϕ− ϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϕ)|q

s+ 2
]

1
q

holds for s,m ∈ (0, 1] and k ∈ [mϑ,mϕ].

Proof. Utilizing Lemma 2.1 and (1.3) we obtain

|Y| 6
(k−mϑ)2

ϕ− ϑ
(

1∫
0

(1 −$)d$)1− 1
q (

1∫
0

(1 −$)|χ ′($k+m(1 −$)ϑ)|qd$)
1
q

+
(mϕ− k)2

ϕ− ϑ
(

1∫
0

(1 −$)d$)1− 1
q (

1∫
0

(1 −$)|χ ′($k+m(1 −$)ϕ)|qd$)
1
q .
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Since |χ ′|q is (s,m)-convex, therefore

|Y| 6
(k−mϑ)2

ϕ− ϑ
(
1
2
)1− 1

q (

1∫
0

(1 −$)[$s|χ ′(k)|q +m(1 −$)s|χ ′(ϑ)|q]d$)
1
q

+
(mϕ− k)2

ϕ− ϑ
(
1
2
)1− 1

q (

1∫
0

(1 −$)[$s|χ ′(k)|q +m(1 −$)s|χ ′(ϕ)|q]d$)
1
q

6
(k−mϑ)2

ϕ−mϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϑ)|q

(s+ 2)
]

1
q +

(mϕ− k)2

ϕ− ϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϕ)|q

s+ 2
]

1
q .

Remark 2.8. Substituting ν = 1 in Theorem 2.7, we get

|K| 6
(k−mϑ)2

ϕ−mϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϑ)|q

(s+ 2)
]

1
q

+
(mϕ− k)2

ϕ− ϑ
(
1
2
)1− 1

q [
|χ ′(k)|q

(s+ 1)(s+ 2)
+
m|χ ′(ϕ)|q

s+ 2
]

1
q .

(2.7)

(a) In (2.7), substituting m = 1 and m = s = 1 provides [2, Theorem 7] and [19, Theorem 7], respectively.
(b) Putting m = s = 1 and choosing k = ϑ+ϕ

2 in (2.7), we get [19, Corollary 4].

Example 2.9. Substituting ν = 1, k = ϑ+ϕ
2 , and χ(x) = xu

u in Theorem 2.7, where u=s+m and 0 < s+m <

1, we get∣∣∣A(ϑu,ϕu) − Luu(ϑ,ϕ)
∣∣∣

6
(ϕ− ϑ)(u)

4mu−1 (
1
2
)

1
p

(
[
|(ϑ+ϕ2 )u−1|q

(s+ 1)(s+ 2)
+
m|(ϑ)u−1|q

(s+ 2)
]

1
q + [

|(ϑ+ϕ2 )u−1|q

(s+ 1)(s+ 2)
+
m|(ϕ)u−1|q

(s+ 2)
]

1
q

)
.

(2.8)

Through Theorem 2.7, we are enable to find bound for difference of means in this example.

3. Applications to error estimation formulae

In this part, some numerical analysis applications of our results are explored.

3.1. Error bound for the quadrature formula
Let χ have a bounded first derivative over [ϑ,ϕ]. Mean value theorem for χ gives [16]:

(k− ϑ)χ ′(ξ) = χ(k) − χ(ϑ) (3.1)

for some ξ ∈ (ϑ,k]. Integrating (3.1) and taking absolute value:∣∣∣∣∣∣
ϕ∫
ϑ

χ(k)dk− (ϕ− ϑ)χ(ϑ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ϕ∫
ϑ

(k− ϑ)χ ′(ξ)dk

∣∣∣∣∣∣ ,
we can obtain a more accurate approximation of the integral on the right side by incorporating the
absolute value into the integrand and substituting the term χ ′ with an upper bound Z = sup |χ ′(ξ)| as

∣∣∣ ϕ∫
ϑ

χ(k)dk− (ϕ− ϑ)χ(ϑ)
∣∣∣ 6 (ϕ− ϑ)2Z

2
. (3.2)
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Putting k = ϕ and s = m = 1 in (2.5), then using the fact that |χ ′(ϑ)|, |χ ′(ϕ)| 6 Z, we get (3.2), which is
error bound for the quadrature formula.

Next, trapezoidal error bounds are estimated using the main findings.

3.2. The trapezoidal formula [19]

Let b belong to set of natural numbers, B : ϑ = δ0 < δ1 < δ2 < · · · < δb = ϕ is a partition of interval
[ϑ,ϕ], and consider the quadrature formula

ϕ∫
ϑ

χ(h)dh = Y(χ,B) +S(χ,B), (3.3)

where

Y(χ,B) =
b−1∑
a=0

(
χ(δa) + χ(δa+1)

2

)
(δa+1 − δa)

for the area of trapeziums and S(χ,B) represents the corresponding approximation error.

Proposition 3.1. Considering the premises of Theorem 2.3, the trapezoidal error estimate for each partition B of
[ϑ,ϕ] satisfies:

|S(χ,B)| 6
b−1∑
a=0

(δa+1 − δa)
2

4

[
|χ ′(δa+1)|+ |χ ′(δa)|

s+ 2
+

2|χ ′(δa+1+δa
2 )|

(s+ 1)(s+ 2)

]
.

Proof. In (2.5), choosing m = 1 and k = ϑ+ϕ
2 we get∣∣∣∣∣∣χ(ϑ) + χ(ϕ)2

−
1

(ϕ− ϑ)

ϕ∫
ϑ

χ(c)dc

∣∣∣∣∣∣ 6 ϕ− ϑ

4

[ |χ ′(ϑ+ϕ2 )|

(s+ 1)(s+ 2)
+

|χ ′(ϑ)|

(s+ 2)

]

+
ϕ− ϑ

4

[ |χ ′(ϑ+ϕ2 )|

(s+ 1)(s+ 2)
+

|χ ′(ϕ)|

(s+ 2)

]
.

(3.4)

Considering (3.4) for [δa, δa+1] (a = 0, 1, . . . ,b− 1) we get∣∣∣∣∣∣∣
χ(δa) + χ(δa+1)

2
−

1
(δa+1 − δa)

δa+1∫
δa

χ(c)dc

∣∣∣∣∣∣∣ 6
(δa+1 − δa)

4

[
|χ ′(δa+1)|+ |χ ′(δa)|

s+ 2
+

2|χ ′(δa+1+δa
2 )|

(s+ 1)(s+ 2)

]
.

Hence, in (3.3) we have∣∣∣∣∣∣
ϕ∫
ϑ

χ(c)dc−Y(χ,B)

∣∣∣∣∣∣ 6
b−1∑
a=0

∣∣∣∣∣∣∣
δa+1∫
δa

χ(c)dc−
χ(δa) + χ(δa+1)

2
(δa+1 − δa)

∣∣∣∣∣∣∣
6
b−1∑
a=0

(δa+1 − δa)
2

4

[
|χ ′(δa+1)|+ |χ ′(δa)|

s+ 2
+

2|χ ′(δa+1+δa
2 )|

(s+ 1)(s+ 2)

]
.

Remark 3.2. The next set of error estimates meets the requirements for every partition B of [ϑ,ϕ].
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The next two inequalities, result, respectively, if we adhere to the steps in the proof of Proposition 3.1
for (2.7) and (2.6).

|S(χ,B)| 6
b−1∑
a=0

(δa+1 − δa)
2

4
(
1
2
)1− 1

q

([
|χ ′(δa+1+δa

2 )|q

(s+ 1)(s+ 2)
+

|χ ′(δa)|
q

s+ 2

] 1
q

+

[
|χ ′(δa+1+δa

2 )|q

(s+ 1)(s+ 2)
+

|χ ′(δa+1)|
q

s+ 2

] 1
q
)

.

(3.5)

|S(χ,B)| 6 (
1

s+ 1
)

1
q (

1
p+ 1

)
1
p

b−1∑
a=0

(ra+1 − ra)
2

4

[(
|χ ′(ra)|

q + |χ ′(
ra+1 + ra

2
)|q
) 1
q

+

(
|χ ′(ra+1)|

q + |χ ′(
ra+1 + ra

2
)|q
) 1
q

]
.

(3.6)

Example 3.3. Substituting χ(x) = q
4+qx

4
q+1 in (3.5) and (3.6) we get the following inequalities, respectively,

R(q) =
∣∣∣q(1 + 2

4
q+2 + 3

4
q+1)

8 + 2q
+

q2(3
4
q+1 − 1)

(4 + q)(4 + 2q)

∣∣∣
6

1
4
(
1
2
)1− 1

q

[
(
7
4
)

1
q + (

31
4
)

1
q + (

1009
60

)
1
q + (

2569
60

)
1
q

]
= Y(q),

R(q) 6
1
4
(
1
2
)1− 1

q

[
(
97
16

)
1
q + (

337
16

)
1
q + (

881
16

)
1
q + (

1921
16

)
1
q

]
= U(q), (3.7)

where R(q) represents the trapezoidal error for χ(x) = q
4+qx

4
q+1, and Y(q) (purple) and U(q) (yellow) are

3 4 5 6 7 8 9
x

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1: An illustration of the inequalities shown in Example 3.3, where red color represents R(q), purple is Y(q), and yellow
shows U(q).

bounds of trapezoidal error. It is clear from Figure 1 that yellow curve is more closer to red curve, which
shows that (3.7) gives the best estimation.

4. Bounds for mean of probability density function

For a continuous random variable S, let χ : [mω,mζ] → [0, 1] be probability density function and the

cumulative distribution function is N(s) = P(S 6 s) =
s∫
mϑ

χ(h)dh, where s ∈ [ϑ,ϕ], N(mϑ) = 0, and
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N(mϕ) = 1. The mean of χ is given by the following formula:

E(S) =

mϕ∫
mϑ

rχ(r)dr = mϕ−

mϕ∫
mϑ

N(r)dr. (4.1)

Theorem 4.1. Taking into consideration Theorem 2.3’s presumptions,

|E(S) − k| 6 (k−mϑ)2
[ |χ(k)|

(s+ 1)(s+ 2)
+m

|χ(ϑ)|

(s+ 2)

]
+ (mϕ− k)2

[ |χ(k)|

(s+ 1)(s+ 2)
+m

|χ(ϕ)|

(s+ 2)

]
. (4.2)

Proof. Putting χ = N in (2.5) and applying (4.1) we obtain (4.2).

Theorem 4.2. Taking into consideration Theorem 2.5’s presumptions we get

|E(S) − k| 6 (
1

p+ 1
)

1
p (

1
s+ 1

)
1
q

[
(k−mϑ)2(m|χ(ϑ)|q + |χ(k)|q)

1
q + (mϕ− k)2(m|χ(ϕ)|q + |χ(k)|q)

1
q

]
. (4.3)

Proof. Choosing χ = N in (2.6), and then applying (4.1), one obtains (4.3).

Theorem 4.3. Taking into consideration Theorem 2.7’s presumptions,

|E(S) − k| 6(k−mϑ)2(
1
2
)1− 1

q [
|χ(k)|q

(s+ 1)(s+ 2)
+
m|χ(ϑ)|q

(s+ 2)
]

1
q

+ (mϕ− k)2(
1
2
)1− 1

q [
|χ(k)|q

(s+ 1)(s+ 2)
+
m|χ(ϕ)|q

s+ 2
]

1
q .

(4.4)

Proof. Choosing χ = N in (2.7), and then applying (4.1), one obtains (4.4).

5. Estimates for difference of arithmetic mean and Stolarsky mean

Proposition 5.1. Consider the presumptions in Theorem 2.5 with i ∈ (−∞, 0]
⋃
[1,∞)\{−2q,q}, then the follow-

ing bounds exist:∣∣∣ q

i+ q

(
A(ϑ

i+q
q ,ϕ

i+q
q ) − L

i+q
q
i+q
q

(ϑ,ϕ)
)∣∣∣

6 (
1

p+ 1
)

1
p (

1
s+ 1

)
1
q
(ϕ− ϑ)

4

[(
(ϑ)i + (

ϑ+ϕ

2
)i
) 1
q
+
(
(ϕ)i + (

ϑ+ϕ

2
)i
) 1
q
]
,

(5.1)

∣∣∣ q

i+ q

(
A(ϑ

i+q
q ,ϕ

i+q
q ) − L

i+q
q
i+q
q

(ϑ,ϕ)
)∣∣∣

6 (
1
2
)1− 1

q
(ϕ− ϑ)

4

[( (ϑ)i

s+ 2
+

(ϑ+ϕ2 )i

(s+ 1)(s+ 2)

) 1
q
+
( (ϕ)i
s+ 2

+
(ϑ+ϕ2 )i

(s+ 1)(s+ 2)

) 1
q
]
.

(5.2)

Proof. χ(x) = q
i+qx

i
q+1, m = 1, and k = ϑ+ϕ

2 in Theorems 2.5 and 2.7 provide the desired outcomes.

Example 5.2. In inequalities (5.1) and (5.2), substituting i = 4,q = 2 we get the following inequalities,
respectively,

M(ϑ,ϕ) =
∣∣∣1
3
(
ϑ3 +ϕ3

2
−
ϑ4 −ϕ4

4(ϑ−ϕ)
)
∣∣∣ 6 (

1
3
)

1
2 (

2
3
)

1
2
ϕ− ϑ

4

[
(ϑ4 + (

ϑ+ϕ

2
)4)

1
2 + (ϕ4 + (

ϑ+ϕ

2
)4)

1
2

]
= h(ϑ,ϕ),

M(ϑ,ϕ) 6 (
1
2
)

1
2
ϕ− ϑ

4

[
(
2
5
ϑ4 +

4
15

(
ϑ+ϕ

2
)4)

1
2 + (

2
5
ϕ4 +

4
15

(
ϑ+ϕ

2
)4)

1
2

]
= l(ϑ,ϕ).
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Figure 2: A visual representation of the inequalities shown in Example 5.2, where red color represents M(ϑ,ϕ), purple is l(ϑ,ϕ),
and yellow shows h(ϑ,ϕ).

For ϑ,ϕ ∈ R+ with ϑ < ϕ, M(ϑ,ϕ) shows difference of Arithmetic and Stolarsky mean. h(ϑ,ϕ) and
l(ϑ,ϕ) are bounds of this difference. Figure 2 shows that surface with purple color is more closer to red
surface, clearly (5.2) gives better bound.

6. Conclusion

In view of current developments in the field of fractional analysis, numerous studies have been con-
ducted to optimize the bounds with the assistance of various fractional integral operators. The Caputo-
Fabrizio operator counts among them. Since this topic is significant and has many repercussions in sim-
ulating real-world natural events, the primary objective of this study is to obtain novel and widespread
inequalities that make a relationship between inequality theory and fractional analysis by using this opera-
tor. Furthermore, we highlight how the findings, when examined within the context of integral inequality,
build upon and improve a significant body of previous research. After that, in order to help people better
grasp the recently discovered inequalities, we offer particular examples along with the associated graphs.
It is anticipated that these theoretical investigations will open up new directions for research into fresh
ways for the Caputo-Fabrizio operator and in numerous additional domains of application. With the use
of this operator, future research can examine a variety of inequality categories, including Simpson-type,
Grüss-type, and Chebyshev-type inequality. Additionally, one can focus on the practical applications of
these inequalities.
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