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Abstract

In this article, we introduce Bell polynomials of two variables within the framework of generating functions and explore
various properties associated with them. Specifically, we delve into explicit representations, summation formulae, recurrence
relations, and addition formulas. Additionally, we present the matrix form and product formula for these polynomials. Finally,
we introduce the two-variable Bell-based Stirling polynomials of the second kind and outline their corresponding results. This
study contributes to a deeper understanding of the properties and applications of Bell polynomials in mathematical analysis.

Keywords: Special polynomials, monomiality principle, explicit form, operational connection, symmetric identities, summation
formulae.

2020 MSC: 33E20, 33C45, 33B10, 33E30, 11T23.
©2024 All rights reserved.

1. Introduction and preliminaries

Special polynomials refer to a class of polynomials that exhibit unique properties or have specific
significance in various mathematical contexts. Examples of special polynomials include well-known fam-
ilies such as Legendre polynomials, Chebyshev polynomials, Hermite polynomials, Bell polynomials,
Touchard polynomials, Hermite polynomials and others. These polynomials often arise in mathematical
physics, engineering, computer science, and other scientific disciplines, see for instance [1, 3, 4, 6, 8, 18—
20, 22].

The research on general cases of special polynomials has led to the discovery of new properties as-
sociated with these polynomials. This implies that mathematicians have identified novel characteristics,
relationships, or applications of special polynomials that were not previously known. These discoveries
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contribute to the enrichment of mathematical knowledge and may have implications in various scientific
and applied fields. The study of special polynomials is significant within the broader field of mathematics
for several reasons.

(i) Special polynomials often arise in the solution of differential equations, orthogonal polynomial the-
ory, numerical analysis, and other mathematical and computational problems.

(ii) Special polynomials often possess specific algebraic structures and recurrence relations that make
them amenable to analysis. Understanding these structures contributes to the broader study of
algebra and mathematical structures.

(iii) Special polynomials often have deep connections to other areas of mathematics, including combina-
torics, number theory, and analysis. These connections facilitate interdisciplinary research and the
development of mathematical theories.

The use of exponential operators is highlighted as a powerful tool, particularly in the context of dealing
with differential equations. Exponential operators often simplify the analysis of differential equations
and offer a convenient way to express solutions. In [8], a comprehensive examination of the foundational
formalism has been presented. Notably, it has been demonstrated that, through a suitable change of
variable, the impact of the operator on a given function of x can be regarded as that of a conventional
shift operator. Thus, for any parameter p, the shift operator exp(pndy) when operated on any function of
x produces the following;:

o T

exp(nd () = Y ALF(x) o = 3 #1005 = flx+ ), (L)
r=0 : r=0 ’

‘ [}

where 3% = 2. The following identities are exploited from (1.1):

[«Y]

exp(n PO} = (),
exp(ud)ix}} = (x+1),
exp(pdy ){e*} = Xk,

exp(ix 9x)f{x) = f(e*p).

One of the important classes of special polynomials is Bell polynomials [6]. Bell polynomials, named
after mathematician Eric Temple Bell, are a sequence of polynomials that arise in combinatorics. They are
denoted as %, (x) and are defined by the following exponential generating function:

o0

Y #l0S =X (12

T!
r=0

and for x = 1, the Bell polynomials reduce to the Bell numbers given by the relation:

[eS) r .

Z e@ri - ee _1.
7!

r=0

The Bell polynomials are used to express the partial Bell polynomials, which in turn represent the
partial derivatives of the exponential generating function. The Bell polynomials have applications in
combinatorics, probability theory, and the analysis of algorithms. They are particularly useful in counting
and enumerating combinatorial structures, such as partitions of sets and compositions of integers, see for
instance [2, 10-12, 14, 15].

Another important class of polynomial sequences and numbers are Stirling numbers. These are a fam-
ily of numbers that arise in combinatorics, particularly in problems related to permutations, combinations,
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and partitions, for instance, see [2, 5, 9-12, 14, 15]. There are two main types of Stirling numbers: Stirling
numbers of the first kind, denoted as S (r, €), and Stirling numbers of the second kind, denoted as S (r, €).
The Stirling numbers of the first kind Sq(r, €) represents the number of permutations of (r) elements with
exactly (€) cycles. In other words, it counts how many ways you can arrange (r) distinct elements into
(e) cycles. The Stirling numbers of the second kind Sy(r, €) represents the number of ways to partition
a set of (r) distinct elements into (e) non-empty subsets. Each subset is treated as an indistinguishable
set, and the order of subsets matters. Stirling numbers have numerous applications in combinatorics,
including counting problems involving permutations, combinations, and partitions. They also appear in
the analysis of algorithms and in the study of various combinatorial structures. It’s important to note
that there are different notations and conventions for Stirling numbers, and the ones described above are
commonly used.

Stirling polynomials of the second kind denoted as S;(r, €;x), are associated with exponential gener-
ating functions. The exponential generating function for Stirling polynomials of the second kind is given

by:

Y So(r,e;x) &7 (ebx—1)¢

! e!

=0

and for x = 1 the exponential generating function for Stirling numbers of the second kind reduces to:

. (1.3)

— Sa(r,e) & (eF—1)¢
Z 7! B '

Further, the recurrence relation for Stirling numbers of the second kind S;(r, €) can be computed using
the recurrence relation [7, 17]:

X" = ZOSz(T,e) (x)e

or

(X)r =D Sa(r,€) xS,
e=0

where (x)¢ = x(x —1)(y —2)--- (x — (e — 1)) is the falling factorial. Also, for each integer € € Ny, the

expression
N
Se(r)=) 1°
1=0

is called the sum of integer powers and the exponential generating function for S¢(r) is given by:

o0 e e(r+1)£71

2 S G =

These concepts are fundamental in combinatorics and have various applications in counting problems
related to partitions and subsets of distinguishable objects.

Bell polynomials offer a versatile and powerful framework for understanding combinatorial struc-
tures, particularly in the context of partitioning, generating functions, and algebraic combinatorics. Their
importance is widespread in mathematics, which makes them an effective tool for counting issues and
discrete structure analysis. Motivated by the above applications, here, we develop the generating relation
of two variable Bell polynomials in the form:

> &r 3 £_1)2
> Blxy) =y = XDl (14)
r=0 ’
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The first five two variable Bell polynomials are as follows:

Ho(x,y) =1,

$1(x,y) =x,

PBor(x,y) =x* +x+2y,

B(x,y) = x> +3x% + x + 6y + 6xy,

Bi(x,y) = x* +6x3 + 7x% +x + 12y + 14y + 12x%y + 6xy.

1000
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Figure 1: x3 +3x% +x + 6y + 6xy. Figure 2: x4 6x3 + 7x% +x + 12y2 + 14y + 12x%y + 6xy.

For y = 0 in (1.4), the two-variable Bell polynomials %, (x,y) reduce to the Bell polynomials given
by (1.2). The rest of the article is as follows. In Section 2, we introduce Bell polynomials of two vari-
ables within the framework of generating functions and explore various properties associated with them.
Specifically, we derive explicit representations, summation formulae, recurrence relations, and addition
formulas, with a focus on their connection to Stirling polynomials of the second kind. Section 3 presents
the matrix form and product formula for these polynomials, offering insights into their structural prop-
erties. In Section 4, we introduce the two-variable Bell-based Stirling polynomials of the second kind
and outline their corresponding results, further enriching our understanding of their properties. Finally,
the conclusion section underscores the significance of our study in advancing the comprehension of the
properties and applications of Bell polynomials in mathematical analysis.

2. Two variable Bell polynomials

Here, in this section, we derive the explicit forms and certain other properties of two-variable Bell
polynomials denoted by %;(x,y). The explicit forms and summation formulae derived in this study
are of paramount significance in enhancing our understanding and utilization of Bell polynomials in
mathematical analysis. These explicit representations provide concise and structured expressions for Bell
polynomials of two variables, facilitating their computational implementation and theoretical analysis.
Moreover, the derived summation formulae offer systematic methods for efficiently computing the sums
of these polynomials, enabling researchers to address complex mathematical problems with greater ease
and accuracy. By elucidating the explicit forms and summation properties of Bell polynomials, this study
not only contributes to the theoretical foundation of the field but also enhances the practical applicability
of these polynomials in various mathematical and scientific disciplines. The results are derived as under.

Theorem 2.1. The two-variable Bell polynomials denoted by P (x,y) satisfy the listed explicit form:

T &k
Zxy) =Y (Z)%’rs(x)sﬂs’kﬂ == 1)
s=0
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Proof. The generating expression (1.4) can be written as

x(eb—1)+y(eb—1)? x(eafl)ey(e““f])z_

e =€

Inserting expressions (1.2) and (1.3) in the r.h.s. of the previous expression, we find

eX x(ef—1)+y(et—1)2 i T' Z ZymSZ s, k 77 _1)k

m=0s=0

Inserting r.h.s. of the expression (1.4) in the Lh.s. of the previous expression and simplifying the r.h.s., it

follows that . .
So(s, k) (eS —1)<grs
Z% Uy Z’@ SZO 1—y sl

Taking v — s in place of T in the r.h.s. of the previous expression by using series rearrangement, it follows

that .
0 T o 1T So(s, k & _1)kgr
> axuy =Y 3 (1)@ SN
r=0 ) )

r=0s=0 1 Y

T
Comparing the like powers of —- on both sides of the previous expression, we get the assertion (2.1). O
7!

Theorem 2.2. The two-variable Bell polynomials denoted by % (x,y) satisfy the listed series representation form:

Br(x,y) = ZO (:) SZ(I:; D 2l kl) Ee; st (22)

Proof. The generating expression (1.4) can be written as

x(ef—1)4y(eb—1)? x(ea—l)ey(ea—l)Z.

(< =€

Inserting expression (1.3) in the r.h.s. of the previous expression, we find

0 o s
ex(et—D+ylef-1)? ZZx‘sz rl a—1)kT!ZZyTSZ(s,k)%(ea—l)k.

1=0 r=0 r=0s=0

Inserting r.h.s. of the expression (1.4) in the Lh.s. of the previous expression and simplifying the r.h.s., it

follows that .
So(1,1) Sa(s, k) (e&—1)k &rts
Z‘@ Uy ZO;) 1—x 1—y st

Taking r — s in place of r in the r.h.s. of the previous expression by using series rearrangement, it follows

that
— g Sa(r—s,1) Sa(s, kK)(e5 —1)* "
> #ix ML SR L =L

r=0s=0 1U

Comparing the like powers of & on both sides of the previous expression, we get the assertion (2.2). [
paring p Tl p p 8

Theorem 2.3. Assume the two-variable Bell polynomials denoted by %:(x,y). Then the following summation
formulas hold:
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Proof. By (1.4) and (1.2), we have

- & £ £_1)2
Z'%)T(X—i_y’z)ﬁ _ e(x+y)(e —1)+z(e5—1)
=0

r=0 =0 Lk=0

Finally equating the coefficients of py of both sides, we get the asserted Theorem 2.3.

Theorem 2.4. For any arbitrary v € IN, the following relation holds true:

T

Bl 1)~ 2l y) = Y (1) Bl )2 ).
k=0

Proof. Using the relation (1.4), we get

o0 T
3 (rlx 1Y) — eyl S = DD ore Dyl
r=0

E‘T‘
_Z Z( >k93r k(x, y)ABx — Br(x,y) =]

r=0 Lk=0

By equating both sides, we obtained the result (2.3).

Theorem 2.5. For r > 1, let %.(x,y) be the two-variable Bell polynomials. Then we have

) 1 o r+1
ax%l("'y):(rzmé( )

and
.

0 T
E%r(xly) = § <k>2!<@k(xly)}\‘r—k82(r_klz)/
k=0

where

0, ifr=0,1,
)\r: .
1, ifr>2

SICUEES WADES u D | X 8

(2.3)

(2.4)

(2.5)

Proof. (see (2.4)). Deriving partially with respect to the variable x on both sides of equation (1.4), we have

ox [Z‘@ x,Y) ] aax [ (e5—1)+y(ea_1)z}

= ¥ x(et— 1)+y(e£—1)2(e£_1)

T+1

=Y Bloy) %z zz(*“)@kxy)f .
k=0 r=0

=0 k=0

So,

d 1 < (r+1
a%r—l(xﬂj) = (rz—i_r)kz_o< K )«@k(xly)-
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Further, to demonstrate equation (2.5), we can simply take partial derivatives concerning the variable
y on both sides of the equation (1.4). By leveraging the ratio of the second species Stirling numbers, as
provided in [13], we attain the desired result. O

Theorem 2.6. For v > 0, let {#:(x,y)}, > be the sequences of two-variable Bell polynomials in the variable x,y
and z, they satisfy the following relation

5 (3 ) @let 2Bl Bl y) 2z ) 0.
k=0

Proof. Let’s consider the following expressions

(eb_ £_1)2 &
r=0
and
z(ef—1)+y(et—1)2 - &
e => Br(z,Y) 7 (2.7)
r=0

From (2.6) and (2.7), we have

e(x+2) (et—1)+y (ea—l)zey (ef—1)% _ (

i) (£ i)
(i@rxﬂ, )(Z% (0,y) ) <T_0%(x,y)ﬂ> <§@r(z,y)ﬂ>,

T

)ID I ) EXISSINERNNIEES) 5 S () SO EAEMLS

M8 ™M

=0 k=0 =0 k=0
S (1) #dx+ 2wty = Y (1) Berlo) eGay)
k=0 k=0

Therefore,

S (4 ) Bl 2 Bely) — Bl ) Bz =0,
k=0

O

Theorem 2.7. Forr > 0, let {%:(x,Y)},> be the sequences of two-variable Bell polynomials in the variables x, y, z,
and w, they satisfy the following relation
~ v
ivryziw = 3 () n Bty 28)

Proof. Utilizing the subsequent identity

e(x+y)(e571)+(2+w)(e571)2 — ex(e‘ﬁfl)+y(e571)+z(e‘571)2+w(ea71)2

_ox(ef—1+z(ef—1)2 y(ef—1+w(ec—1)2
=e e ,
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and applying the aforementioned identity to equation (1.4), we obtain

o0 ((.,r s
S Brlxty,zhw) T = el e
r=0
. r *® T
- ex(e£_1+z(e£_l)zey (ea_l_'_W(e&_l)z = Z C@T' (X/ Z) i‘ Z "‘@T (UIW) i"
7! r!
=0 =0
Using the series rearrangement technique, we obtain
oo a-r o0 T r a-r
Zo%(xw,ww)ﬂ = Zm;) (k> Bri(x,2) Brcly, w) T
r= =0 k=
Now, equating both sides, we obtained the result (2.8). O

3. The two-variable Bell polynomials matrix

The matrix form of special polynomials holds profound significance in mathematical analysis and
practical applications. By expressing these polynomials in matrix notation, we can leverage powerful
mathematical tools and techniques from linear algebra to study their properties and behaviors. This rep-
resentation allows for a unified and compact framework to analyze various aspects, such as recurrence
relations, orthogonality properties, and computational algorithms. Furthermore, the matrix form facil-
itates efficient manipulation and computation of special polynomials, enabling researchers to develop
novel algorithms, solving intricate problems, and exploring new applications across diverse fields, in-
cluding signal processing, image reconstruction, and numerical analysis. Thus, the matrix representation
of special polynomials not only deepens our theoretical understanding but also enhances their utility in
practical scenarios, contributing to advancements in both theory and application domains. Inspired by
the articles [16, 23] in which the authors introduce the generalized Apostol-type polynomial matrix, in
this section we focus our attention on the two-variable Bell polynomial matrix.

Definition 3.1. The (n+1) x (n+ 1) two-variable Bell polynomial matrix #(x,y) is defined by

(})%1—) (XIU)/ i > j/
0, otherwise,

Bi;(x,y) = {

Let us consider n = 3. It follows from the Definition 3.1 that

1 0 0 O

X 1 0 0

Bley) = X2 4+ x +2y 2x 10
x34+3x2+x+6y+6xy 3(x*+x+2y) 3x 1

Theorem 3.2. The two-variable Bell polynomials matrix 9(x,y) satisfies the following product formula
B(x+y,z4+w) =B(x,2)By,w) = Bz, w)B(x, ).

Proof. Let Wi ;(x,y,z,w) be the (i,j)-th entry of the matrix product #(x,y)%(z, w). Then, by the addition
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formula (2.8), we have

n
i k
Wii(xy,zw) =) ]1< Bi—x(x,z) < j ) Pr—j(y,w)

— ~—
N

ik (x,z) < ]; > PBr—j(z,w)
} ) ( J:]]( ) Bi—x(x,2)Pr—j(y, W)

. i—j .. .
— < ]1 ) Z ( 1;) )%’i_j_k(x,z)%k(y,w) = < ]1 )@i_]—(x+y,z+w).

This establishes the first equality of the theorem. The second equality can be derived similarly. O

Definition 3.3. The (n+1) x (n+ 1) two-variable Bell polynomial matrix Q(x,y) is defined by

Qs ; - (]) i—j ’ o= r
(% y) { 0, otherwise.

Now, we show that the matrix Q;;(x,y) given above is the inverse matrix of #(x,y) by proving the
following theorem.

Theorem 3.4. The inverse matrix for the two-variable Bell polynomials matrix 9(x,y) is given by
%71(7(/1.4) = Qi,j (Xry)-

Example 3.5. For a (4) x (4) matrix, we have

1 0 0 0
) . 1 0 0
Bx,y) B (x,y) = X2 4 x+2y 2x 10
X3 +3x2+x+6y+6xy 3(x>+x+2y) 3x 1
1 0 0 0
) . 1 0 o _,
X% —x—2y —2x 1o "
—x34+3x> —x—6y +6xy 3(x*—x—2y) —3x 1

4. The two-variable Bell-based Stirling polynomials of the second kind

In this section, we introduce a new class of mathematical class of polynomials called two-variable
Bell-based Stirling polynomials of the second kind and examine their basic characteristics and complex
interactions in detail. These polynomials belong to a distinct class of functions in mathematics, and
because of their unusual properties, they are interesting for both theoretical study and real-world use. The
main purpose of our talk is to clarify their basic characteristics and provide insight into the fundamental
ideas that drive their actions and operations. To aid comprehension, we offer a carefully constructed
description of the second sort of Bell-based Stirling polynomials, which serves as a crucial foundation
for deciphering the complexities included in this mathematical structure. The second sort of Bell-based
Stirling polynomials are defined as follows.
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Definition 4.1.

> &r et —1)¢ £ £ 1y2
Z%’SZ(’V Q’@U)F = % ex(es—DHylen—1)7 (4.1)
=0 ' :

This definition acts as a conceptual cornerstone, laying the groundwork for further investigation and
understanding of the significant ramifications and potential uses of these polynomials in the larger field
of mathematics.

For e =2, the first four two-variable Bell-based Stirling polynomials are as follows:

1
#82(0,2,%,y) = 7,
1 1
282(1,2;%x,y) = §x+ 5
1,3 7
@SZ(ZIZIXIH) = EX -+ §X+y + E’
1
#82(3,2,%,y) = §x3 +3x2 +3xy + 6y + 2

Figure 3: %XZ + %x +y+ % Figure 4: %XB’ +3x2 +3xy + 6y + %.

Remark 4.2. When substituting y = 0 into the expression given by (4.1), we obtain a set of polynomials
known as the Bell-Stirling polynomials of the second kind given by the expression:

00 T £_1 €
D %8, €;x)% (DT et

€!
r=0

Remark 4.3. Further substituting x =y = 0 into the expression given by (4.1), we obtain a set of polyno-
mials known as the Stirling numbers of the second kind given in (1.3).

Theorem 4.4. For a non-negative integer v, the two variable Bell-based Stirling polynomials of the second kind
satisfy the correlation:

> (r) $2(L €)Br1(x,y) = z82(r, €%, y).

1=0 L

Proof. The generating expression (4.1) can be written as:

00 00 00
E’r e&_l € _ _ ar Er
Y 28 exy) L = (217 xtetnaytetay )_Slre)y ) Fixy)
r=¢

T el Tl
r=0 =0
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which further can be expressed as

oo T o0 T T
.
S ssalnenu)y =Y 3 (()s0.0 Al
=0 =0 1=0
Comparing the exponents of the same powers of &, we get the desired result. O

Remark 4.5. When substituting y = 0 into the expression given by (4.1), the Bell-based Stirling polynomials
of the second kind satisfy the correlation:

T

Z ({) 82(l, €)% 1(x) = %82(T, €;,%),

1=0
for a non-negative integer n.

Theorem 4.6. The two-variable Bell-based Stirling polynomials are denoted by 285(v, €;x,y). Then the following
summation formulas hold:

T
T
28(r, ;x+2z,y) = E (k)%Sz(r—k,e;x,y)%k(z).
k=0

Proof. By (4.1) and (1.2), we have

0 &
Y #Sa(rex+zy) = (€817 ez et y(et 12

= e!
=S ssmexnys Y #@s =3 |3 () asalr—k x| &
= @zT,G,X,yF TZF— K BO2T , €, %Y r\Z F
=0 r=0 r=0 Lk=0
aT‘
Finally equating the coefficients of T of both sides, we get the asserted Theorem 4.6. O

Theorem 4.7. For any arbitrary v € IN, the following relation holds true:

T

T
282(r, €x+1,y) — 582(r,€;x,y) = ) (

k) 282(1 =k, €%, Y) By — 282(1, €;%,Y). (4.2)
k=0

Proof. Using the relation (1.4), we get

o
&r et —1)¢ _ _ et —1)¢ _ _
Z[%82(T,€;x+1,9)—ﬂ82(r,€;xfy)]r!Z( o ) e(x 1) (e 1) Fy(et 2 (e =17 = ) ex(ef—1)+y(e-1)?

=0
_ (€8 =1)° x(et—tyry(et—1? 1 1]
€!
oo T - ar
=) [Z (k)f%?SZ(T —k &x,y) B — 28(r, €;X,U)] e
=0 Lk=0 )
By equating both sides, we obtained the result (4.2). O

Theorem 4.8. For r > 1, let 285(v, €;%,y) be the two-variable Bell-based Stirling polynomials. Then we have

9 Sar—1ex )—#i "D Sk ex,y) 4.3)
axﬂz ,€,%Y _(T2+r)k:0 k 292\ K, €;X,Y .
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and

0 Lo/r
82 ex,y) =) (. )21482(k €%, y)Ar 1 Sa(r— Kk, 2), (4.4)
oy = k

where

0, ifr=0,1,
)\r: .
1, ifr>2.

Proof. (see (4.3)). Deriving partially with respect to the variable x on both sides of equation (4.1), we have

0 > 0 e& —1)¢ B -
& [ZO,%’SQ(T, e?X;U)] = & |:(€!)ex(ei 1)+y(e® 1)2:|
r=

& _
(e 1)€ex(e£71)+y(eafl)2(e£_1)

e!
< IR - | oy e
ZZ%Sz(r,e,Xzy)T!ZT!:ZZ< y )@Sz(kreley)wm
=0 r=0 r=0%k=0
So

d 1 . r+1

768 _1/ Y = T 5 . P}S k/ 7 Xy .

o o(r—1,¢6%,y) (rz—l—r)];)( K )/} 2(k, €%,Y)

Further, to demonstrate equation (4.4), we can simply take partial derivatives concerning the variable
y on both sides of the equation (4.1). By leveraging the ratio of the second species Stirling numbers, as
provided in [13], we attain the desired result. O
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