

Available online at

http://www.TJMCS.com

The Journal of Mathematics and Computer Science Vol. 2 No. 4 (2011) 607-618

On Some Geometric Properties of the Sphere S^n

Richard S. Lemence^{1*}, Dennis T. Leyson² and Marian P. Roque³

Institute of Mathematics, College of Science, University of the Philippines,
Diliman, Quezon City, Philippines

1rslemence@gmail.com,
2dens_09@yahoo.com,
3marian.roque11@gmail.com

Received: September 2010, Revised: December 2010

Online Publication: January 2011

Abstract

It is known that the sphere S^n admits an almost complex structure only when n=2 or n=6. In this paper, we show that the sphere S^n is a space of constant sectional curvature and using the results of T. Sato in [4], we determine the scalar curvature and the *-scalar curvature of S^6 . We shall also prove that S^6 is a non-Kähler nearly Kähler manifold using the Levi-Civita connection on S^6 defined by H. Hashimoto and K. Sekigawa [3]. In [2], A. Gray and L. Hervella defined sixteen classes of almost Hermitian manifolds. We shall define quasi-Hermitian, a class of almost Hermitian manifolds and partially characterize almost Hermitian manifolds that belong to this class. Finally, under certain conditions, we shall show the sphere S^6 is quasi-Hermitian.

Keywords: Sphere, Kähler manifolds, Hermitian manifolds, quasi-Hermitian manifolds

AMS Subject Classification (MSC2010): 53B35, 53C55

1 Preliminaries

Let M=(M,J,g) be a 2n-dimensional almost Hermitian manifold with the almost complex structure J and Riemannian metric g. Let ∇ be the Levi-Civita connection on M and R the Riemannian curvature tensor defined by

*Currently, he is a postdoctoral research fellow at the Academic Production, Ochanomizu University, Bunkyo-ku, Tokyo, Japan.

$$R(X,Y)Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X)Z - \nabla_{[X,Y]}Z$$
,

for X, Y and $Z \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ denotes the Lie algebra of all smooth vector fields on M.

If U is a unit normal vector to M and $V \in \mathfrak{X}(M)$, the *shape operator* of M in \mathbb{R}^{n+1} , denoted S(V), is defined by

$$S(V) = -\nabla_V^{\mathbb{R}^{n+1}} U$$
$$= -\sum_{i=1}^{n+1} \mathbf{V}[U^i] e_i,$$

where e_i is the standard i^{th} basis vector for \mathbb{R}^{n+1} and $\mathbf{V}[\cdot]$ denotes the ordinary directional derivative $\mathbf{v}[f] = \nabla f \cdot \mathbf{V}$. For X, Y, $Z \in \mathfrak{X}(M)$,

$$R(X,Y)Z = g(S(X),Z)S(Y) - g(S(Y),Z)S(X).$$

The *Ricci tensor* ρ is a symmetric tensor of type (0,2) defined by

$$\rho(X,Y) = trace[Z \mapsto R(X,Z)Y]$$
$$= \sum_{i=1}^{2n} R(e_i, X, e_i, Y),$$

where $\{e_1, ..., e_{2n}\}$ is an arbitrary orthonormal basis for $T_p(M)$, the tangent space to M at the point p. The *Ricci tensor transformation Q* of type (1,1) is given by

$$\rho(X,Y) = g(QX,Y)$$
,

and the trace of Q is called the *scalar curvature* τ of R. Furthermore, we denote by ρ^* and τ^* the Ricci *-tensor and the *-scalar curvature on M, respectively. The tensor ρ^* is defined pointwise by

$$\rho^*(X,Y) = \operatorname{trace}(Z \mapsto R(JZ,X)JY)$$

$$= -\sum_{i=1}^{2n} R(X,e_i,JY,Je_i)$$

$$= -\frac{1}{2} \sum_{i=1}^{2n} R(X,JY,e_i,Je_i),$$

where X, Y and Z $notesizes In <math>T_p(M)$, R(X,Y,Z,W) = g(R(X,Y)Z,W) and $\{e_i\}$ is an orthonormal basis of $T_p(M)$. We also define analogously the Ricci *-operator, denoted by Q^* , by $\rho^*(X,Y) = g(Q^*X,Y)$ for X and $Y \in T_p(M)$. The trace of Q^* is called the *-scalar curvature τ^* on M. We note that ρ^* satisfies $\rho^*(JX,JY) = \rho^*(Y,X)$ but is not symmetric in general.

An almost complex structure J is said to be *integrable* if M admits a complex structure and the derived almost complex structure coincides with J. We also say that the almost complex manifold (M,J) is integrable if J is integrable.

The *Nijenhuis tensor* N of an almost complex structure J is a tensor field of type (1,2) defined by

$$N(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] - [X,Y],$$

for X, $Y \in \mathfrak{X}(M)$. In [5], B. Kruglikov showed that the Nijenhuis tensor N can be expressed in terms of any symmetric connection ∇ on M, i.e.,

$$N(X,Y) = (\nabla_{Y}J)(JY) + (\nabla_{JY}J)Y - (\nabla_{Y}J)(JX) - (\nabla_{JY}J)X.$$

It is easy to verify that the Nijenhuis tensor satisfies the following properties:

$$N(X,Y) = -N(Y,X)$$

$$N(JX,Y) = -JN(X,Y)$$

$$N(X,JY) = -JN(X,Y).$$

A. Newlander and L. Nirenberg, in [1], established the following result on the integrability of an almost complex structure J.

Theorem 1. An almost complex structure J is integrable if and only if the Nijenhuis tensor N vanishes on M.

As a consequence of the Newlander and Nirenberg above, we have the following corollary.

Corollary 1. Any 2-dimensional almost complex manifold (M, J) is integrable.

Let X and $Y \in T_p(M)$ such that X and Y are linearly independent. The sectional curvature K_{π} of the 2-dimensional subspace π of $T_p(M)$ spanned by $\{X,Y\}$ is given by

$$K_{\pi} = K(X,Y) = \frac{g(R(X,Y)X,Y)}{g(X,X)g(Y,Y) - (g(X,Y))^2},$$

while the *holomorphic sectional curvature*, H(X), is the sectional curvature of the subspace of $T_n(M)$ spanned by $\{X,JX\}$, i.e.,

$$H(X) = \frac{g(R(X,JX)X,JX)}{(g(X,X))^{2} - (g(X,JX))^{2}} = K(X,JX).$$

An almost complex manifold (M,J) equipped with a Riemannian metric ${\it g}$ that satisfies

$$g(JX,JY) = g(X,Y)$$
,

for all X, $Y \in \mathfrak{X}(M)$, is called an *almost Hermitian manifold*, denoted by (M,J,g). In [2], sixteen classes of almost Hermitian manifolds were defined by Gray and Hervella. The list includes Kähler, Hermitian and nearly Kähler manifolds. An almost Hermitian manifold M is called a Kähler manifold if $\nabla J = 0$, for all X, $Y \in \mathfrak{X}(M)$. It is called *Hermitian* if N = 0. It is a *nearly Kähler manifold* if $(\nabla_X J)Y + (\nabla_Y J)X = 0$, or equivalently $(\nabla_X J)X = 0$, for all $X \in \mathfrak{X}(M)$.

2 Geometry of S^n

It is known that the standard sphere S^n admits an almost complex structure only when n=2 or n=6. To construct an almost complex structure on S^2 , we use the span of the quaternions. Let $H=span_{\mathbb{R}}\{1,i,j,k\}$, where

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k$, $jk = i$, $ki = j$
 $ji = -k$, $kj = -i$, $ik = -j$.

Then \mathbb{R}^3 can be identified with the set $\mathrm{Im} H = span_{\mathbb{R}}\{i,j,k\}$. For $X = x^1 \ i + x^2 \ j + x^3 \ k$ and $Y = y^1 \ i + y^2 \ j + y^3 \ k \in \mathrm{Im} H$, the metric g in $\mathrm{Im} H$ and the exterior product are defined as

$$g(X,Y) = x^{1}y^{1} + x^{2}y^{2} + x^{3}y^{3}$$

$$X \times Y = (x^{2}y^{3} - x^{3}y^{2}) i + (x^{3}y^{1} - x^{1}y^{3}) j + (x^{1}y^{2} - x^{2}y^{1}) k,$$

and the sphere S^2 is given by $S^2 = \{ p \in \text{Im}H \mid g(p,p) = 1 \}$. With this definition, the tangent space to S^2 at a point $p \in S^2$ is $T_p S^2 = \{ X \in \text{Im}H \mid g(X,p) = 0 \}$.

Let $p=p^1\ i+p^2\ j+p^3\ k\in S^2$ and $X=x^1\ i+x^2\ j+x^3\ k\in T_pS^2$. Define a tensor $J_p:T_pS^2\to T_p(S^2)$ by

$$J_p X = X \times p = (x^2 p^3 - x^3 p^2) i + (x^3 p^1 - x^1 p^3) j + (x^1 p^2 - x^2 p^1) k.$$

This J_p induces a tensor J on S^2 such that $J^2 = -I$, hence the following theorem. **Theorem 2.** The sphere S^2 is an almost complex manifold.

Theorem 3. The sphere S^2 is an almost Hermitian manifold.

Proof. Let $X = x^1 i + x^2 j + x^3 k$ and $Y = y^1 i + y^2 j + y^3 k \in T_p(S^2)$. Then, for any $p \in S^2$, we have

$$\begin{split} g\left(J_{p}X,J_{p}Y\right) &= (x^{2}p^{3}-x^{3}p^{2})(y^{2}p^{3}-y^{3}p^{2}) + (x^{3}p^{1}-x^{1}p^{3})(y^{3}p^{1}-y^{1}p^{3}) \\ &\quad + (x^{1}p^{2}-x^{2}p^{1})(y^{1}p^{2}-y^{2}p^{1}) \\ &= x^{2}y^{2}(p^{3})^{2}-x^{3}p^{3}y^{2}p^{2}-x^{2}p^{2}y^{3}p^{3}+x^{3}y^{3}(p^{2})^{2} \\ &\quad + x^{3}y^{3}(p^{1})^{2}-x^{1}p^{1}y^{3}p^{3}-x^{3}p^{3}y^{1}p^{1}+x^{1}y^{1}(p^{3})^{2} \\ &\quad + x^{1}y^{1}(p^{2})^{2}-x^{2}p^{2}y^{1}p^{1}-x^{1}p^{1}y^{2}p^{2}+x^{2}y^{2}(p^{1})^{2} \,. \end{split}$$

Regrouping terms, we get

$$\begin{split} g\left(J_{p}X,J_{p}Y\right) &= x^{1}y^{1}(p^{1})^{2} + x^{1}y^{1}(p^{3})^{2} + x^{2}y^{2}(p^{1})^{2} + x^{2}y^{2}(p^{3})^{2} \\ &+ x^{3}y^{3}(p^{1})^{2} + x^{3}y^{3}(p^{2})^{2} - x^{1}p^{1}y^{2}p^{2} - x^{1}p^{1}y^{3}p^{3} \\ &- x^{2}p^{2}y^{1}p^{1} - x^{2}p^{2}y^{3}p^{3} - x^{3}p^{3}y^{1}p^{1} - x^{3}p^{3}y^{2}p^{2}. \end{split}$$

Adding and subtracting $x^1y^1(p^1)^2 + x^2y^2(p^2)^2 + x^3y^3(p^3)^2$ will yield

$$\begin{split} g\left(J_{p}X,J_{p}Y\right) &= x^{1}y^{1}(p^{1})^{2} + x^{1}y^{1}(p^{2})^{2} + x^{1}y^{1}(p^{3})^{2} + x^{2}y^{2}(p^{1})^{2} + x^{2}y^{2}(p^{2})^{2} + x^{2}y^{2}(p^{3})^{2} \\ &+ x^{3}y^{3}(p^{1})^{2} + x^{3}y^{3}(p^{2})^{2} + x^{3}y^{3}(p^{3})^{2} - x^{1}p^{1}y^{1}p^{1} - x^{1}p^{1}y^{2}p^{2} - x^{1}p^{1}y^{3}p^{3} \\ &- x^{2}p^{2}y^{1}p^{1} - x^{2}p^{2}y^{2}p^{2} - x^{2}p^{2}y^{3}p^{3} - x^{3}p^{3}y^{1}p^{1} - x^{3}p^{3}y^{2}p^{2} - x^{3}p^{3}y^{3}p^{3} \\ &= x^{1}y^{1}g(p,p) + x^{2}y^{2}g(p,p) + x^{3}y^{3}g(p,p) - x^{1}p^{1}g(Y,p) \\ &- x^{2}p^{2}g(Y,p) - x^{3}p^{3}g(Y,p) \\ &= x^{1}y^{1} + x^{2}y^{2} + x^{3}y^{3} \end{split}$$

$$= g(X,Y).$$

From Corollary 1 and Theorem 2, the Nijenhuis tensor on S^2 vanishes. Combining this result with Theorem 3 and the definition of a Hermitian manifold, we have the following.

Theorem 4. The sphere S^2 is a Hermitian manifold.

Before we can define the almost complex structure on the unit sphere S^6 , we recall first the Cayley algebra.Let $\mathcal{C}=span_{\mathbb{R}}\{1,i,j,k,l,il,jl,kl\}$ such that

$$i^2 = j^2 = k^2 = l^2 = il^2 = jl^2 = kl^2 = -1$$
,

and if $e_0 = 1$, $e_1 = i$, $e_2 = j$, $e_3 = k$, $e_4 = l$, $e_5 = il$, $e_6 = jl$ and $e_7 = kl$, then Table 1 shows the multiplication of the basis elements of the Cayley algebra.

	e_0	e_1	e_2	e_3	$e_{\scriptscriptstyle 4}$	e_5	e_6	e_7
e_0	e_0	e_1	e_2	e_3	$e_{\scriptscriptstyle 4}$	e_5	e_6	e_7
e_1	e_1	$-e_0$	e_3	$-e_2$	$e_{\scriptscriptstyle 5}$	$-e_4$	$-e_7$	e_6
e_2	e_2	$-e_3$	$-e_0$	e_1	e_6	e_7	$-e_4$	$-e_5$
e_3	e_3	e_2	$-e_1$	$-e_0$	e_7	$-e_6$	e_5	$-e_4$
e_4	e_4	$-e_5$	$-e_6$	$-e_7$	$-e_0$	e_1	e_2	e_3
$e_{\scriptscriptstyle 5}$	$e_{\scriptscriptstyle 5}$	$e_{_4}$	$-e_7$	e_6	$-e_1$	$-e_0$	$-e_3$	$e_2^{}$
e_6	e_6	e_7	e_4	$-e_5$	$-e_2$	e_3	$-e_0$	$-e_1$
e_7	e_7	$-e_6$	e_5	$e_{\scriptscriptstyle 4}$	$-e_3$	$-e_2$	e_1	$-e_0$

Table 1. Multiplication table of the basis elements of C

Let X , $Y \in \mathcal{C}$. We define the metric g (inner product) and the exterior product, respectively, as

$$g(X,Y) = -(\text{real part of } XY)$$

 $X \times Y = \text{imaginary part of } XY$

where XY is the product of X and Y in C.

Remark. For any X, Y, $Z \in \mathcal{C}$, the inner and exterior products satisfy the following:

(i)
$$X \times Y = -(Y \times X)$$

(ii)
$$g(X \times Y, Z) = g(X, Y \times Z)$$

(iii) $X \times (Y \times Z) = g(X, Z)Y - g(X, Y)Z$

Notice that each element z of $\mathcal C$ can be expressed as $z=\sum_{i=0}^7 a^i e_i$. Here, we call the number a^0 the real part of z and $\sum_{i=1}^7 a^i e_i$ as its imaginary part. Denote the set of imaginary parts of elements of $\mathcal C$ by $\mathrm{Im}\mathcal C$. Let $p(x^1,\dots,x^7)\in\Re^7$. If we denote by V_p the vector in $\mathbb R^7$ determined by the point p with the origin, then $V_p\in\mathrm{Im}\mathcal C$, i.e.,

$$V_p = x^1 e_1 + x^2 e_2 + x^3 e_3 + x^4 e_4 + x^5 e_5 + x^6 e_6 + x^7 e_7$$
.

This means that \mathfrak{R}^7 can be identified with $\operatorname{Im} \mathcal{C}$. Now observe that

$$\begin{split} g(V_p,V_p) = 1 &\iff - \left\{ \text{real part of } \left(V_p V_p \right) \right\} = 1 \\ &\iff - \left(- (x^1)^2 - (x^2)^2 - (x^3)^2 - (x^4)^2 - (x^5)^2 - (x^6)^2 - (x^7)^2 \right) = 1 \\ &\iff (x^1)^2 + (x^2)^2 + (x^3)^2 + (x^4)^2 + (x^5)^2 + (x^6)^2 + (x^7)^2 = 1 \\ &\iff p \in S^6 \,. \end{split}$$

Thus, we can define S^6 as

$$S^{6} = \left\{ V_{p} \in \operatorname{Im} \mathcal{C} \mid g\left(V_{p}, V_{p}\right) = 1 \right\}.$$

Since the tangent space at a point $p \in S^6$ is the set of all vectors orthogonal to V_p , then

$$T_p S^6 = \left\{ X \in \operatorname{Im} \mathcal{C} \mid g(X, V_p) = 0 \right\}.$$

Let us define a tensor J_p from T_pS^6 to T_pS^6 by

$$\boldsymbol{J}_{p}\boldsymbol{X}=\boldsymbol{X}\!\times\!\boldsymbol{V}_{p}$$
 ,

for $X \in T_p S^6$ and $p \in S^6$. Then

$$\begin{split} \boldsymbol{J}_{p}^{2}\boldsymbol{X} &= \boldsymbol{J}_{p}(\boldsymbol{J}_{p}\boldsymbol{X}) \\ &= \boldsymbol{J}_{p}(\boldsymbol{X} \times \boldsymbol{V}_{p}) \\ &= (\boldsymbol{X} \times \boldsymbol{V}_{p}) \times \boldsymbol{V}_{p} \end{split}$$

$$\begin{split} &= -V_p \times (X \times V_p) \\ &= -[g(V_p, V_p) X - g(V_p, X) V_p] \\ &= -X \; . \end{split}$$

So, J_p induces a tensor J such that $J^2 = -I$, where I is the identity map. Also,

$$g(J_pX, J_pY) = g(X \times V_p, Y \times V_p) = g(X, V_p \times (Y \times V_p)).$$

Observe that

$$V_p \times (Y \times V_p) = g(V_p, V_p)Y - g(V_p, Y)V_p = Y.$$

Therefore,

$$g(J_pX,J_pY) = g(X,Y).$$

This proves the following theorem.

Theorem 5. The sphere S^6 is an almost Hermitian manifold.

H. Hashimoto and K. Sekigawa [3] derived the Levi-Civita connection on S^6 and obtained

$$(\nabla_X J)Y = -X \times Y + g(X \times Y, V_p)V_p,$$

for any X, $Y \in T_pS^6$, $p \in S^6$. One can check that this linear connection is not always zero. But, for any $X \in T_pS^6$, we have

$$(\nabla_{_X}J)X = -\,X\times X + g(X\times X,V_{_p})V_{_p} = 0\,.$$

Hence, we have the following theorem.

Theorem 6. The sphere S^6 is a non-Kähler nearly Kähler manifold.

We are now interested with the different curvature tensors on S^n . Let us determine first what the shape operator does with every tangent vector to S^n . In coordinates, the unit normal vector to S^n at a point $\left(x^1,\ldots,x^{n+1}\right)$ is given by $U=\left(x^1,\ldots,x^{n+1}\right)$. Let $V=\left(V^1,\ldots,V^{n+1}\right)$ be any tangent vector to S^n . The covariant derivative is the coordinate-wise directional derivative. So,

$$S(V) = -\nabla_V U = -(V[x^1], ..., V[x^{n+1}]).$$

But for i = 1, ..., n+1,

$$V[x^{i}] = \sum_{j=1}^{n+1} \frac{\partial x^{i}}{\partial x^{j}} V^{j}$$
$$= V^{j} \delta_{i}^{j}$$
$$= V^{i}.$$

Therefore,

$$S(V) = -(V^1, ..., V^{n+1}) = -V$$
.

Now, let *X* and *Y* be orthonormal tangent basis vectors at $p \in S^n$, i.e.,

$$g(X,X) = g(Y,Y) = 1$$

 $g(X,Y) = g(Y,X) = 0$.

Then

$$R(X,Y)X = g(S(X),X)S(Y) - g(S(Y),X)S(X)$$

$$= g(-X,X)(-Y) - g(-Y,X)(-X)$$

$$= g(X,X)Y - g(Y,X)X$$

$$= Y.$$

Solving for the sectional curvature, we get

$$K(X,Y) = \frac{g(R(X,Y)X,Y)}{g(X,X)g(Y,Y) - (g(X,Y))^{2}}$$

$$= \frac{g(Y,Y)}{g(X,X)g(Y,Y) - (g(X,Y))^{2}}$$
= 1.

Theorem 7. The sphere S^n is a space of constant sectional curvature with K(X,Y)=1 for X, $Y \in T_nS^n$ and for all $p \in S^n$.

As stated earlier, S^2 and S^6 both admit an almost complex structure J . Hence, we have the following results.

Corollary 2. The unit spheres S^2 and S^6 are spaces of constant holomorphic sectional curvature with H(X)=1, for any nonzero tangent vector X.

Proof. For any nonzero tangent vector X,

$$H(X) = K(X, JX) = 1.$$

In [4], T. Sato showed that if M is a non-Kähler nearly Kähler manifold of dimension n with pointwise constant holomorphic sectional curvature H(X) = c(p), then

$$\tau = \frac{5n(n+2)c(p)}{8}$$

and

$$\tau + 3\tau^* = n(n+2)c(p).$$

We now have the following result.

Theorem 8. The sphere S^6 being a non-Kähler nearly Kähler manifold with sectional curvature 1, its scalar curvature τ and *-scalar curvature τ^* are

$$\tau = 30$$
 and $\tau^* = 6$.

Proof.

$$\tau = \frac{5(6)(6+2)}{8} = 30,$$

and

$$30+3\tau^*=6(8) \Rightarrow \tau^*=\frac{6(8)-30}{3}=6.$$

It is interesting to note that in the 6-dimensional unit sphere S^6 , the Ricci *-tensor ρ * is a conformal of the Ricci tensor ρ , i.e., $\rho^* = \frac{1}{5} \rho$. T. Sato also proved the following theorems for the 6-dimensional case.

Theorem 9. There does not exist any dimensional, except 6-dimensional, non-Kähler nearly Kähler manifold of pointwise constant holomorphic sectional curvature.

Theorem 10. If M be a non-Kähler nearly Kähler manifold of pointwise constant holomorphic sectional curvature then M is locally isometric to a 6-dimensional sphere S^6 .

In [2], A. Gray and L. Hervella defined sixteen classes of almost Hermitian manifolds based on linear invariants. We now define a class of almost Hermitian manifolds. Our definition of this class is based on both linear invariants and the exterior product.

Definition 1. An almost Hermitian manifold (M,J,g) is called quasi-Hermitian if it satisfies

$$X \times J_{p}Y + J_{p}X \times Y = 0,$$

for all X, $Y \in T_p(M)$, $p \in M$.

With this definition, we have the following results.

Theorem 11. Any 2-dimensional almost Hermitian manifold is quasi-Hermitian.

Proof. Suppose M is a 2-dimensional almost-Hermitian manifold. Let $X \in T_pM$, such that X is nonzero. Then $\{X, J_pX\}$ is a local frame. Thus,

$$\begin{aligned} X \times J_p Y + J_p X \times Y &= X \times J_p (J_p X) + J_p X \times J_p X \\ &= X \times J_p^2 X \\ &= X \times (-X) \\ &= 0. \end{aligned}$$

Theorem 12. The 6-dimensional sphere S^6 is Hermitian if and only if it is quasi-Hermitian.

Proof. Let X , $Y \in T_pS^6$, $p \in S^6$. Since the Levi-Civita connection is torsion-free, we have

$$\begin{split} N(X,Y) &= (\nabla_X J)(JY) + (\nabla_{JX} J)Y - (\nabla_Y J)(JX) - (\nabla_{JY} J)X \\ &= [-X \times J_p Y + g(X \times J_p Y, V_p)V_p] + [-J_p X \times Y + g(J_p X \times Y, V_p)V_p] \\ &- [-Y \times J_p X + g(Y \times J_p X, V_p)V_p] - [-J_p Y \times X + g(J_p Y \times X, V_p)V_p] \\ &= (-X \times J_p Y) - (J_p X \times Y) + (Y \times J_p X) + (J_p Y \times X) + g(X \times J_p Y, V_p)V_p \\ &+ g(J_p X \times Y, V_p)V_p - g(Y \times J_p X, V_p)V_p - g(J_p Y \times X, V_p)V_p \\ &= -(X \times J_p Y) - (J_p X \times Y) - (J_p X \times Y) - (X \times J_p Y) + g(X \times J_p Y, V_p)V_p \\ &+ g(J_p X \times Y, V_p)V_p - g(Y \times J_p X, V_p)V_p - g(J_p Y \times X, V_p)V_p \\ &= -2(X \times J_p Y + J_p X \times Y) + g(X \times J_p Y, V_p)V_p + g(J_p X \times Y, V_p)V_p \\ &- g(Y \times J_p X, V_p)V_p - g(J_p Y \times X, V_p)V_p \\ &= -2(X \times J_p Y + J_p X \times Y) - g(X, Y)V_p \\ &+ g(X, Y)V_p + g(X, Y)V_p - g(X, Y)V_p \\ &= -2(X \times J_p Y + J_p X \times Y). \end{split}$$

Hence,

$$N(X,Y) = 0$$
 if and only if $X \times J_n Y + J_n X \times Y = 0$.

Acknowledgment. We would like to thank the referees for their comments and suggestions.

References

- [1] A. Newlander and L. Nirenberg, Complex Analytic Coordinates in Almost Complex Manifolds, Annals of Mathematics, Vol. 2, No.65, 1957, 391-404
- [2] A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Annali di Matematica, Vol. 123, No. 4, 1980, 35-58
- [3] H. Hashimoto and K. Sekigawa, Submanifolds of a nearly-Kähler 6-dimensional sphere, Proceedings of the Eighth International Workshop on Differential Geom- etry, Vol. 8, 2004, 23-45
- [4] T. Sato, Curvatures of almost Hermitian manifolds, Unpublished
- [5] B. Kruglikov, Nijenhuis tensors and obstructions for pseudoholomorphic map-ping constructions, Matematical Notes 63, Vol. 4, 1998, 541-561