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Abstract

In the present paper, we introduce the notion of strongly bounded variation function in Krein spaces, we then show that the
definition of bounded variation is independent of the decomposition of the Krein space, and the definition of bounded variation
of a function in Hilbert spaces given in [V. V. Chistyakov, ]J. Dynam. Control Syst., 3 (1997), 261-289], is a particular case of the
one introduced in this paper. We show a technique for constructing bounded variation functions on Krein spaces from bounded
variation functions on the Hilbert subspaces composing the Krein space.
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1. Introduction

The concept of bounded variation function admits several generalizations. Vitali, Hardy, Arzela, Pier-
pont, Fréchet, and Tonelli extended in different ways the concept of bounded variation function for real
functions of two variables [2, 13, 14, 18-20]. Adams [1, 8] studied the relationship between these concepts.
Chistyakov in [5, 10, 11, 15] studied a concept of bounded variation function, for functions f : [a, b] — X,
where X is a normed or metric space. In the framework of this type of functions one cannot posit that
a bounded variation function is the difference of two increasing functions, since a metric space one does
not necessarily order that allows the introduction of the concept of increasing function. However, some
alternative Jordan decomposition theorems have been proved in [4, 7, 16].

On the other hand, some spaces which generalize to Hilbert spaces, such as spaces with indefinite
inner product had appeared before 1994 in the scientific literature in papers by Dirac and Pauli [9, 17].
But the year 1944 is considered to be the origin of the systematic study of the theory of operators in such
spaces. Lev Pontryagin’s article “Hermitian Operators in spaces with an indefinite metric” appeared in
the Soviet journal“Izvestya Akademii nauk CCCP” (News of the Academy of Sciences of the USSR) that
is why 1944 is considered by several authors as the beginning of this theory. Nowadays extending results
of Hilbert spaces to spaces with indefinite metric is quite attractive for researchers, an example of them
is the extension of frames to such spaces ([10-12]). In this paper we extend the notion of strong bounded
variation function to spaces with indefinite metric and prove the most relevant results of such functions
in these spaces.
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2. Preliminaries

Definition 2.1 ([15]). Let (X, || - ||x) be a normed space, f : [a,b] — X is strongly of bounded variation (BV)
on [a, b, if sup{}_ [|f(ti) — f(ti—1)||x} is finite, where the supremum is taken over all partitions of [a, b].

Definition 2.2 ([3, 5]). A space X with an indefinite inner product [, -] that admits a fundamental decom-
position of the form X = X [+]%K_, such that (K4, [,]) and (X_,—[-,-]) are Hilbert spaces, is called Krein
space, denoted by (X, [, -]).

Definition 2.3 ([3, 5]). Let (X, [-,-]) be a Krein space with fundamental decomposition X = K _ [4+]K ., and
define two operators P : K — Xy and P~ : K — K_, by PT(x) =xT and P~ (x) = x~ forall x € X,
respectively, where x* € K, x~ € X_ and x = x* 4+ x~. The operators P* and P~ are called fundamental
projectors. The operator J : X — X defined by § = P* — P, this is Jx = PTx — P x = xT —x~, for all
x € X, is known by the fundamental symmetry of the Krein space X.

Remark 2.4. The Krein space with its fundamental decomposition X = X_ [+]X, and their fundamental
symmetry J, from now on will be written as (X = K, [+]X_, [, ], ).

Theorem 2.5 ([3, 5] ). Let (X = X [HK_,[,-],9) be a Krein space, then J is an invertible operator such that
3% =1, 37! = J, and additionally satisfies that J is a symmetric, isometric, and self-adjoint operator in the Krein
space and in the associated Hilbert spaces.

Definition 2.6 ([3, 5]). Let (X = X [+]K_,[-,],J) be a Krein space and the function [-,-]5 : K x KX — C
defined by [x,ylg = [dx,yl, x,y € K. This function is called J-internal product.

Note that if we have another fundamental decomposition, then we would have another fundamental
symmetry and consequently another J-internal product.

Definition 2.7 ([3, 5]). The fundamental symmetry J associated with the Krein space (X = X +H%K_, D)
induces a norm on X defined by ||x| 5 := 1/[x, xlg, for all x € X, this norm is called J-norm of K. Explicitly,

Ixllg = (Ix",x"1 =[x, x Y2, forall x € X.
Remark 2.8. The following norms are defined
Xl = VIt xt], xteXt and  |xT||- =/~ x], x €KX,

From now on, the topology studied on the Krein spaces is directly related to the J-norm of X.
Next, we prove a result that relates the J-norm to positive and negative norms in a Krein space. This
result will be quite useful in the remainder of this paper.

Theorem 2.9. Let (X = K, [+1K_,[-,-],d) be a Krein space, then ||x||g < ||x* ||« +[|x~||_ forall x =x* +x~ €

x.

Proof. |Ix|[§ = (x,Xlg = [dx,x] = [x* —x7,x) =[x, = b, x] = b, xH ]+ (=, x 7)) = (5, x V)2 4+
(== x V22 = xHIR + 12 < IR+ 20 Ix Tl + T2 = (]l + [1x7[[-)% Therefore,
Ixllg < IIxT ||+ +[Ix||- for all x =xT +x~ € X. O

Example 2.10. Let X = R? with the indefinite inner product [+, ] : R2xR? — R given by
[(a,b),(c,d)] :=ac—bd, (a,b),(c,d) e R

Let
Ki={(x,0xeR} and X_:={(0,y)ly € R}.

Therefore, X is a Krein space with fundamental symmetry,
Ixy) =P (x,y) — P (x,y) = (x,0)— (0,y) = (x,—y), forall (x,y) € R%.

Furthermore
[(a,b),(c,d)lg =[d(a,b),(c,d)] =I(a,—b),(c,d)] = ac+ bd.
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Remark 2.11. By Definition 2.7 we have ||(1,2)|5 = V12 +22 = /5. Furthermore, (1,2) = (1,0) + (0,2).
However,

1(1,0)]+ = +/1(1,0),(1,0] =1 and [|(0,2)]— = /—[(0,2),(0,2)] = v/—(—4) =2,

from where we have
1(1,2)]|5 < I(L,0)]|l+ +[](0,2)—.

Thus, we show that the inequality obtained in Theorem 2.9 can be strict.

Theorem 2.12 ([3]). Let (X, [-,-]) be a Krein space and let X = Ky [H1K_1, K = K 5 [+1K _, be two fundamental
decompositions. If J1 and J, are the fundamental symmetries, respectively, then | - |4, and | - |5, are equivalent
norms.

Theorem 2.13 ([5]). Let (K = X4 [+HK_,[-,],d) be a Krein space, then (X, [-,-15) is a Hilbert space.

Theorem 2.14 ([10]). Let (X = K, 1K _,[-,-1,d) be a Krein space, and let P be an orthogonal projection that
commutes with J, then the spaces PX and (1 —P)X are Krein spaces, with fundamental symmetries Pg and (1—P)3,
respectively.

3. Functions of bounded variation in Hilbert spaces associated to a Krein space

In this section we establish the notion of bounded variation functions on spaces with indefinite metric.
First we will show an example with which we guarantee that we are working on a non-empty set.

Example 3.1. Let (R?, [, -]) with the indefinite inner product [, -] : R? x R? — R given by [(x1,Y1), (x2,Y2)]
= X1X2 —Y1Y2, (Xllyl)/ (XZIUZ) € IRZ/ J<:-0- = {(XI 0)|X S ]R} and X_ = {(O 9)|1J € ]R}/ ( ) (X —U) for all
(xy) € R [[(xy)lls = VIl y), (6 y)lg = VX2 +42 [[(x,0)]|+ = /1(x,0), \/X x—=0-0= V2=

x|, 10,y)]— = /=10,y),(0,y)] =/—(0-0—y-y) = /—(—y2) = Vy2 = Iy\. Let f: [a,b] — R? such that
f(x) = (x,x). Consider the partition P ={a, t1, t2,..., ti_1,t1,...,th_1,b} € Pla, b], then

Hf(ti) tl 1 HH - H(tlltl tl 1, i1 HH
=||(ti —ti—1, ti —tic1) |y
= VI(ti—ti,ti—tig), (ti—tig,ti—ti1)ly

(tlltl 1) +(tut1 1

= 1/2(t, ti1)? = V24/ (i, tio1)? = V2t — tig] = V2(ti — tiq).

ﬁ

Therefore,
D Ift) = fltia)llg = ) V2(ti—ti) ZZ ~V2(b—a) < .
i=1 i=1

The set A = {3 ", [|[f(ti) — f(ti_1)||5 : P € Pla, b} is upper bounded by v/2(b — a). Therefore,

Va(f,R?) = sup {Z [f(ti) —f(ti—1)llg: P € T[a,b]} < V2(b—a) < 0.

i=1

This guarantees that f is of bounded variation in Hilbert space (R?, [, -l3) associated with the Krein space

With the following result we show that the strongly bounded variation functions in the Hilbert spaces
associated with a Krein space are independent of the fundamental decomposition of the Krein space.
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Theorem 3.2. Let (X, [-,-]) be a Krein space and let X = K 1[H1K_1, K = K ,[+K_, be two fundamental
decompositions. If 1 and J, are the fundamental symmetries, respectively, and if f : [a,b] — K is strongly of
bounded variation in Hilbert space (X, [, ]g,), then f is strongly of bounded variation in Hilbert space (X, [-,-13,).

Proof. If f is strongly of bounded variation, then there exists M > 0 such that
n
VO(f,%,d1) = sup {Z [f(ti) —f(ti—1)llg, : P € Pla, b}} <M.
i=1

By Theorem 2.12, || - ||5, and || - ||, are equivalent norms, then there exists 3 > 0 such that

[f(ti) — f(ti1)llg, < BlIf(t) —f(ti—1)llg,-

Therefore,
n n
D ) = fltia) g, < B Y_[If(ts) — f(ti1)l5, < BM.
i=1 i=1
Then,
n
VO(f,%,d2) = sup {Z [ f(ti) — f(ti—1)]|g, : P € Pla, b]} < BM.
i=1
Thus the function f is strongly of bounded variation in [a, b] with respect to J». O

Considering the above result, we conclude that strongly of bounded variation functions are inde-
pendent of the fundamental decomposition into Krein spaces. Therefore, from now on we will note

With the following result we guarantee the existence of functions of bounded variation in spaces with
indefinite metric.

Theorem 3.3. Let (KX = K [+H1K_,[-,-1,d) be a Krein space and 1 : [a,b] — K4, f_ : [a,b] — K_ strongly
of bounded variation in the Hilbert spaces (X, [-,]) and (K_, —[-, 1), respectively, then f : [a,b] — K defined as
f(t) = f(t) + f_(t) is strongly of bounded variation in the Hilbert space (X, [-,-]5).

Proof. Consider the partition P = {a,t;,t2,...,ti—1,ti,..., tn_1,b} € Pla,b]. Let f; and f_ strongly of
bounded variation in (X, [-,]) and (X_,—[-,-]), respectively, then there exist M, M~ > 0 such that

+ n
VE(fi, K) =sup {Z [fe(ti) —fe(ti-1)[|+:Pe€ T[a,b]} <M*

i=1
and

VO(f_, K ) =sup {Z If—(ti) —f—(ti1)||—:P€ T[a,b]} <M.
i=1
Let f: [a,b] — X defined as f(t) = f(t) +f_(t) for any t € [a, b],

[1f(te) — f(tiz1)llg = || (F4 (t1) +F(t)) — (F4 (ti—1) +f—(ti—1))lg
= |[(f (1) = f(tima)) + (F-(t) = f—(tiz1))|lg
< (tg) = Fo (b)) ||+ [[F= () — F— (1) || -

Therefore,
mn

D) = Ftia)llg < )M () = Fr (o)l + ) I (t) —F—(tioa) -
i1 i1 i1
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From which we obtain
Va(f, (5, [, 1) S VE(f, K )+ Ve, K )< MT+M™ =M < oo,
where M+ + M~ = M. Then,

Vg(f,fK) = sup {Z ||f(ti) —f(ti,1)H3 :Pe :P[Cl,b]} < M.

i=1

4. Functions of bounded variation in Krein spaces

In this section we introduce the notion of strongly bounded variation functions in Krein spaces (4.3),
which generalizes the notion of a bounded variation function given in [15], furthermore prove some
properties of such functions.

Remark 4.1. Let (X = K [+]K_,[-,],d) be a Krein space, and T : [a,b] —» K = K, [+HK_. Considering
that for any t in [a, b], f(t) belongs to X = X [+]K_, we will henceforth write the image of t under f as
f(t) =fT(t)+ 1 (t), for any t in [a, b].

Remark 4.2. Let (X = X, [HX_, [-,-],9) be a Krein space, and f: [a,b] = K =K [+]%_. Considering that
for any t in [a, b], f(t) € K, therefore there exist k™ € K and k~ € X_ such that f(t) = kT +k~, we will
write k™ = fT(t) and k— = f(t). Therefore,

(@) (1) =3(f(t)) = (kT +k ) =kT —k™ =T (t) —f (1)

Definition 4.3. Let (X = X [+]1%K_, [-,-]) be a Krein space and let f defined in [a, b], we will say that f is
strongly of bounded variation in [a, b] on (K = K [+]K_) if

Vo (f, (X, [, 1)) = sup {Z(I“(h) — (i) [+ 1 (6) _f_(ti—l)H)}

i=1
for all P in P[a, b] is finite.

Remark 4.4. The set of all functions strongly of bounded variation in [a,b] on (X = X HK_,[,-]) is
denoted as BV([a, b], X, [, -]).

Next, we show an example of a strongly of bounded variation function in a Krein space.
Example 4.5. Consider (C?,[-,-]) with indefinite inner product [-, -] : C?> x C> — C given by
(%, y), (w,2)] = xw —yz, (xy),(w,z) e,

Is a Krein space, with X, = {(x,0))x € C} and X_ :={(0,y)ly € C}, (x,y) = (x,—y), for all (x,y) € C?,

1, Y)llg = VoY), (v y)lg = VA Y), (xy)l = VIx —y), (x,y)] = /X2 + y2,
105 0) 1+ = VI, 0), 0x, 001 = /2 = Ix],
10,y)[— = VI(0,y), (0,9)] = vV—y(—7) = /yl> = lyl.

Consider f : [1,2] — C? defined by f(t) = (t,—t). Let us show that f is strongly of bounded variation.
In fact, let P = {to,t1,...,tn} be a partition of [1,2]. Note that f(t) = (t,—t) = (t,0) + (0, —t), where
(t,0) € X4 and (0,—t) € X_, also f*(t) = (t,0) and f (t) = (0, —t). Therefore,

fH(ty) = (t,0), £ (t)=(0,—t;), ' (tiz1)=(ti_1,0), and f (ti_1) = (0,—ti_1).
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Then,
1+ (t1) f+( D+ =1t —ti1, 0]+ =i —tial=ti—tiq,
() —f (i)l =10, tia —t)|l- = ti1 —til =ti —ti 1.
Thus,
n n
D) = )y + I () = F ()2 = D (26— tim1)) = 2(tn — tg) =2.
i=1 i=1

Therefore, we have to Vlz(f, (C?,[,-])) is bounded, thus it follows that f is strongly of bounded variation.

Definition 4.6 (Positive and negative variations of functions in Krein spaces). Let (X = X4 +Hx_, [, 9)
be a Krein space, and f : [a,b] - K = K [+]K_, with f(t) = fT(t) + f(t), for all t in the interval [a, b].
The positive and negative variation of f on [a, b] with respect to (X4, [-,-]) and (KX_,—[,]), respectively,
are defined by

+
VO(f, (K4, [,-]) =sup {Z 7 (t) —fH(ti 1)L :P€ ?[a,b]}

and
vb( f,(K_,— —sup{ZHf (t;) — ti_1)|:PECP[a,b]}.

+ J—
Remark 4.7. Note that V2 (f, (X, [,-])) >0, V2(f, (X_,—[,])) = 0,and V2 (f, (K,[,])) > 0.

Theorem 4.8. Let (X =X [-H1K_,[-,-]) be a Krein space and f : [a, b] — X be strongly of bounded variation on
[, bl in (KX = K [+1K_), then f is strongly of bounded variation in the Hilbert spaces (X, [-,-]) and (X, —[, ]).

Proof. Consider the partition P ={a, t1,t2,...,ti_1,ti,...,tn_1, b} € Pla, b]. The proof is a consequence of
Hf_(ti) L (tl 1 ”—/Hf_'_ tl _f+ tl 1 H+ Hf+ tl _f+ tl 1 ”—l—‘i‘”f t1 —f (tifl)H—-
O

The following result shows that every strongly of bounded variation function on a Krein space is
strongly of bounded variation function in the Hilbert space associated.

Theorem 4.9. Let (X = X [HK_,[,-]) be a Krein space and f : [a,b] — K strongly of bounded variation
function in (KX = K [+]K_,[-,-]), then f is strongly of bounded variation function in the Hilbert space (X, [-,-15).

Proof. If f is strongly of bounded variation in (X = X [+]1K_, [-,]), then, there exists M > 0 such that

VE(F, (%, [, ) :SHP{Z(|!f+(ti)—f+(ti—1)!+Hf(t —f (ti)l):Pe ?[a,b]} <M.
i=1

Since,

[1f(te) —f(tiz1)|lg = [[(Ff4- (i) +f—(t)) — (f (tiza) + - (tiz1)) |5
= [|(f4( t1 —f(tic)) + (F—(t) — f—(tiz1))|lg
< () = f (i) |+ + (= (t) — F—(tia) || —,

therefore, it follows that

n

D) = ftia)llg < D (F(t) = £ () eI (6) — £ (tioa) [ -)
i=1 i=1
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Then,
Vé’(f,iK,H) = sup {Z [If(ti) —f(ti—1)||g: P € i]’[a,b]}
i=1

< sup {Z Hf+(ti) —f+(ti_1)||+ + ||f7(ti) —fi(ti_l)H_ :Pe T[a,b]} <M < oo.
i=1

Therefore, f is strongly of bounded variation in the Hilbert space (X, [, -]5). O

Remark 4.10. Note that this result is obtained using Theorem 2.9 and taking into account Remark 2.11, it
follows that in general the reciprocal of Theorem 4.9 is not true.

Theorem 4.11. Let (K = K, [+HK_,[-,-]) be a Krein space and f : [a,b] — K = K [+]K_ a function, f €

. + s
BV(la,b], X = K [+]K_), then VE(f, (K, [, 1)) = 0= VE(f, (K, —[, 1) if and only if f is constant in [a,b]
with respect to (X = K4 [+]K_).

Proof.

(—) Suppose that \;Lg(f, (X, [,))=0= V_g(f, (X_,—[-,])), that is,

-+ n
VE(f, (K4, [,]) = sup {Z [F7(t) = (tica) ||+ : P € T[a,b]} =0
i=1
and
VE(F, (%, ~[, 1)) = sup {Z IF(t) — f (tip)]|- P e ‘P[a,b]} )
i=1
Then,

D ) = (ti)e =0 and Y [ (t)—f (ti1)|- =0.
io1

i=1

Let x € [a, b]. Then, in particular, for the partition P = {a, x, b}, we have that
1700 = FH (@)l + [ () = F )+ =0 and [~ (x) = ()]l + |~ (b) =~ (x)]| - = 0.

Thus, ([[f"(x) —fT(a)[|+ =0,[|f*(b) = fT(x)||+ =0) and (||~ (x) = (a)||l= =0, [ (b) — f~ (x)[|= = 0).
Therefore, (f*(x) —f*(a) = 0, f*(b) —f"(x) = 0) and (f (x) —f (a) = 0,f (b) — f (x) = 0). Next,
(f*(x) = fT(a),fT(b) = f7(x)) and (f~(x) = f(a),f(b) = f(x)) follows f(x) = f7(a) = f7(b) and
f~(x) = f(a) = f(b). Therefore, f(x) = f"(x)+f (x) = f(a)+f (a) = f7(b) + 1 (b). Thus, f is
constant in the interval [a, b].

(+) Suppose that f is constant in [a, b], then there exists ¢ = (¢ +¢7) € (KX = K, [+]%_) such that for
any x € [a,b], f(x) = fT(x)+1f(x) =ct +c, then f*(x) —c* = ¢~ —f(x). Thus, fT(x) —c* = 0 and
¢ —f (x) =0, therefore, f"(x) = c™ and ¢~ = f(x). Thus,

+ n
VE(f, (K, [, 1) = sup {Z I (t) = £ (tia)l|4 P € ‘P[a,b]}
i=1

= sup {Z et —ct|l.:Pe ﬂ’[a,b]} = sup{0} =0

i=1
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and

VE(f, (K, —[, 1)) = sup {Z £ (t) —F (ti 1) :P€ T[a,b]}

i=1

= sup {Z lc—c||-:P€ U’[a,b]} = sup{0} = 0.

i=1
O

Theorem 4.12. Let (X = X [H1K_,[,-]) be a Krein space, if f : [a,b] — K is strongly of bounded variation in
(K =K [HK_,[,]), then Jf is strongly of bounded variation in (X = KX [+]K_, [-,-]) and (X, [-,]15).

Proof. If f is strongly of bounded variation in (X = X [+]K_, [-,-]), then, there exists M > 0 such that
mn
VO(f, (X, [-,-])) = sup {Z(Hfﬂti) — P (i || 4+ If (t) — F (tia]]) : P € Pla, b]} <M.
i=1

Let P ={a,ty,t2,...,tn_1, b} be a partition of [a, b], then

136) " (t:) — (@) T (tima) |+ = 13F7 () = (i) ll+ = [IF7(t) — £ (i) [+

and
[(Ff) (t) — (3F) (ti—) |- = [|3F () — (FF (ti1)) -
= —f () — (—F (ti—1))|-
== (F () —f (tia)ll- = I () = (ti1))||-
Then,
17 () — £ (tima || = + |1F (t) — £ (tia||— = [[(IN) T (t1) — (30) " (tim1) | + [|(FF) ~ (t) — (TF) ™ (tiz1)||—
Thus,
VE(31,%) = sup { D (I3 (t) = 3F* (ti ]| + |3F () = 3F (tia]}) : P € Pla,b]} < M.
i=1

Therefore, Jf is strongly of bounded variation in [a,b] on (X = X [+X_,[,,]) and, consequently, by
Theorem [4.9] is strongly of bounded variation in the Hilbert space (X, [, -]5). O

Remark 4.13. The reciprocal of the previous result is true, since if Jf is strongly of bounded variation
in [a! b] on (K = K [+]K_,[,]), then JJf = If = f is strongly of bounded variation in [a,b] on (K =
Ky [HXK -, [ D).

The following result shows that in Krein spaces, the set of strongly of bounded variation functions is
a subset of the bounded functions.

Theorem 4.14. Let (X = K [HK_,[-,-]1) be a Krein space and f : [a,b] — K strongly of bounded variation in
[a,b] on (K = K [+]K_), then f is bounded.

Proof. 1f f is strongly of bounded variation in (K = X +K_, [, -]), then there exists M > 0 such that

VO, (K, [, 1) < M.
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+ —
Therefore, V(f, (K, [, 1) < VE(£,(,[,1) < M and V2(f,(X_,—[,)) < VE(£,(K,[, 1)) < M. Let
x € [a, b], consider the partition P = {a, x, b} € P[a, b]. In particular,

3
Z|’f+ —f (tia)+ <M and Y I (6) —f (L))o <M,

therefore,

17 (x) = £ (@)l + + [ (6) = F ()]l <M and [ (x) = £ (a)]|— + [~ (b) = (x)]- < M

Then,
() g = [FF(x) + (x4
<O+ + I~ ()
= [[(F*(x) =" (a)) + 7 (a) ||+ + [[(F~(x) = (b)) +f(b)] -
<FH0) = (@)l + IF (@)l + IF~ (%) = (b) |- + [If~ (b)]
<M (@)l + M+ [[f7 ()] - <2M A+ [[f " (a) ||+ +[[f~ ()]
Therefore, f is bounded in [a, b]. O

Remark 4.15. We see that if f : [a,b] — K is strongly of bounded variation in [a,b] on (KX = K [+H]%K_),
then f is bounded. Reciprocal is not always true.

Example 4.16. Consider (IR?, [, -]) with indefinite inner product [, -] : R* x R? — R given by
[(x1,91), (2, 2)] == xax2 —y1y2, (x1,91), (x2,42) € R?

is a Krein space [5], with X :={(x,0)lx € R}and X_ :={(0,y)ly € R}, d(x,y) = (x, —y), for all (x,y) € R?,
||(le)||3 = \/[(X,U)/ (le)]a = \/X2+y2/

16x,0)[1+ = V/1(x,0), (x,0)] =, 10,y =VI0,y),0,y)] = vV=y(—y) = Vy* = lyl.

Consider f : [v/2,3] — R? defined by

f(t) = (1,1), if tis rational, t € [v/2,3],
“ 1 (0,0), iftisirrational, t € [v/2,3].

We will prove that f is bounded.
Proof. Let’s see that f is bounded on [v/2,3]. In fact,

V2, if tis rational, t € [v/2,3],
If(t)]lg = PO
0, if tisirrational, t € [v/2,3].

Therefore, ||f(t)]|g < V2 for all t € [v/2,3]. Thus f is bounded. Now, let’s see that f is not of bounded
variation. Let ty = v/2, as between any two reals there is a rational number and an irrational number, we
can choose t; as a rational number between /2 and 3, t; as an irrational number between t; and 3, t3 as a
rational number between t, and 3, and so on tp; would be an irrational number between t;;_; and 3, and
t2i+1 would be a rational number between t,; and 3, finally we choose t,, = 3. Then,
n
V36, (R 1, 1)) = 3 (IFH () — £ ()l 4+ 1 (10 — £ (1))
i=1
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(= (@ D)+ + LD+ + (= @D+ + (L, 1)]-)
(L D[+ + (LD +--+ D)+ + 12, D)]-)
> I(LD|g+---+1(LD]g=vV2+---+V2=V2-n.

O

Note that a partition of the interval [v/2,3] was constructed, starting at V2, then alternating between
rational and irrational numbers until it ends at 3, for which Vf’ﬁ(f, (RZ,[-,-])) is not finite, thus f is not

strongly of bounded variation in (R?,[-, ]).

4.1. Algebra of strongly of bounded variation functions in Krein spaces

Theorem 4.17. Let (X = K [—i—lﬂC_, [-,-]) be a Krein space, if f, g : [a,b] — K be strongly of bounded variation
functions in [a,b] on (KX = K4 [.—l—]JC,) and « be scalar, then of and f + g are also strongly of bounded variation
functions in [a,b] on (K = K [+]K_).

Proof.

(i) If f is strongly of bounded variation function in [a,b] on (X = K, [4+]K_), then there exists M > 0
such that Vab(f, (X, [-,-])) < M. Then,

sup{ Z o ™ (1) — af ™ (tiq) [+ + lof ™ (t1) — of~ (tiq)[|-: P € ?[a,b]}
iz1
= sup { Z o (FF (ta) — £ (tia)) s + [Joe(F (1) = F (ti1)) |- : P € T[a,b]}
iz1
= sup { > el () = £ (tima) |+l (4) —F (tioa)]| - : P € ?[a,b]}

i=1

= sup {|<X| Z 17 (ts) — £ (tia) |« + |[F (t) = (tiq)[|—: P € fP[a,b]}
i1

= |l sup { DI t) = ) I () — £ ()]l P € Pla, b]}
i=1
= & VE(f, (K, [, ]) < [«|M = L.
Thus, V}l’(ocf, (K, [,])) < L. Therefore, f is strongly of bounded variation function in [a,b] on (X =
Ky [HK, D).

(ii) If f and g are strongly of bounded variation functions in [a,b] on (K = K [+]K_), then there are
M1, My > 0 such that VO (f, (X, [-,-])) < My and VE(g, (X, [-,])) < My. The result is obtained by consider-
ing that (f+g)"(x) = f(x) + g™ (x), (f+g) " (x) =~ (x) + g~ (x), the triangular inequality, and that the
supremum of a sum of sets is the sum of the supremums whenever they exist. Thus we obtain that

Ve ((f+9), (K, [, ) < VR, (5[, D)+ Valg, (K, [, 1) £ My +Ma = M.
Therefore, f + g is strongly of bounded variation in [a, b] on the space (K = K [HK_, [, ). O
Theorem 4.18. Let (X = K [+1X_, [, ]) be a Krein space and let f : [a,b] — X a strongly of bounded variation

function in [a,b] on (X = K [-H1K_), suppose that ¢ € (a,b), then f is strongly of bounded variation in [a, c]
and in [c,b] on (K = K, [+]K_). In this case we have VY (f, (X, [-,-])) = VE(f, K) + VO (f, K).
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Proof. 1f f is strongly of bounded variation in [a, b] on (K = X [+]%_), then, there exists M > 0 such that

4 _

Consider the partition P ={a, t;, t2,t3,...,tn_1,b}. Since ¢ € (a,b), then
P* — {(1, tl/ tZ/ t3/ ey tm—ll c = tm/ tm+1/ ey tn—ll b}

is also a partition for [a, b]. Then,

M=

M = (7 (k) — £ ()| + 1 (t) — £ (tim1)[|-)

i=1

I\”’|3

(I (t) = F7 (b)) |+ + 1 (1) — £ (t-1) || -)
1

o
I

+ Z () = £ () [+ + I (k) — £ (tia)]]-)

I\’Is

(IFF () — £ ()| + 1 (t) — £ (ti1)]|-) -

i=1
Therefore,
m
sup {Z (I () = FH ()l + [ () = (tia)]|-) : P € Pla, C]} <M,
i=1
which implies that V§(f, (X, [-,:])) < M. Furthermore, it is similarly obtained that
n
sup { D () = £ ()l + I () = F (i) [|-) : P € Ple, b]} <M,
i=m

which implies that VE’ (f, (XK, [-,-])) < M. Therefore, f is strongly of bounded variation in [a, c] and in [c, b].
Furthermore,

sup{ Z (||f+(ti) — f+(ti_1)||+ + ||f7(ti) — fi(ti_l)”_) :P e Pla, C]}

i=1
+ sup { Z (Hf_'_(ti) —f+(ti,1)H+ + Hf_(ti) —f_(tifl)H_) :Pe ?[C,b]}

M=

=sup { (7 (ts) = £ (tim) | + |1F (t) = F (tiza)[|—) : P € Pla, ]

n

+ Z (I () = ()l + 1 (8) = (k)] -) s P e jD[C,b]}

p{
X

Therefore, VE(f, (X, [-, 1)) + V2 (f, (X, [, 1)) = VE(f, (K, [-, ])). O

1

,4.
I

I\/I:*

(I () = F7 (b)) = F (tia) - ) PE?[a,b]}vg(f,(x,[w]))-

I
_
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5. Construction of increasing functions by variations in Krein spaces

In this section we wish to show how to construct increasing functions from the variation of a function
in Krein spaces.

Theorem 5.1. Let (X = K [HK_,[,],d) be a Krein space, and f : [a,b] — K = K, [+]K_ be a strongly
+

of bounded variation, then V defined by V : [a,b] — R as V(x) = VI(f, (X, [, ]) +vg( f, (K, =[,1) if

a<x<b, V(ia) =0, is increasing in [a, b].

Proof. Let x1,x2 € (a,b) such that x; < xp, then

+
Var(f, (K4, [, = sup {Z 7 (t) —fH(tio1)]|+:P€ T[a,xl]}
and

+
VX (f, (K, [,]) = sup {Z £ (t) = (ti1)||+ : P € iP[a,xz]} .

Since x; < xp, then [a,x1] C [a,xp]. Let P; = {a,ty,t2,...,tn_1,x1} be a partition for [a,x;]. Therefore,

P> ={a,t1,t2,...,th_1,%1, X2} is a partition for [a, x;]. Then,

17 (t) = £ (@) + 17 (k) = FF ()| + -+ 1 Oa) — £ (tna) ]+
< () = £ (@4 + 17 () = £ () -+ 17 Oa) = £ () [+ 7 (x2) — 7 () [+

Therefore,
sup {Z 17 (t) — T (tia)[+ : P1 € T[a,xl]} < sup {Z 17 (t) = (tia) ||+ : P2 € ?[a,xz]} :
im1 i1

Thus, Va'(f, (X4, [, ) < Va2(f, (X4, [-,])). For negative variations, the procedure is analogous and it is

obtained that VX (£, (X_, —[-, ) < V2(f, (X_,—[-,-])). Then,

+ — —
V(Xl) = Vgl (fr (j<:+/ [‘/ ])) + Vgl (f/ (9{_, _['/ ])) < ng(f/ (K-O-/ ['r ])) + V32(f/ (JC—/ _['/ ])) = V(X2)~
Therefore, V : [a, b] — R is increasing function in [a, b]. O

Next we endow the set (BV([a, b], (X, [-,]))) of strongly of bounded variation functions in Krein space
with a norm.

Theorem 5.2. Let (X =X, (1K _, [-,-]) be a Krein space, the function || - || : BV(la, b], X, [-,-]) = R defined by

+ —
fllBv(ia,150) = IF O+ + 17 () |- 4+ Vg (£, (K4, [, D) + Ve (F, (K, =L, 1)),
is a norm in BV([a, b], X, [-,]).

Proof. Letf,g € BV([a,b],X,[-,]), x € R. If x € [a, b], then we have following.

+ —_
Q) [IFT )|+ =0, (x)||- > 0. Furthermore, V2 (f, (X, [-,-])) = 0and V2 (f, (X_,—[,])) > 0. Therefore,

I8V ((a,b1,%) = 0.
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(i) If ||fl[gv((ab]),x =0, then

N -
VO, (K, [ D)+ VEF, (K, =, D) + 1F 0] + 1F7]— =0.

+ —
Since VO (f, (K4, [,-1), VO, (K_,—[,-1)), If*(x)|l+, [If~||= = 0, then for the Theorem 4.11 it is satisfied
that
+ —
VE(f, (K, [ D)) = VO, (K-, =, 1) = [[f" ()|« = £~ =0.

Then, there exists ¢ = ¢t + ¢~ € K = K [+]K_ such that f(x) =c =ct +¢~ = fT(x) + f (x). Therefore,
ct —fT(x)=0and ¢~ —f (x) =0, it implies that ™ (x) = c¢* and f~(x) = ¢, respectively. Now,

0+ =lle™l+ =0 and [[f"(x)[- =c”[- =0,

it implies that ¢t =0 and ¢~ = 0. Therefore, f(x) =0+ 0 = 0 for all x € [a, b], then f = 0.
(iii) Since f € BV([a,b],X) and A € BV([a, b], X), then

+ —
HAf”BV([a,b},ﬂC] = H}\f+ (X)H+ + H}\f_ (X)H— + VS(Af/ (K+/ ['/ ])) + Vg U\f/ (:K_/_['r ]))
+ —_
= T+ + M) = + NVE(E, (KT, [, D)+ INVE(F, (K, [, 1)
+ —
= N0 |4 + 10— + VEE, (K, T, D)+ VEE (K, —[, 1)) = N fllev(1a0),%)-

(iv) Triangular inequality. Let f, g € BV([a, b], X), this implies that

+ —_
I+ gllBv(taba) = (F+a) T ()« + (F+9)~ ()= + VE(f+g, (K, [, D)+ VE(f+ g, (K, —[,])
<)+ 1gT 0+ + I (X = +[lg~ () -

V(1)) 4 VE(g, (K by )+ VE(, (5 —F, 1))+ VE(g, (%, —L, 1)
I o)+ I GO+ VE(E (54, L, )
FVECE (00—, 1) +lg™ ) + g ()l + VR (g, (5, [, 1)) + VE(g, (K~ )
= IfllBv(ta,b1,5) T I9llBV ([0b],5%)-
Thus,

+ —_
By (tab,5) = 1T+ + 1) |= + VE(F, (K, [ 1) + VEE, (K-, =L, 1))

is a norm in BV([a, b], X, [-, -]). O

6. Conclusion

Every strongly of bounded variation functions in a Krein space preserves the property in the associated
Hilbert spaces. The constant functions on a Krein space are precisely those that have zero variation in the
associated Hilbert spaces. The set of strongly of bounded variation functions is a subspace of the space
of bounded functions. The variation of a function in the Krein spaces can be decomposed as a sum of
the variations in the associated Hilbert spaces. The set of strongly bounded functions in Krein space is
endowed with a norm.
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