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Abstract

It is known that the sphere S" admits an almost complex structure only when

N=2 or n=6. In this paper, we show that the sphere S" is a space of
constant sectional curvature and using the results of T. Sato in [4], we

determine the scalar curvature and the *-scalar curvature of S°®. We shall also
prove that S° is a non-Kdhler nearly Kéhler manifold using the Levi-Civita

connection on S° defined by H. Hashimoto and K. Sekigawa [3]. In [2], A. Gray
and L. Hervella defined sixteen classes of almost Hermitian manifolds. We shall
define quasi-Hermitian, a class of almost Hermitian manifolds and partially
characterize almost Hermitian manifolds that belong to this class. Finally,

under certain conditions, we shall show the sphere S°is quasi-Hermitian.

Keywords: Sphere, Kihler manifolds, Hermitian manifolds, quasi-
Hermitian manifolds
AMS Subject Classification (MSC2010): 53B35, 53C55

1 Preliminaries
Let M =(M, J,g) be a 2n-dimensional almost Hermitian manifold with the almost

complex structure J and Riemannian metric g . Let V be the Levi-Civita connection
on M and R the Riemannian curvature tensor defined by
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R(X ’Y)Z = Vx (VYZ)_VY (Vx )Z _V[X,Y]Z ’

for X,Y and Z €X(M), where X(M) denotes the Lie algebra of all smooth
vector fieldson M .

If U is a unit normal vector to M and V € X(M), the shape operator of M in
R"™, denoted S(V), is defined by
S(V)=-V; U

n+1

=—2 VIU'l,

where ¢, is the standard i" basis vector for R"™ and V[-] denotes the ordinary
directional derivative v[f]=Vf-V.For X,Y, Z e X(M),

R(X,Y)Z =g(S(X),Z)S(Y)-g(S(Y),Z)S(X).
The Ricci tensor p is a symmetric tensor of type (0,2) defined by

p(X,Y) = trace[Z — R(X,Z2)Y]

= iR(ei,X,ei,Y),

where {e,,...,&,,} is an arbitrary orthonormal basis for T,(M), the tangent space to
M at the point p. The Ricci tensor transformation Q of type (1,1) is given by

p(X,Y)=g(QX.Y),

and the trace of Q is called the scalar curvature v of R. Furthermore, we denote by
p* and 7* the Ricci *-tensor and the *-scalar curvature on M, respectively. The
tensor p* is defined pointwise by

p*(X,Y) = trace(Z — R(JZ, X)JY)
=—iR(X,ei,JY,Jei)

i=1

1 2n
—=> R(X,JY,¢e, ),
23
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where X, Y and Z $\in T, (M), R(X,Y,Z,W)=9g(R(X,Y)Z,W) and {e} is an
orthonormal basis of T,(M). We also define analogously the Ricci *-operator,
denoted by Q*, by p*(X,Y)=9(Q*X,Y) for X and Y €T (M). The trace of Q*

is called the *-scalar curvature z* on M . We note that p* satisfies
p*(IX,JY)=p*(Y, X) but is not symmetric in general.

An almost complex structure J is said to be integrable if M admits a
complex structure and the derived almost complex structure coincides with J. We
also say that the almost complex manifold (M, J) is integrable if J is integrable.

The Nijenhuis tensor N of an almost complex structure J is a tensor field of
type (1,2) defined by
N(X,Y)=[IX,IY]-I[IX,Y]-I[X,IY]-[X,Y],

for X, Y e€X(M). In [5], B. Kruglikov showed that the Nijenhuis tensor N can be
expressed in terms of any symmetric connection V on M , i.e,,

N(X,Y)=(V,IAY)+ (V)Y =(V3)(IX) = (V)X
It is easy to verify that the Nijenhuis tensor satisfies the following properties:

N(X,Y)==N(Y, X)
N(JIX,Y)==IN(X,Y)
N(X,JY)=-IN(X,Y).

A. Newlander and L. Nirenberg, in [1], established the following result on the
integrability of an almost complex structure J.

Theorem 1. An almost complex structure J is integrable if and only if the Nijenhuis
tensor N vanisheson M .

As a consequence of the Newlander and Nirenberg above, we have the following
corollary.

Corollary 1. Any 2-dimensional almost complex manifold (M, J) is integrable.

Let X and Y €T (M) such that X and Y are linearly independent. The

sectional curvature K, of the 2-dimensional subspace 7 of T,(M) spanned by
{X,Y}is given by
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g(R(X,Y)X,Y)

K =K(X,Y)= -
g(X, X)a(Y,Y)—(9(X,Y))

while the holomorphic sectional curvature, H(X), is the sectional curvature of the
subspace of T (M) spanned by {X,JX}, ie.,

Hx) = SRXIOXIX) ey ix).
(9(X, X))"=(9(X, IX))

An almost complex manifold (M, J) equipped with a Riemannian metric g
that satisfies
g(IX,I¥)=g(X,Y),

for all X,Y e€X(M), is called an almost Hermitian manifold, denoted by (M, J, Q).

In [2], sixteen classes of almost Hermitian manifolds were defined by Gray and
Hervella. The list includes Kadhler, Hermitian and nearly Kahler manifolds. An almost
Hermitian manifold M is called a Kdhler manifold if VJ =0, forall X,Y e X(M).It

is called Hermitian if N =0. It is a nearly Kdhler manifold if (V,J)Y +(V,J)X =0, or
equivalently (V,J)X =0, forall X eX(M).

2 Geometry of Sr

It is known that the standard sphere S" admits an almost complex structure only
when n=2 or n=6. To construct an almost complex structure on S?, we use the
span of the quaternions. Let H =span.{L1, j,k}, where

2= j2=k?=—1
ij=k, jk=i,ki=]
ji=—k, kj=—i,ik=—]j.

Then R® can be identified with the set ImH =span,{i, j,k}. For X =x"i+x* j+x*k

and Y =y'i+y? j+y*k elmH, the metric g in ImH and the exterior product are
defined as
g(X,Y) =x'y + x°y? + x°y°
XxY = (x*y’ =x’y?) i+ (Cy = x'y?) j+(xy = x*y)k,
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and the sphere S’ is given by S*={peImH |g(p, p) =1} . With this definition, the
tangent space to S* ata point peS®is TS’ ={X e ImH | g(X, p) =0}.

Let p=p'i+p° j+p’k €S? and X=x"i+x* j+x*k €T S*. Define a
tensor J_:T,S* - T (S*) by

3pX =Xxp=(x'p* =xp?)i+(x'p! =x'p°) j+(x'p* X'k,

This J ) induces a tensor J on S? such that J> =—1I, hence the following theorem.

Theorem 2. The sphere S? is an almost complex manifold.
Theorem 3. The sphere S? is an almost Hermitian manifold.

Proof. Let X =x'i+x* j+x’k and Y=y"i+y* j+y’k eTp(SZ). Then, for any

p eS?, we have

9(J,X,3,Y)=(p° = x°p?)(y*p* - y*p*) + (*p" = X' p°)(y°p* - y'p°)
+H(X'p® = x*p')(y'p* - y*p')
=X2y2(p3)2_X3p3y2p2_X2p2y3p3+x3y3(p2)2
+X3y3(p1)2 _le1y3 p3 _X3 p3ylpl +le1(p3)2
2.~2,,1.1 1,.1,,2 A2

+XYH(P?)? =X PPy pt = X pty?p + Xy (pY)?.
Regrouping terms, we get

9(J,X,3,Y) =Xy (p')? + Xy (p%)° +X°y* (p') + X*y?(p°)*
+X3y3(p1)2 + X3y3(p2)2 _ Xl p1y2 p2 _ Xl ply3 p3
2,211 2., ~2,,3,-3 3..3,,1,.1 3.,.:3,,2,R2

—XpYyp-Xpyp-xpyp-xpyp.
Adding and subtracting x'y'(p*)? +x?y?*(p?)* +x*y*(p°)* will yield

9(J,X,3,Y) =Xy (p')? + X'y (p%)” + Xy (%) + X2yP (1) + X°y?(p?)* + X*y?(p°)
+X3y3(p1)2+X3y3(p2)2+X3y3(p3)2_lelylpl_xlp1y2p2_X1p1y3p3
_x2 pzylpl_xz pzyz pz_xz p2y3p3_X3p3y1p1_X3p3y2 pz_xspsyspa
=x'y'g(p, p)+x°y*g(p, p) +x’y°g(p, p)—x'p'g(Y, p)
—x*p*g(Y, p)—x°pg(Y, p)
=X1yl+x2y2+x3y3
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=g(X,Y).
i
From Corollary 1 and Theorem 2, the Nijenhuis tensor on S? vanishes.
Combining this result with Theorem 3 and the definition of a Hermitian manifold,
we have the following.

Theorem 4. The sphere S? is a Hermitian manifold.

Before we can define the almost complex structure on the unit sphere S°, we
recall first the Cayley algebra.LetC = span.{L i, j,k,1,il, jl,kl} such that

i2=j2=K2=1?=il2= jI?=KI? =1,

and if e, =1e =i,e, = j,e; =k,e, =1,e, =il,e; = jl ande, =kl , then Table 1 shows the
multiplication of the basis elements of the Cayley algebra.

& & e, e, e, C € CH
& & & e, e, e, C € C
& e, | & | & | -6 | & | -& | - | &
e, e, | —& | -& | & € e, | —& | —&
e, e, e, | & | —e | & | -& | & | —&
e, e, | & | e | -& | -6 | ¢ e, e,
C C e, | - | e | & | & | -& | &
€ € CH e, | & | & | & | —& | &
C e, | —& | & e, | & | & | & | -&

Table 1. Multiplication table of the basis elements of C

Let X,Y €C. We define the metric g (inner product) and the exterior
product, respectively, as

g(X,Y) =—(real part of XY)
X xY =imaginary part of XY
where XY isthe productof X and Y in C.

Remark. Forany X, Y, Z €C, the inner and exterior products satisfy the following:

(i) XxY =—(Y xX)

612



Richard S. Lemence, Dennis T. Leyson, Marian P. Roque/ TIMCS Vol .2 No.4 (2011) 607-618

(ii) g(X xY,Z)=g(X,Y xZ)
(iii) X x(Y xZ)=g(X,Z)Y —g(X,Y)Z

. 7 .
Notice that each element z of C can be expressed as 2= a'e. Here, we
7 i o :
call the number a° the real part of z and Zizla'ei as its imaginary part. Denote the

set of imaginary parts of elements of C by ImC. Let p(x*,...,x") e R’. If we denote
by V, the vector in R’ determined by the point p with the origin, then V,elmC,

i.e.,
1 2 3 4 5 6 7
V, =Xe +X€+X€+Xe+X€+X€+X€,.
This means that R’ can be identified with ImC. Now observe that

g(v,,v,) =1 <:>—{rea| part of (V,V, )} =1
o _(_(Xl)Z _ (X2)2 _ (X3)2 _(X4)2 _(X5)2 _(X6)2 _(X7)2 ) =1
S (X2 +(X)+ )+ (X2 + (X)) + ()2 +(x")? =1

< pes’.
Thus, we can define S° as
s*={v, eImC|g(V,.v,)=1}.

Since the tangent space at a point p € S° is the set of all vectors orthogonal to v,
then

T,8° ={X eImC| g(X,V,) =0}.
Let us define a tensor J, from T, S° to T,S° by
3, X =XV,
for X €T S® and peS°. Then
32X =3,(J,X)

=J,(XxV,)
=(XxV,)xV,
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=-V, x (X ><Vp)
=-{g(V,,V,) X =g(V,, X)V,]
=—X.
So, J . induces a tensor J such that J? =—|,where | isthe identity map. Also,

g(J, X, J,Y)=g(XxV,,Y xV ) =g(X,V,x (Y xV,)).
Observe that
V< (Y xV,) = g(V, V)Y —g(V,. YV, =Y.
Therefore,
g(JpX,JpY)=g(X,Y).

This proves the following theorem.
Theorem 5. The sphere S° is an almost Hermitian manifold.

H. Hashimoto and K. Sekigawa [3] derived the Levi-Civita connection on S°
and obtained
(Vi)Y ==X xY +g(XxY,V )V,

for any X,Y € TpSG, peSG. One can check that this linear connection is not

always zero. But, for any X € Tp86, we have
(V)X =—Xx X +9g(X ><X,Vp)Vp =0.
Hence, we have the following theorem.

Theorem 6. The sphere S° is a non-Kdéhler nearly Kéhler manifold.

We are now interested with the different curvature tensors on S". Let us
determine first what the shape operator does with every tangent vector to S". In
coordinates, the unit normal vector to S" at a point (Xl,..., X”“) is given by

U :(Xl,...,xr”l). Let V :(Vl,...,V”+1) be any tangent vector to S". The covariant

derivative is the coordinate-wise directional derivative. So,

S(V)=-V,U =—(V[x],...V[x""]).
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Butfor i=1...,n+1,

i n+1 axi )
V[X ] = Z@VJ

j=1
:Vié*_j
=V'.

Therefore,
S(V)=—(Vi..V"™)=-V.

Now, let X and Y be orthonormal tangent basis vectorsat peS", i.e,

g(X,X)=g(Y,Y)=1
g(X,Y)=g(Y,X)=0.
Then
R(X,Y)X =g(S(X), X)S(Y)—g(S(Y), X)S(X)
=g (=X, X)(=Y)-g (=Y. X)(-X)

:g(X!X)Y_g(Y!X)X
=Y.

Solving for the sectional curvature, we get

g(R(X,Y)X,Y)
g(X, X)g(Y,Y)-(g(X.Y))*

_ g(Y.Y)
g(X, X)g(Y,Y) - (g(X,Y))*

=1.

K(X,Y)=

Theorem 7. The sphere S" is a space of constant sectional curvature with
K(X,Y)=1for X,Y eT,S" and forall peS".

As stated earlier, S* and S® both admit an almost complex structure J.
Hence, we have the following results.

Corollary 2. The unit spheres S* and S° are spaces of constant holomorphic sectional
curvature with H(X) =1, for any nonzero tangent vector X .

Proof. For any nonzero tangent vector X,
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H(X)=K(X,JX)=1.

In [4], T. Sato showed that if M is a non-K&hler nearly Kdhler manifold of
dimension n with pointwise constant holomorphic sectional curvature
H(X)=c(p), then

L 5n(n+2)c(p)
- 8
and
7+3c =n(n+2)c(p).

We now have the following result.

Theorem 8. The sphere S° being a non-Kdhler nearly Kdhler manifold with sectional
curvature 1, its scalar curvature t© and *-scalar curvature t* are

7=30 and t*=6.

Proof.
L 5(6)(6+2) 30,
8
and
30+3r*=6(8) 37*:%’;30:6,

O

It is interesting to note that in the 6-dimensional unit sphere S®, the Ricci *-

tensor p* is a conformal of the Ricci tensor p, i.e, p* = %p. T. Sato also proved the

following theorems for the 6-dimensional case.

Theorem 9. There does not exist any dimensional, except 6-dimensional, non-Kdhler
nearly Kdhler manifold of pointwise constant holomorphic sectional curvature.

Theorem 10. If M be a non-Kdhler nearly Kdhler manifold of pointwise constant
holomorphic sectional curvature then M is locally isometric to a 6-dimensional

sphere S°.

In [2], A. Gray and L. Hervella defined sixteen classes of almost Hermitian
manifolds based on linear invariants. We now define a class of almost Hermitian
manifolds. Our definition of this class is based on both linear invariants and the
exterior product.
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Definition 1. An almost Hermitian manifold $(M,],g)$ is called quasi-Hermitian if it
satisfies
XxJY+J XxY =0,

forall X, Y €T (M), peM.

With this definition, we have the following results.
Theorem 11. Any 2-dimensional almost Hermitian manifold is quasi-Hermitian.

Proof. Suppose M is a 2-dimensional almost-Hermitian manifold. Let X eT M,

such that X is nonzero. Then {X,J pX} is alocal frame. Thus,

XxJ Y +I XxY=XxJ (I, X)+JI XxJ X
= X xJ2X
= X x(=X)
=0.

O

Theorem 12. The 6-dimensional sphere S° is Hermitian if and only if it is quasi-
Hermitian.

Proof. Let X, Y eTpSB, p e S°. Since the Levi-Civita connection is torsion-free, we

have
N(X,Y)=(Vy,I)AY)+ (V)Y = (V,I)(IX) = (V)X

=[-XxJ Y +g(XxJI Y,V IV, ]+[-I X xY +g(I X <Y,V V]
Y < I X +g(Y xI XV OV, ]-[-3,Y x X +g(J, Y x X,V V]
=(=XxJY)= (I, XxY)+ (Y xI X)+ (I Y xX)+g(XxJI )Y,V )V,

+9(J, XY,V )V, —g(Y xJ XV V, -9 Y x X,V )V,

=—(XxJ Y) =, XxY)= (I, XxY)=(XxJI Y)+g(XxJI Y,V IV,
+g(J, XY,V )V, —g(Y xJ XV V, -9, Y x X,V )V,

==2(XxJ Y +I XxY)+g(XxJ Y,V )V, +9(J X xY,V )V,
—g(Y xJ X,V )V, —g(J Y x X,V )V,

==2(XxJ Y +J XxY)=g(X,Y)V,

+g(X,Y)V_p+g(X,Y)V_p-g(X,Y)V_p
=—2(XxJ Y +J X xY).

Hence,
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N(X,Y)=0 ifand only if X xJ )Y +J X xY =0.
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