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Abstract
Since the number of patients with chronic hepatitis B virus (HBV) infection is still high globally, appropriate strategies

for therapy control are required. In this study, we propose an HBV model consisting of six populations, namely uninfected
hepatocytes, infected hepatocytes, HBV DNA-containing-capsids, free viruses, antibodies and cytotoxic T-lymphocytes. The
model also includes an adaptive immune response, cure rate of infected hepatocytes, two time delays and two control therapies.
The two time delays are delay of virus production after infection by HBV and delay of antigenic stimulation generating cytotoxic
T-lymphocytes. The two optimal controls are a therapy for blocking new infection and a therapy for inhibiting viral production.
The existence, uniqueness, non-negativity and boundedness of model solutions are first proved. The model is shown to have
three equilibrium states, namely infection-free, immune-free and endemic. The basic reproduction number for the stability of
the infection-free equilibrium is derived and a sensitivity analysis is carried out to determine the most important parameters
to change to control the disease. Then optimal control and the Pontryagin maximum principle are used to maximize the
concentrations of uninfected hepatocytes, antibodies and cytotoxic T-lymphocytes at minimum cost.
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1. Introduction

Hepatitis B virus (HBV) is a virus of the hepatocytes in the liver. The virus can cause both acute
and chronic disease, where chronic hepatitis B increases the risk of developing liver failure, liver cancer
or cirrhosis. According to a report by the World Health Organization (WHO) in 2019 [60], there are
approximately 1.5 million new HBV infections each year and 296 million people living with chronic
hepatitis B infection. Despite the availability of vaccines and the use of antiviral therapy, HBV chronic
infection remains a global health concern.

The therapy for HBV infection currently includes antiviral agents which can reduce viral replication
and act as immunomodulators ([26, 27, 65]). These agents can reduce incidence of liver cancer, slow
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cirrhosis progression and improve long term survival. However, as stated in the WHO report in 2019 [60],
the therapy does not lead to cure and most people who start therapy must continue it for the rest of their
lives.

When HBV infects the hepatocytes, the adaptive immunity plays a crucial role in the clearance of HBV
infections, i.e., the cytotoxic T-lymphocyte (CTL) cells act to clear the HBV-infected hepatocytes via both
cytolytic and noncytolytic mechanisms, leading to a reduction in levels of circulating virus ([14, 49, 58]).
In addition, the antibodies which are produced by the B-cells neutralize free viral particles and prevent
reinfection ([2, 58]). Further, during the infection, the infected hepatocytes will release the HBV DNA-
containing capsids as mature virions which form after the virus is enveloped by both cellular membrane
lipids and viral envelope proteins ([9, 17, 23]).

Mathematical models have been widely used to study and understand HBV infection. Some models
include HBV treatment through drug therapy, e.g., the work of Lewin et al. [43] and Yosyingyong and
Viriyapong [62], whereas some models include an adaptive immune response, e.g., the work of Yousfi
et al. [64], Chenari et al. [13] and Manna et al. [49]. Further, some researchers have also included HBV
DNA-containing capsids in their models, e.g., the papers by Manna et al. [46–49] and Harroudi et al. [28].
In addition, some researchers have included time delays in their model. For example, Gourley et al. [25]
and Eikenberry et al. [19] have developed models including an explicit time delay in virus production,
Farah et al. [20] have developed a time-delayed two-strain epidemic model with general incidence rates,
Yosyingyong and Viriyapong [63] have studied the global dynamics of a within-host, multiple delay model
for HBV infection which includes immune response and drug therapy, Manna et al. [49] have studied a
generalized distributed delay model with two modes of transmission and adaptive immunity and Xu et
al. [61] have studied global stability and bifurcation in a model with nonlinear incidence and multiple
delays.

Optimal control theory has also been used to design control strategies for reduction of disease trans-
mission or infection including HBV infection. Some examples of optimal control of delayed HBV infection
models include the following. In 2016, Forde et al. [22] proposed a model which included immune effec-
tor cells and a time delay that accounted for the lag between the antigen encounter and the effector cell
expansion. In 2017, Meskef et al. [51] developed a model that included an adaptive immune response with
CTLs and antibodies and a time delay for virus production in the infected cells after viral entry. In 2017,
Sun and Liu [57] proposed a new time delay HBV model with an incubation period and time delay for
both virus production and immune response after viral entry into healthy cells. Sun and Liu also added
a time delay into a drug therapy term which represented the effect of the drugs in reducing the infection
rate from free viruses. In 2018, Allali et al. [3] further improved the model of Meskef et al. [51] by modify-
ing the growth term of both healthy and infected hepatocyte cells to be logistic growth. In 2018, Danane
et al. [17] proposed a new optimal control delay model which included HBV DNA-containing capsids and
a single time delay with the same meaning as in the above models. This model was further improved by
Danane et al. [16] who added antibodies into the model. In 2019, Meskef [50] further extended the work
of Danane and Allali [16] by considering the fact that during therapy a fraction of infected hepatocytes
could be cured and could revert back to healthy hepatocytes. In 2020, Khatun and Biswas [38] developed
optimal control strategies for preventing HBV infection and reducing chronic liver cirrhosis incidence.

In the HBV infection models discused above, all optimal control time delay models for HBV infection
have included only a single time delay. To the authors’ knowledge, there is no optimal control model of
multiple delays for HBV infection in the literature. In this study, we propose an optimal control model
for drug therapy of HBV infection by considering two time delays, namely a virus production delay
and an antigenic stimulation generating CTLs delay. The two controls in the model are drug therapy in
blocking new infection and drug therapy in inhibiting viral production. In addition, we include HBV
DNA-containing capsids and an adaptive immune response.

The paper is organized as follows. In Section 2, the model is introduced and the existence, uniqueness,
non-negativity and boundedness of the solutions are proved. In Section 2, the properties of the equilib-
rium states are derived, including the basic reproduction number R0, the local and global stability, and
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the sensitivites of R0 to changes in values of parameters. In Section 3, the optimal control theory of the
model is presented and the existence of an optimal control pair is verified by the Pontryagin maximum
principle. In Section 4, numerical simulations are presented and the results are discussed. Finally, Section
5 contains the conclusions.

2. Model formulation

The model we consider is an extension of the model of Meskef [50].

2.1. Definition of model
The model consists of six variables, namely the concentrations (units: mm−3) of uninfected hepato-

cytes x(t), infected hepatocytes y(t), intracellular HBV DNA-containing capsids c(t), free viruses v(t),
antibodies w(t), and cytotoxic T-lymphocytes z(t). The model also includes two time delays, namely a
virus production delay τ1 and an antigenic stimulation generating CTLs delay τ2. In addition, we include
two controls, namely a control u1(t) on the effectiveness of drug therapy in reducing new infections of
hepatocytes, and a control u2(t) on the effectiveness of drug therapy in inhibiting viral production.

The equations for the model are shown in Eq. (2.1), the initial conditions are given in Eq. (2.2), and a
flow chart for the model is shown in Fig. 1. The definitions and assumed values for all parameters are
shown in Table 1,

dx

dt
= Λ− σx(t) − (1 − u1(t))βx(t)v(t) + py(t),

dy

dt
= (1 − u1(t))βe

−mτ1x(t− τ1)v(t− τ1) − (σ+ p)y(t) − qy(t)z(t),

dc

dt
= (1 − u2(t))ay(t) −αc(t) − δc(t),

dv

dt
= αc(t) − γv(t)w(t) − µv(t),

dw

dt
= gv(t)w(t) − hw(t),

dz

dt
= ky(t− τ2)z(t− τ2) − εz(t),

(2.1)

where {x(t),y(t), c(t), v(t),w(t), z(t)} ∈ <6 are state variables, τ1 > 0 and τ2 > 0 are time delays, and
u1(t) ∈ [0, 1], u2(t) ∈ [0, 1] are control variables. Then, for the maximum time delay τ = max{τ1, τ2}

and for nonnegative constants x0,y0, c0, v0,w0, z0, we define the initial conditions for the system of state
equations (2.1) as follows. For t ∈ [−τ, 0], let

x(t) = x0 > 0, y(t) = y0 > 0, c(t) = c0 > 0, v(0) = v0 > 0, w(t) = w0 > 0, z(t) = z0 > 0. (2.2)

Figure 1: The flow chart of the delay model of HBV infection including immune response and optimal control of drug therapy.
The solid lines represent the transferring from one class to another class, whereas the dotted lines represent an involvement or
influence of one class on another class.
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Table 1: Definitions and sources of values of parameters used in the model (2.1).

Parameter Meaning Value Units Source

u1(t) Efficiency of drug therapy in blocking new infec-
tion

0–1 fraction -

u2(t) Efficiency of drug therapy in inhibiting viral pro-
duction

0–1 fraction -

Λ Production rate of uninfected hepatocytes 1 day−1mm−3 [32]
σ Natural death rate of hepatocytes. 0.011 day−1 [25]
β Rate of infection of hepatocytes by the free virus 0.0014 mm3day−1 [32]

e−mτ1 Probability of surviving of hepatocytes in the time
period from t− τ1 to t

m Death rate of infected hepatocytes in the time pe-
riod from t− τ1 to t

0.011 day−1 [51]

τ1 Delay in the production of infected hepatocytes. 2 day assumed
τ2 Delay in antigenic stimulation generating CTLs. 4 day assumed
p Cure rate of infected hepatocytes by non-cytolytic

cure process.
0.01, 0.012 day−1 [66]

q Death rate of infected hepatocytes due to the
CTLs response.

0.001 mm3day−1 [17]

a Production rate of intracellular HBV DNA-
containing capsids.

0.15 day−1 assumed

α Growth rate of virions in blood. 0.87 day−1 [15]
δ Clearance rate of intracellular HBV DNA-

containing capsids.
0.053 day−1 [47]

γ Rate that viruses are neutralized by antibodies. 0.01 mm3day−1 [51]
µ Death rate of free viruses. 0.0693 day−1 [32]
g Expansion rate of antibodies in response to free

viruses.
0.008 mm3day−1 [15]

h Decay rate of antibodies. 0.15 day−1 [51]
k Expansion rate of CTLs in response to viral anti-

gen derived from infected hepatocytes.
0.001 mm3day−1 assumed

ε Decay rate of CTLs in the absence of antigenic
stimulation.

0.5 day−1 [1]

Note that, in Table 1, we assumed values for parameters τ1, τ2, a, and k. Our motivation for the value
for τ1 comes from the works by Meskaf et al. [51], Danane et al. [17], and Manna [45], who used values
for τ1 ranging from 0.5 to 5; therefore we assumed the value 2. Zhuang [67] and Sun and Liu [57] used
values ranging from 0.03 to 10 for τ2; we assumed a value equal to 2. Next, in Manna and Hattaf [48] a
production rate of intracellular HBV DNA-containing capsids (a in our model) was taken to be 1.5, while
the production rate of uninfected cells (Λ in our model) was 10. In our study Λ equals 1, and we set
a equal to 0.15. Finally, the expansion rate of CTLs in response to viral antigen derived from infected
hepatocytes (k in our model) equals 0.0012 in the work of Harroudi et al. [28]; we assumed this value to
be 0.001.

2.2. Nonnegativity and boundedness of solutions

In this paper, we are interested in finding optimal conditions on the control variables u1(t) and u2(t)
that drive the infected hepacyte population y(t) or the free virus population v(t) to zero. Therefore,
starting with the nonnegative initial conditions (2.2), we will integrate the system up to a finite time T
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defined as in Theorem 2.1.
We now prove the following theorem.

Theorem 2.1. Solutions of system (2.1) with initial conditions (2.2) are nonnegative for −τ 6 t 6 T , where
T = min{Tf, Ty, Tv} where Tf is a specified finite time, Ty is the time at which y(t) first becomes zero and Tv is the
time at which the population of free viruses v(t) first becomes zero.

Proof. As stated in (2.2), the initial values of the variables of system (2.1) are assumed to be nonnegative
for t ∈ [−τ, 0]. We now prove that all variables are nonnegative for 0 6 t 6 T .

We first note that the variables y(t) and v(t) cannot become negative for 0 < t 6 T since, by definition
of T , y(t) > 0 for 0 6 t = Ty > T and v(t) > 0 for 0 6 t = Tv > T . We now look at possible solutions of
the equations in (2.1). We begin with the x equation:

dx

dt
= Λ− (σ− (1 − u1(t))βv(t))x(t) + py(t).

In this case, if y(t) = 0, the equation becomes

dx1

dt
= Λ− (σ− (1 − u1(t))βv(t))x1(t),

and the solution is x1(t) = Λt+ x1(0)e−
∫t

0(1−u1(s))βv(s)ds > 0, since Λ > 0 and x1(0) > 0. Next, since
y(t) > 0 for t < T and y(T) > 0, we have dx

dt >
dx1
dt for t < T and dx

dt > dx1
dt for t = T , and therefore

x(t) > x1(t) > 0 for t 6 T . The c equation is

dc

dt
= (1 − u2(t))ay(t) − (α+ δ)c(t).

If y(t) = 0, then the equation becomes dc1
dt = −(α+ δ)c1(t) and the solution is c1(0)e−(α+δ)t > 0 since

c1(0) > 0. Next, since y(t) > 0 for t < T and y(T) > 0, we have dcdt >
dc1
dt for t < T and dc

dt > dc1
dt for t = T ,

and therefore c(t) > c1(t) > 0 for t 6 T . The w equation is

dw

dt
= (gv(t) − h)w(t),

which has the exponential solution w(t) = w(0)e
∫t

0(gv(s)−h)ds. Since, by assumption, w(0) > 0, we have
w(t) > 0 for all t > 0. The z equation is

dz

dt
= ky(t− τ2)z(t− τ2) − εz(t).

We first note that the equation ż1(t) = −εz1(t) has the solution z1(t) = z1(0)e−εt > 0 for all t > 0 if
z1(0) > 0. Also, we have y(t− τ2) > 0 for 0 6 t 6 T + τ2. Hence, if z(t− τ2) > 0 for 0 6 t 6 T + τ2, we
have ż(t) > ż1(t) and z(t) > z1(t) > 0. Note that, in this case, since z(t) > 0 for −τ2 6 t 6 0, we have that
z(t) cannot become zero, unless z(t− τ2) is already negative. The proof is complete.

We will next prove that the solutions are bounded above.

Theorem 2.2. For each solution X(t) of an equation in system (2.1) there exists an upper bound (supremum X)
such that if 0 6 X(t) 6 X for t ∈ [−τ, 0], then X(t) 6 X for all 0 < t 6 T .
Proof. We have already proved in Theorem 2.1 that all variables are nonnegative for all 0 6 t 6 T , and
therefore they are bounded below. In the proof, we will use the following Condition 1.

Condition 1: If a variable X(t) and derivative dXdt are continuous, a necessary and sufficient condition for
the solution X(t) of a differential equation variable to be bounded above (i.e., for a supremum X to
exist) is that X(0) 6 X and that dXdt 6 0 for X(t) > X for all 0 6 t 6 T .
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Note that, in this definition, we are assuming that it is possible to substitute initial conditions in the
differential equation that give a solution greater than or equal to the supremum, but the derivative must
then be negative or zero for all such initial conditions.

We will use Condition 1 to prove that all variables in the system (2.1) are bounded above for 0 6 t 6 T .
Without loss of generality, we will assume that x(t) + y(t) 6 Λ

σ for t ∈ [−τ, 0]. We will first consider the
variables x and y in system (2.1). From x and y equations in system (2.1), we have

d(x+ y)

dt
= Λ− σ(x(t) + y(t)) − qy(t)z(t) − (1 − u1(t))β

(
x(t)v(t) − e−mτ1x(t− τ1)v(t− τ1)

)
. (2.3)

Clearly, from (2.3), if
x(t)v(t) − e−mτ1x(t− τ1)v(t− τ1) > 0, (2.4)

then, since y > 0 and z > 0, we have d(x+y)
dt 6 0 for x+ y > Λ

σ , and therefore x+ y 6 Λ
σ is bounded

above. Also, since x and y are nonnegative, both x and y must be bounded above. However, in this case,
it is possible that v(t) is unbounded.

On the other hand, if condition (2.4) is not satisfied, then it is possible that d(x+y)dt > 0 for all x+ y
and that x+ y is not bounded. However, this case can only occur if x(t)v(t) is a decreasing function of t
in which case x(t)v(t) must be bounded. In this case, it is possible that y(t) could be unbounded.

The possibilities from (2.3) are therefore as follows.

Case 1. x and v are bounded and y is unbounded.
Case 2. x and y are bounded and v is unbounded.
Case 3. x, v, and y are all bounded.

We next prove that Case 1 is impossible, i.e., we prove that if x and v are bounded, then y is also
bounded. Let x̄ and v̄ be the upper bounds on x and v, respectively. Then, from y equation in (2.1), we
have

dy

dt
= (1 − u1(t))βe

−mτ1x(t− τ1)v(t− τ1) − (σ+ p)y(t) − qy(t)z(t)

6 (1 − u1(t))βe
−mτ1 x̄v̄− (σ+ p)y(t) − qy(t)z(t) 6 0 for y(t) >

(1 − u1(t))βe
−mτ1 x̄v̄

σ+ p
.

Therefore, using Condition 1, we have y(t) is bounded above by ȳ =
(1−u1(t))βe

−mτ1 x̄v̄
(σ+p) .

Hence, the only two possibilities are Cases 2 and 3, i.e., that x and y are bounded above and v is either
bounded or unbounded. We now consider the equations for dcdt , dvdt , dwdt , and dz

dt in (2.1). We assume that
x̄ and ȳ are the upper bounds on x and y, respectively. In the proofs, we use Condition 1 to prove that
each variable is bounded above.

1. For c(t), we have from (2.1) that

dc

dt
= (1 − u2(t))ay(t) −αc(t) − δc(t) 6 (1 − u2(t))aȳ− (α+ δ)c(t) 6 0 for c(t) >

(1 − u2(t))aȳ

α+ δ
.

Therefore, c(t) is bounded above by c̄ = (1−u2(t))aȳ
α+δ .

For v(t), we have

dv

dt
= αc(t) − γv(t)w(t) − µv(t) 6 αc̄− (γw(t) + µ)v(t) 6 0 for v(t) >

αc̄

γw(t) + µ
.

Therefore, since w > 0, v(t) is bounded above by v̄ = αc̄
µ . We have therefore proved that Case 3 above is

the only possibility.
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2. For w(t), we have

dw

dt
= gv(t)w(t) − hw(t) 6 (gv̄− h)w(t).

For the model that we are considering it is clear that the extra condition h > gv̄ is required to prove
boundedness of the antibody concentration w.

3. For z(t), we have

dz

dt
= ky(t− τ2)z(t− τ2) − εz(t) 6 (kȳ− ε)z(t).

For the model that we are considering it is clear that the extra condition ε > kȳ is required to prove
boundedness of the concentration of cytotoxic T-lymphocytes z(t). The proof is complete.

2.3. Existence of unique solution

Theorem 2.3. System (2.1) with specified initial conditions (2.2) and specified values of the controls (u1(t),u2(t))
has a unique solution.

Proof. We will prove that the system (2.1) satisfies Lipschitz conditions (see, e.g., [8, 18]) and therefore
that the solution exists and is unique.

Note that, in the proof, we are assuming that the control functions (u1(t),u2(t)) are fixed functions
and that u1(t) ∈ [0, 1] and u2(t) ∈ [0, 1]. Changing the values of these functions will, of course, change the
solution.

Following Driver [18] (section V-23), we rewrite system (2.1) in the form

dX

dt
= F(t, ξt), X(t) given, t ∈ [−τ, 0], (2.5)

where, as above, τ = max{τ1, τ2}, and where we define

X(t) =



x(t)
y(t)
c(t)
v(t)
w(t)
z(t)

 , ξt =
[
ξ1,t, ξ2,t

]
=



x(t) x(t− τ1)
y(t) y(t− τ2)
c(t) 0
v(t) v(t− τ1)
w(t) 0
z(t) z(t− τ2)

 , (2.6)

and

F1(t, ξt) = Λ− σx(t) − (1 − u1(t))βx(t)v(t) + py(t),
F2(t, ξt) = (1 − u1(t))βe

−mτ1x(t− τ1)v(t− τ1) − (σ+ p)y(t) − qy(t)z(t),
F3(t, ξt) = (1 − u2(t))ay(t) −αc(t) − δc(t),
F4(t, ξt) = αc(t) − γv(t)w(t) − µv(t),
F5(t, ξt) = gv(t)w(t) − hw(t),
F6(t, ξt) = ky(t− τ2)z(t− τ2) − εz(t).

(2.7)

We now prove that the system (2.5)-(2.7) satisfies the Lipschitz condition of Driver [18] (Definition Eq. (4),
p.258), i.e.,

‖F(t, ξt) − F(t, ξ̂t)‖1 6 L‖ξt − ξ̂t‖1, (2.8)
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for some L > 0 and where the one-norm ‖ξt − ξ̂t‖1 is the maximum absolute column sum of ξt − ξ̂t (see,
e.g., Anton [4]). We begin by writing system (2.5) in the following matrix form:

F(t, ξt) = A(t)ξ1,t +B(ξ1,t) +C(ξ2,t),

where

A(t) =



−σ p 0 0 0 0
0 −(σ+ p) 0 0 0 0
0 (1 − u2(t))a −(α+ δ) 0 0 0
0 0 α −µ 0 0
0 0 0 0 −h 0
0 0 0 0 0 −ε

 ,

B(ξ1,t) =



Λ− (1 − u1(t))βx(t)v(t)
−qy(t)z(t)

0
−γv(t)w(t)
gv(t)w(t)

0

 ,

C(ξ2,t) =



0
(1 − u1(t))βe

−mτ1x(t− τ1)v(t− τ1)
0
0
0

ky(t− τ2)z(t− τ2)

 . (2.9)

The next step is to prove that the function F(t, ξt) satisfies the Lipschitz conditions in (2.8). We first note
that, from the properties of norms,

‖F(t, ξt) − F(t, ξ̂t)‖1 = ‖A(t)(ξ1(t) − ξ̂1,t) +B(ξ1,t) −B(ξ̂1,t) +C(ξ2,t) −C(ξ̂2,t)‖1

6 ‖A(t)(ξ1,t − ξ̂1,t)‖1 + ‖B(ξ1,t) −B(ξ̂1,t)‖1 + ‖C(ξ2,t) −C(ξ̂2,t)‖1.
(2.10)

We consider each term in (2.10) separately. For the A(t) term, we have

‖A(t)(ξ1,t − ξ̂1,t)‖1 6 ‖A(t)‖1‖ξ1,t − ξ̂1,t‖1 = L1(t)‖ξ1,t − ξ̂1,t‖1, (2.11)

where L1(t) = ‖A(t)‖1 = max{σ, σ+ 2p+ (1 − u2(t)a, α+ δ, µ, h, ε} is the maximum absolute column
sum of A(t).

For the one-norm of B(ξ1,t) −B(ξ̂1,t), we have

‖B(ξ1,t) −B(ξ̂1,t)‖1 =

∥∥∥∥∥∥∥∥∥∥∥∥

(−(1 − u1(t))β[x1(t)v1(t) − x̂1(t)v̂1(t)]
−q[y1(t)z1(t) − ŷ1(t)ẑ1(t)]

0
−γ[v1(t)w1(t) − v̂1(t)ŵ1(t)]
g[v1(t)w1(t) − v̂1(t)ŵ1(t))]

0

∥∥∥∥∥∥∥∥∥∥∥∥
1

.

Then, since the one-norm of a vector is the sum of absolute values of components, and since the absolute
value of a product of the form x1y1 − x̂1ŷ1 can be rewritten as

|x1(t)y1(t) − x̂1(t)ŷ1(t)| = |[x1(t) − x̂1(t)]y1(t) + x̂1(t)[y1(t) − ŷ1(t)]|

6 |(x1(t) − x̂1(t))||y1(t)|+|x̂1(t)||(y1(t) − ŷ1(t)|,
(2.12)



P. Yosyingyong, R. Viriyapong, E. J. Moore, J. Math. Computer Sci., 35 (2024), 182–207 190

we can obtain the following:

|B(ξ1,t) −B(ξ̂1,t)|1 = |(1 − u1(t))β[x1(t)v1(t) − x̂1(t)v̂1(t)]|+ |q([y1(t)z1(t) − ŷ1(t)ẑ1(t)]|

+ |γ[v1(t)w1(t) − v̂1(t)ŵ1(t)]|+ |g[v1(t)w1(t) − v̂1(t)ŵ1(t)]|

6 (1 − u1(t))β|x1(t) − x̂1(t)||v1(t)|+ (1 − u1(t))β|x̂1(t)||v1(t) − v̂1(t)|

+ q|y1(t) − ŷ1(t)||z1(t)|+ q|ŷ1(t)||z1(t) − ẑ1(t)|

+ (γ+ g)|v1(t) − v̂1(t)||w1(t)|+ (γ+ g)|v̂1(t)||w1(t) − ŵ1(t)|

= (1 − u1(t))β|v1(t)||x1(t) − x̂1(t)|+ q|z1(t)||y1(t) − ŷ1(t)|

+ ((1 − u1(t))β|x̂1(t)|+ (γ+ g)|w1(t)|) |v1(t) − v̂1(t)|

+ (γ+ g)|v̂1(t)|||w1(t) − ŵ1(t)|+ q|ŷ1(t)||z1(t) − ẑ1(t)|.

Then, defining L2(t) as

L2(t) = max {(1 − u1(t))β|v1(t)|, q|z1(t)|, ((1 − u1(t))β|x̂1(t)|+ (γ+ g)|w1(t)|) , (γ+ g)|v̂1(t)|, q|ŷ1(t)|} ,

we obtain

|B(ξ1,t) −B(ξ̂1,t)|1 6 L2(t) (|x1(t) − x̂1(t)|+ |y1(t) − ŷ1(t)|+ |v1(t) − v̂1(t)|

+ |w1(t) − ŵ1(t)|+ |z1(t) − ẑ1(t)|)

6 L2(t) (|x1(t) − x̂1(t)|+ |y1(t) − ŷ1(t)|+ |c1(t) − ĉ1(t)|

+ |v1(t) − v̂1(t)|+ |w1(t) − ŵ1(t)|+ |z1(t) − ẑ1(t)|) = L2(t)‖ξ1,t) − ξ̂1,t‖1.

(2.13)

For the one-norm ‖C(ξ2,t) −C(ξ̂2,t)‖1, we have from (2.9) and using (2.12) that

‖C(ξ2,t) −C(ξ̂2,t)‖1 = (1 − u1(t))βe
−mτ1 |x1(t− τ1)v1(t− τ1) − x̂1(t− τ1)v̂1(t− τ1)|

+ k|y1(t− τ2)z1(t− τ2) − ŷ1(t− τ2)ẑ1(t− τ2)|

6 (1 − u1(t))βe
−mτ1 |v1(t− τ1)||x1(t− τ1) − x̂1(t− τ1)|

+ (1 − u1(t))βe
−mτ1 |x̂1(t− τ1)||v1(t− τ1) − v̂1(t− τ1)|

+ k|z1(t− τ2)||y1(t− τ2) − ŷ1(t− τ2)|+ k|ŷ1(t− τ2)||z1(t− τ2) − ẑ1(t− τ2)|

6 L3(t)‖ξ2,t − ξ̂2,t‖1,

(2.14)

where

L3(t) = max{(1 − u1(t))βe
−mτ1 |v1(t− τ1)|, (1 − u1(t))βe

−mτ1 |v1(t− τ1)|,k|z1(t− τ2)|,k|ŷ1(t− τ2)|}

× ‖ξ2,t − ξ̂2,t‖1.

Combining the results in (2.11), (2.13), and (2.14), we obtain

‖F(t, ξt) − F(t, ξ̂t)‖1 6 (L1(t) + L2(t))‖ξ1,t − ξ̂1,t‖1 + L3(t)‖ξ2,t − ξ̂2,t‖1.

Finally, from Theorems 2.1 and 2.2 all variables are nonegative and bounded, we can replace L1(t), L2(t),
L3(t) by upper bounds defined by

L1 = max{σ, σ+ 2p+ (1 − u2,min)a, α+ δ, µ, h, ε},
L2 = max {(1 − u1,min)βv̄, qz̄, ((1 − u1,min)βx̄+ (γ+ g)w̄) , (γ+ g)v̄, qȳ} ,
L3 = max{(1 − u1,min)βe

−mτ1 v̄, (1 − u1,min)βe
−mτ1 x̄},kz̄,kȳ},

(2.15)

where, e.g., x̄ means the upper bound on x(t) and u1,min ∈ [0, 1], and u2,min ∈ [0, 1] are the minimum
values of u1(t) and u2(t) for t > −τ, respectively. Then, using (2.15), we can rewrite (2.10) as the Lipschitz
condition

‖F(t, ξt)) − F(ξ̂t)‖1 6 (L1 + L2 + L3)‖ξt − ξ̂t‖1 = L‖ξt − ξ̂t‖1.

The proof is complete.
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2.4. Equilibrium states
The system (2.1) has three equilibrium states.

1. Infection-free equilibrium point:

E0 = (x0,y0, c0, v0,w0, z0) =

(
Λ

σ
, 0, 0, 0, 0, 0

)
.

2. Immune-free equilibrium point: E1 = (x1,y1, c1, v1, 0, 0), where

x1 =
(σ+ p)(α+ δ)µ

(1 − u1)(1 − u2)βe−mτ1aα
, y1 =

(α+ δ)c1

(1 − u2)a
,

c1 =
σµ(σ+ p)(α+ δ)(R0 − 1)

(1 − u1)βα

(
(σ+ p)(α+ δ) − p(α+ δ)e−mτ1

) , v1 =
αc1

µ
,

and where

R0 =
(1 − u1)(1 − u2)βe

−mτ1Λaα

µσ(σ+ p)(α+ δ)
(2.16)

can be identified as the basic reproduction number (see Subsection 2.5). Note that the infected populations
y1 and c1 and free virus population v1 are positive if and only if R0 > 1.

3. Endemic equilibrium point: (E2) = (x2,y2, c2, v2,w2, z2), where

x2 =
(Λk+ pε)g

(σg+ (1 − u1)βh)k
, y2 =

ε

k
, c2 =

(1 − u2)aε

k(α+ δ)
, v2 =

h

g
,

w2 =
(1 − u2)aεαg

(α+ δ)γhk
−
µ

γ
, z2 =

(1 − u1)βe
−mτ1khx2

qgε
−
σ+ p

q
.

Note that the endemic equilibrium exists if and only if the antibody population w2 and cytotoxic T-
lymphocytes population z2 are positive.

2.5. The basic reproduction number (R0)
The basic reproduction number (R0) is the expected concentration of secondary cases produced when

a typical infective hepatocyte (y) enters an infection-free population. To calculate R0, we use the next-
generation method of van den Driessche and Watmough [59]. We obtain

F =

(1 − u1)βe
−mτ1xv

0
0

 and V =

 (σ+ p)y+ qzy
αc+ δc− (1 − u2)ay
γvw+ µv−αc

 .

Then we have

F =

0 0 (1 − u1)βe
−mτ1x

0 0 0
0 0 0

 and V =

 (σ+ p) + qz 0 0
−(1 − u2)a α+ δ 0

0 −α γw+ µ

 .

By substituting the infection-free equilibrium point E0 =

(
Λ
σ , 0, 0, 0, 0, 0

)
into the Jacobian matrices F and

V and computing the inverse V−1, we obtain the next-generation matrix

FV−1 =

 (1−u1)(1−u2)βe
−mτ1Λaα

µσ(σ+p)(α+δ)
(1−u1)βe

−mτ1Λα
µσ(σ+p)(α+δ)

(1−u1)βe
−mτ1Λ

σµ

0 0 0
0 0 0

 .
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The basic reproduction number R0 is then the maximum eigenvalue ρ(FV−1), which is given by equa-
tion (2.16). From the next-generation method, R0 < 1 is the condition for local asymptotic stability of the
infection-free equilibrium E0 and, as shown above, R0 > 1 is also the condition for the existence of the
immune-free equilibrium E1.

2.6. Sensitivity analysis
These indices demonstrate the sensitivity of the parameter associated with the basic reproduction

number (R0). It determines whether it increases or decreases the values of the basic reproduction number
(R0) and provides crucial details on the comparative changes in significant parameters. As a result, they
support the development of effective strategies for controlling the transmission of HBV.

With sensitivity analysis, we can investigate how each parameter used in the model affects the value
of the basic reproduction number. We use the method of normalized forward sensitivity index (see, e.g.,
Samsuzzoha et al. [56] and Ngoteya et al. [52]), where the normalized forward sensitivity index of the
basic reproduction number R0 with respect to a parameter value h is given by

SR0
h =

h

R0

∂R0

∂h
= h

∂ log(R0)

∂h
. (2.17)

Note that, the sensitivity index gives an estimate of the relative change in R0 from a relative change in a
parameter h. For example, if h is changed by δh = νh, where 0 < ν < 1 is a fraction then, to first-order,
the relative change in R0 is

δR0

R0
=
νh∂R0

∂h

R0
= νSR0

h .

Using equations (2.17) and (2.16), we obtain the values of the sensitivity indices shown in Table 2 for
the parameters in Table 1.

Table 2: Numerical values of sensitivity indices of R0.
Parameter Index at parameter value Sign

Λ +1 +ve
β +1 +ve
m -0.0220 -ve
τ1 -0.0220 -ve
a +1 +ve
u1 -0.1111 -ve
u2 -0.1111 -ve
α 0.0574 +ve
σ -1.0840 -ve
µ -1 -ve
p -0.9160 -ve
δ -0.0574 -ve

From these calculations, we can rank the indices in order of effectiveness in reducing HBV infection.
Table 2 shows that increasing the values of parameters Λ,β,a,α by 10% will increase the values of R0 by
10%, 10%, 10%, and 0.57%, respectively. On the other hand, Table 2 shows that increasing the values of
m, τ1,u1,u2,σ,µ,p, δ by 10% will decrease the values of R0 by 0.22%, 0.22%, 1.11%, 1.11%, 10.84%, 10%,
9.16%, and 0.57%, respectively. Therefore, if we want to reduce R0, we should focus on increasing the
values of σ, µ, and p and reducing the values of Λ, β, and a because these are the factors that are most
effective in reducing the infection. It can also be seen that increasing the values of the controls u1 and u2
have the same effect as reducing the values of the parameters Λ, β, a, and α, the first three of which are
the most effective in reducing the values of R0.
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3. Optimal control

We consider the optimal control of the time delay model for HBV infections defined in Section 2.1.
The optimal control problem is as follows:

max
u1,u2

J(u1,u2) =

∫T
0
f0(x(t),w(t), z(t),u1(t),u2(t))dt, (3.1)

where f0(x(t),w(t), z(t),u1(t),u2(t)) = x(t) + w(t) + z(t) − 1
2A1u

2
1(t) −

1
2A2u

2
2(t), 0 6 u1(t) 6 1, 0 6

u2(t) 6 1, subject to the HBV equations in system (2.1):

dx

dt
= f1(x(t), v(t),y(t),u1(t)) = Λ− σx(t) − (1 − u1(t))βx(t)v(t) + py(t),

dy

dt
= f2(y(t), z(t), x(t− τ1), v(t− τ1),u1(t))

= (1 − u1(t))βe
−mτ1x(t− τ1)v(t− τ1) − (σ+ p)y(t) − qy(t)z(t),

dc

dt
= f3(y(t), c(t),u2(t)) = (1 − u2(t))ay(t) − (α+ δ)c(t),

dv

dt
= f4(c(t), v(t),w(t)) = αc(t) − γv(t)w(t) − µv(t),

dw

dt
= f5(v(t),w(t)) = gv(t)w(t) − hw(t),

dz

dt
= f6(z(t),y(t− τ2), z(t− τ2)) = ky(t− τ2)z(t− τ2) − εz(t),

(3.2)

with initial conditions

x(t) > 0, given − τ1 6 t 6 0, y(t) > 0, given − τ2 6 t 6 0,
c(0) > 0, v(t) > 0, given − τ1 6 t 6 0,
w(0) > 0, z(t) > 0, given − τ2 6 t 6 0,

(3.3)

where T is the period of therapy, and A1 and A2 are measures of the relative costs of the interventions

associated with the controls u1 and u2, respectively. The expression A1u
2
1

2 represents cost associated with

u1(t) and A2u
2
2

2 represents cost associated with u2(t). The two control functions, u1(t) and u2(t) are
assumed to be bounded and Lebesgue integrable. We have assumed a quadratic cost for administering
the controls u1 and u2 for two reasons. Firstly, there are typically increasing costs with reaching higher
fractions of a population. The quadratic is the simplest nonlinear function and therefore we have used it
in our model. Secondly, assuming a linear cost for the control leads to a “bang-bang” solution, where the
solution is always to maximize or minimize the drug cost at each point in time. Our target is to maximize
the objective functional defined in equation (3.1) by increasing the number of the uninfected hepatocytes
x(t), the antibodies w(t) and the CTLs immune responses z(t) and decreasing the viral load for minimum
therapy cost, i.e., we are finding the optimal control pair (u∗1 ,u∗2 ) such that

J(u∗1 ,u∗2) = max
(u1,u2)∈U

J(u1,u2),

where the control set U is defined by

U = {(u1(t),u2(t)) : ui(t) measurable 0 6 ui(t) 6 1, t ∈ [0, T ], i = 1, 2}. (3.4)

3.1. Existence of an optimal control pair
The following theorem proves the existence of an optimal control pair. The proof is based on a result

of Fleming and Rishel [21] which is based on a theorem of Cesari [12].
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Theorem 3.1. There exists an optimal control pair (u∗1 ,u∗2) ∈ U such that

J(u∗1 ,u∗2) = max
(u1,u2)∈U

J(u1,u2).

Proof. To use the result of Fleming and Rishel [21], we need to check the following properties.

(P1) The set of state variables and controls is nonempty.
(P2) The set of controls (U) is closed and convex.
(P3) The right hand side of the state system is bounded by a linear function in the state and control

variables.
(P4) The integrand of the objective functional is concave on U.
(P5) There exists a constant ζ>1 and positive numbers η1, η2 > 0, such that the integrand I(x,w, z,u1,u2)

of the objective functional satisfies

I(x,w, z,u1,u2) 6 η1 − η2(|u1|
2 + |u2|

2)
ζ
2 ,

where I(x,w, z,u1,u2) = x(t) +w(t) + z(t) −

(
A1
2 u

2
1(t) +

A2
2 u

2
2(t)

)
.

The proofs that our model satisfies the conditions are as follows.

(P1) From Theorem 2.3, the solution of the system (2.1) exists and is unique for given initial conditions
and given controls in the set U. Therefore, the set of state variables and controls is nonempty and
condition P1 is satisfied.

(P2) The control set U defined in (3.4) is clearly convex and closed.
(P3) From Theorem 2.3, the right-hand-side of (2.1) is bounded by a linear function in the state and

control variables.
(P4) The integrand of the objective functional in (3.1) is clearly concave on U.
(P5) Since, from Theorem 2.2, x(t) 6 x̄, w(t) 6 w̄, z(t) 6 z̄ are bounded above, and A1, A2 > 0, we have

I(x,w, z,u1,u2) = x(t) +w(t) + z(t) −

(
A1

2
u2

1(t) +
A2

2
u2

2(t)

)
6 x̄+ w̄+ z̄−

1
2

min{A1,A2}(u
2
1(t) + u

2
2(t)) = η1 − η2(|u1|

2 + |u2|
2)
ζ
2 ,

where η1 = x̄+ w̄+ z̄, η2 = 1
2 min{A1,A2}, and ζ = 2.

This completes the proof.

3.2. Pontryagin maximum principle
Derivations of the Pontryagin maximum principle can be found in many books and papers for both

no-delay problems (see, e.g., [42, 44, 55]) and for time delay problems (see, e.g., [22, 24, 34, 37]). In this
section, we will summarize the necessary conditions that the Pontryagin maximum principle gives for the
solution of the time delay optimal control problem of equations (3.1), (3.2), and (3.3).

The Hamiltonian for the system (3.1) and (3.2) is given by

H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))
= f0(x(t),w(t), z(t),u1(t),u2(t)) + λ1(t)f1(x(t), v(t),y(t),u1(t))

+ λ2(t)f2(y(t), z(t), x(t− τ1), v(t− τ1),u1(t))

+ λ3(t)f3(y(t), c(t),u2(t)) + λ4(t)f4(c(t), v(t),w(t))
+ λ5(t)f5(v(t),w(t)) + λ6(t)f6(z(t),y(t− τ2), z(t− τ2)),

where, for ease of writing, we define

x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))
T (3.5)

with x1(t) = x(t), x2(t) = y(t), x3(t) = c(t), x4(t) = v(t), x5(t) = w(t), x6(t) = z(t), and λ(t)
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= (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t))
T .

Following the definitions of the costate equations in Forde et al. [22], we separate the costate equations
into 3 types: 1) no time delay; 2) time delay τ1; and 3) time delay τ2.

1. No time delay: Since the state variables x3(t) = c(t) and x5(t) = w(t) have no time delay, the costate
equations for λ3(t) and λ5(t) are as follows:

λ̇3(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂c(t)

= −λ3(t)
∂f3(y(t), c(t),u2(t))

∂c(t)
− λ4(t)

∂f4(c(t), v(t),w(t))
∂c(t)

= (α+ δ)λ3(t) −αλ4(t).
(3.6)

λ̇5(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))(t))

∂w(t)

= −
∂f0(x(t),w(t), z(t),u1(t),u2(t))

∂w(t)
− λ4(t)

∂f4(c(t), v(t),w(t))
∂w(t)

− λ5(t)
∂f5(v(t),w(t))

∂w(t)

= −1 + λ4(t)γv(t) − λ5(t)(gv(t) − h).

(3.7)

The time interval for the two costate equations is 0 6 t 6 T with the boundary conditions λ3(T) = λ5(T) =
0.

2. Time delay τ1: The state variable x1(t) = x(t) also has a time delay term x(t− τ1) and the variable
x4(t) = v(t) also has a time delay term v(t− τ1). Therefore, the costate equations for λ1(t) and λ4(t) are
defined separately for the time intervals 0 6 t 6 T − τ1 and T − τ1 6 t 6 T . The time delay equations for
λ1(t) are given by

λ̇1(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂x(t)

−
∂H(x(t+ τ1), x(t),y(t+ τ1 − τ2), v(t), z(t+ τ1 − τ2),u1(t+ τ1),u2(t+ τ1), λ(t+ τ1))

∂x(t)

= −
∂f0(x(t),w(t), z(t),u1(t),u2(t))

∂x(t)
− λ1(t)

∂f1(x(t), v(t),y(t),u1(t))

∂x(t)

− λ2(t+ τ1)
∂f2(y(t+ τ1), z(t+ τ1), x(t), v(t),u1(t+ τ1))

∂x(t)

= −1 + λ1(t)(σ+ (1 − u1(t))βv(t)) − λ2(t+ τ1)(1 − u1(t+ τ1))βe
−mτ1v(t),

(3.8)

for 0 6 t 6 T − τ1 and

λ̇1(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂x(t)

= −1 + λ1(t)(σ+ (1 − u1(t))βv(t)),

for T − τ1 6 t 6 T .The time delay equations for λ4(t) are given by

λ̇4(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂v(t)

−
∂H(x(t+ τ1), x(t),y(t+ τ1 − τ2), v(t), z(t+ τ1 − τ2),u1(t+ τ1),u2(t+ τ1), λ(t+ τ1))

∂v(t)

= −λ1(t)
∂f1(x(t), v(t),y(t),u1(t))

∂v(t)
− λ4(t)

∂f4(c(t), v(t),w(t))
∂v(t)

− λ5(t)
∂f5(v(t),w(t))

∂v(t)

− λ2(t+ τ1)
∂f2(y(t+ τ1), z(t+ τ1), x(t), v(t),u1(t+ τ1))

∂v(t)

= λ1(t)(1 − u1(t))βx(t) + λ4(t)(γw(t) + µ) − λ5(t)gw(t)

− λ2(t+ τ1)(1 − u1(t+ τ1))βe
−mτ1x(t),

(3.9)
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for 0 6 t 6 T − τ1, and

λ̇4(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂v(t)

= λ1(t)(1 − u1(t))βx(t) + λ4(t)(γw(t) + µ) − λ5(t)gw(t)

for T − τ1 6 t 6 T . The conditions on the costate equations are continuity of x(t) and v(t) at t = T − τ1
and λ1(T) = λ4(T) = 0.

3. Time delay τ2: The state variable x2(t) = y(t) also has a time delay term y(t− τ2) and the variable
x6(t) = z(t) also has a time delay term z(t− τ2). Therefore, the costate equations for λ2(t) and λ6(t) are
defined separately for the time intervals 0 6 t 6 T − τ2 and T − τ2 6 t 6 T .

The time delay equations for λ2(t) are given by

λ̇2(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂y(t)

−
∂H(x(t+ τ2), x(t− τ1 + τ2),y(t), v(t− τ1 + τ2), z(t),u1(t+ τ2),u2(t+ τ2), λ(t+ τ2))

∂y(t)

− λ1(t)
∂f1(x(t), v(t),y(t),u1(t))

∂y(t)
− λ2(t)

∂f2(y(t), z(t), x(t− τ1), v(t− τ1),u1(t))

∂y(t)

− λ3(t)
∂f3(y(t), c(t),u2(t))

∂y(t)
− λ6(t+ τ2)

∂f6(z(t+ τ2),y(t), z(t))
∂y(t)

= −λ1(t)p+ λ2(t)(σ+ p+ qz(t)) − λ3(t)a(1 − u2(t)) − λ6(t+ τ2)kz(t),

(3.10)

for 0 6 t 6 T − τ2 and

λ̇2(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂y(t)

− λ1(t)p+ λ2(t)(σ+ p+ qz(t)) − λ3(t)a(1 − u2(t)),

for T − τ2 6 t 6 T . The time delay equations for λ6(t) are given by

λ̇6(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂z(t)

−
∂H(x(t+ τ2), x(t− τ1 + τ2),y(t), v(t− τ1 + τ2), z(t),u1(t+ τ2),u2(t+ τ2), λ(t+ τ2))

∂z(t)

= −
∂f0(x(t),w(t), z(t),u1(t),u2(t))

∂z(t)
− λ2(t)

∂f2(y(t), z(t), x(t− τ1), v(t− τ1),u1(t))

∂z(t)

− λ6(t)
∂f6(z(t),y(t− τ2), z(t− τ2))

∂z(t)
− λ6(t+ τ2)

∂f6(z(t+ τ2),y(t), z(t))
∂z(t)

= −1 + λ2(t)qy(t) + ελ6(t) − λ6(t+ τ2)ky(t)

(3.11)

for 0 6 t 6 T − τ2, and

λ̇6(t) = −
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂z(t)

= −1 + λ2(t)qy(t) + ελ6(t), for T − τ2 6 t 6 T .

The conditions on the costate equations are continuity of y(t) and z(t) at t = T − τ2 and λ2(T) = λ6(T) = 0.
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3.3. Maximum control values
In the Pontryagin maximum principle, the optimal values of the state and costate variables x∗(t) and

λ∗(t) values occur for values of u∗1(t) and u∗2(t) which give local maximum values of the Hamiltonian.
For the case of bounded controls with a concave Hamiltonian, there are 3 differerent possibilities.

1. An internal point of 0 6 u1(t) 6 1 or 0 6 u2(t) 6 1. For u1(t), the condition is:

0 =
∂H(x∗(t), x∗(t− τ1),y∗(t− τ2), v∗(t− τ1), z∗(t− τ2),u1(t),u2(t), λ∗(t))

∂u1(t)

=
∂f0(x

∗(t),w∗(t), z∗(t),u1(t),u2(t))

∂u1(t)
+ λ1(t)

∂f1(x
∗(t), v∗(t),y∗(t),u1(t))

∂u1(t)

+ λ∗2(t)
∂f2(y

∗(t), z∗(t), x∗(t− τ1), v∗(t− τ1),u1(t))

∂u1(t)

= −A1u1(t) + λ
∗
1(t)βx

∗(t)v∗(t) − λ∗2(t)βe
−mτ1x∗(t− τ1)v

∗(t− τ1).

Therefore, a possible internal point for the first control is:

ū1(t) =
β

A1

(
λ∗1(t)x

∗(t)v∗(t) − λ∗2(t)e
−mτ1x∗(t− τ1)v

∗(t− τ1)
)
.

This is a maximum point of H since ∂2H
∂u2

1
= −A1 < 0 and H is a concave function of u1. For u2(t), the

condition is:

0 =
∂H(x(t), x(t− τ1),y(t− τ2), v(t− τ1), z(t− τ2),u1(t),u2(t), λ(t))

∂u2(t)

=
∂f0(x(t),w(t), z(t),u1(t),u2(t))

∂u2(t)
+ λ3(t)

∂f3(y(t), c(t),u2(t))

∂u2(t)

= −A2u2(t) − λ3(t)ay(t).

Therefore, a possible internal point for the second control is:

ū2(t) = −
1
A2
λ∗3(t)ay

∗(t).

This is a maximum point of H since ∂
2H
∂u2

2
= −A2 < 0 and H is a concave function of u2.

2. At lower bounds u1(t) = 0 or u2(t) = 0.

3. At upper bounds u1(t) = 1 or u2(t) = 1.
There are therefore 9 possible choices for the optimal control pair (u∗1(t),u

∗
2(t)). In summary.

1. If the internal point ū1(t) ∈ [0, 1], then u∗1(t) = ū1(t) is the maximum point. If ū1(t) < 0, then
u∗1(t) = 0 is the maximum point. If ū1(t) > 1, then u∗1(t) = 1 is the maximum point. This is written
in the literature as u∗1(t) = max(0, min(1, ū1(t)).

2. If the internal point ū2(t) ∈ [0, 1], then u∗2(t) = ū2(t) is the maximum point. If ū2(t) < 0, then
u∗2(t) = 0 is the maximum point. If ū2(t) > 1, then u∗2(t) = 1 is the maximum point. This is written
in the literature as u∗2(t) = max(0, min(1, ū2(t)).

3.4. Algorithm for solution of the optimal control problem
The algorithm that we use to compute the optimal controls with Matlab is as follows.

1. Select an initial feasible control pair (u(0)
1 (t),u(0)

2 (t)).
For k = 0, 1, . . . , kmax:
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(a) for the given initial conditions and the given control pair, integrate the system of state equa-
tions (2.1) using an ODE delay solver such as dde23 in Matlab;

(b) since the costate equations (3.6)-(3.11) defined in the Pontryagin maximum principle section 3.2
must be integrated in the backwards direction in time for numerical stability, time-reverse the
system of costate equations, and then integrate the time-reversed system of costate equations
in the forward direction using the same ODE solver dde23 as for the state equations;

(c) use the methods described in section 3.3 to find the values of the new control pair (u
(k+1)
1 (t),

u
(k+1)
2 (t)) that maximize the Hamiltonian for the given values of x(t) and λ(t) obtained from

the state and costate integrations in (a) and (b);
(d) compare the new control pair (u

(k+1)
1 (t),u(k+1)

2 (t)) with the previous control pair (u
(k)
1 (t),

u
(k)
2 (t)).

2. If the two control pairs are the same to a specified tolerance stop. Otherwise replace (u
(k)
1 (t),u(k)2 (t))

by (u
(k+1)
1 (t),u(k+1)

2 (t)) and repeat steps (a), (b), (c), and (d) for the new control pair.

Note: A much simpler delayed optimal control problem has been considered by Ibrahim et al. [34]. In their
paper, the model involved only one state equation and one time-delayed optimal control. The algorithm
used in their paper is similar to the algorithm above, with the exception that an EOSM step method is
used to solve the state equations forward in time and the costate equations backward in time. The EOSM
step method used in the integrations in the Ibrahim et al. paper appear to be based on an implicit Taylor
series method of specified order. In our algorithm, we have used the Matlab dde23 function which is based
on a second-order Runge-Kutta method with a 3rd-order corrector term and which automatically adjusts
the step size to attain a desired accuracy.

4. Numerical results

We begin by looking at the solutions of system (2.1) for zero controls u1 = u2 = 0 for the zero delay
case and for the nonzero delay cases : τ1 = 2 days for the delay in the production of infected hepatocytes
by free virus and τ2 = 4 days for the delay in the antigenic stimulation generating CTLs. We then look at
the optimal control problem (3.1) for system (2.1) for the nonzero delay cases.

In the numerical simulations, we have used the values of the parameters given in Table 1, i.e., Λ = 1,
σ = 0.011, β = 0.0014, p = 0.012, m = 0.011, q = 0.001, a = 0.15, α = 0.87, µ = 0.693, g = 0.008, h = 0.15,
k = 0.001,ε = 0.5. As noted in Table 1, the values have been selected from published sources, if available,
or reasonable values have been assumed for parameters if no published values could be found.

4.1. Numerical simulations for zero control

The numerical results for the zero delay and nonzero delay cases for zero control are shown in Fig-
ures 2 (a)-(f). In all figures, the zero delay results are plotted as blue dashed lines and the nonzero delay
results as red solid lines.

Figure 2 (a) shows that the concentration of uninfected hepatocytes (x) with nonzero delay declines
faster than the concentration with zero delay during the first 30 days, whereas the concentration with
zero delay decreases faster than the nonzero delay from the 30th to the 80th day when both cases reach
the same value. The reason for this behavior can be seen in the different infection rates of hepatocytes
shown in Figure 2 (b) for the zero and nonzero delay cases. Figure 2 (b) shows that for zero delay the
concentration of infected hepatocytes (y) has an initial peak of 1950 cells/ml at 3 days, a second peak of
900 cells/ml at 40 days, a third peak of 330 cells/ml at 100 days and then decreases to a small equilibrium
value. For the nonzero delay case, the concentration has a higher initial peak of approximately 3100
cells/ml at 13 days and then a much smaller second peak of 520 cells/ml at 88 days before decreasing to
an equilibrium level similar to that of the zero delay case. A possible reason for the much slower initial
infection rate in the nonzero delay case is that the delay τ1 = 2 days slows down the initial growth rate
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of the infection. In both cases, the second peak is lower than the first peak. A possible explanation is that
the high number of infections in the first peak causes rapid increases in the concentrations of antibodies
and CTLs (see Figures 2 (e) and (f)) which then help to reduce the concentrations of infected hepatocytes
in the later peaks.
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Figure 2: Dynamics of the HBV model (2.1) with zero delay (dashed curves) and with nonzero delay (solid curves) for τ1 = 2
and τ2 = 4. (a) Concentration of uninfected hepatocytes (x). (b) Concentration of infected hepatocytes (y). (c) Concentration of
intracellular HBV DNA-containing capsids (c). (d) Concentration of free viruses (v). (e) Concentration of antibodies (w) and (f)
Concentration of CTLs (z).

Figure 2 (c) for the intracellular HBV DNA-containing capsids (c) shows a similar dynamical pattern
to the pattern of the infected hepatocytes for both zero and nonzero delay cases. For zero delay, the
concentration of capsids rises to an intial peak of 280 cells/ml at 10 days, a second peak of 150 cells/ml at
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45 days and a third peak of 50 cells/ml at 100 days. For nonzero delay, the concentration rises to a high
initial peak of 500 cells/ml at 13 days and a second peak of 85 cells/ml at 88 days. Finally, in both cases
the concentrations decay at similar rates to equilibrium values. Figure 2 (d) for the free viruses (v) again
shows a similar dynamical pattern to the patterns for the infected hepatocytes and the capsids for both
zero and nonzero delay cases. For zero delay the concentration of free viruses rises to an intial peak of
105 cells/ml at 5 days and a second peak of 37 cells/ml at 35 days. For nonzero delay, the concentration
initially rises to an initial peak of 90 cells/ml at 7 day and a second peak of 47 cells/ml at 78 days. Finally,
in both cases the concentrations decay at similar rates to equilibrium values. Figure 2 (e) for the antibodies
(w) again shows a similar dynamical pattern to the patterns for the infected hepatocytes, capsids and free
viruses for both zero and nonzero delay cases. For zero delay, the concentration rises to an intial peak
of 422 cells/ml at 8 days, a second peak of 500 cells/ml at 50 days and a third peak of 190 cells/ml at
100 days. For nonzero delay, the concentration rises to an initial peak of 1650 cells/ml at 18 days and a
second peak of 300 cells/ml at 100 days. Finally, in both cases the concentrations decay at similar rates to
equilibrium values. As noted above, it can be seen that the pattern of the concentration of antibodies are
in the same pattern as the concentration of the infected hepatocytes, capsids and free viruses. However,
the peaks in the antibodies occur after the peaks in the infections as the antibodies occur as a response to
the infections.

Finally, Figure 2 (f) for the CTLs (z) again shows a similar dynamical pattern to the patterns for the
infected hepatocytes, capsids, free viruses and antibodies for both zero and nonzero delay cases. For zero
delay, the concentration of CTLs has an initial peak of 1390 cells/ml at 8 days and a second peak of 135
cells/ml at 50 days. For nonzero delay, the concentration of CTLs has only one peak of 790 cells at 25
days. In both cases the concentrations reduce to zero equilibrium value. As for the antibodies, the peaks
in the CTLs occur after the peaks in the infections.

In summary, it can be seen that the presence of the delay causes the initial peaks to occur later than in
the zero delay case and that the initial peaks of the concentrations are much higher than the later peaks
in both cases. The reduction in peak size of the concentrations of infected hepatocytes, capsids and free
viruses is almost certainly due to the increased concentrations of antibodies and CTLs resulting from the
initial infections.

4.2. Numerical simulations for optimal control

In the simulations, we computed numerical results for nonzero time delays for the two cases of zero
control and optimal nonzero control.

The numerical results for the zero control and optimal control cases are shown in Figures 3 (a)-(h) for
the time delays τ1 = 2 days and τ2 = 4 days. We assumed that control u1, the efficiency of drug therapy
in blocking new infection, and the control u2, the efficiency of drug therapy in inhibiting viral production,
were both in the range [0, 0.7]. In all figures, the zero control results are plotted as a blue dashed line and
the optimal control results are plotted as a red solid line.

Figures 3 (a) and (b) show the optimal control treatment strategies for u1 and u2, respectively. For u1,
the optimal strategy is to initially administer the drug at the maximum allowed efficiency level of 70%
until day 149 and then gradually reduce the level towards zero by the final day 350. For u2, the optimal
strategy is to initially administer the drug at the maximum allowed efficiency level of 70% until day 107
and then rapidly reduce the level to zero by day 135. Figures 3 (c)-(h) compare the concentrations of the
populations for a period of 350 days for zero control and for the optimal controls shown in Figures 3
(a) and (b). Figure 3 (c) shows that for the parameter values considered in this simulation, the effect
of applying the two control variables at the optimal efficiency levels shown in Figues 3 (a) and (b) is
to reduce the rate of infection of the uninfected hepatocytes (x) at a much slower rate than for the zero
control case until the rates become approximately equal after 250 days. However, as shown in Figures 3
(a) and (b), at 250 days the optimal levels of u1 and u2 are both zero.
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Figure 3: Dynamics of the HBV model (2.1) with both controls (solid curves) and without controls (dashed curves) for time
delays τ1 = 2 and τ2 = 4. (a) Optimal value of u1, efficiency of drug therapy in blocking new infection. (b) Optimal value of
u2, efficiency of drug therapy in inhibiting viral production. (c) Concentration of uninfected hepatocytes (c). (d) Concentration
of infected hepatocytes (y). (e) Concentration of intracellular HBV DNA-containing capsids (c). (f) Concentration of free viruses
(v). (g) Concentration of antibodies (w) and (h) Concentration of CTLs (z).

Figure 3 (d) shows that the concentration of infected hepatocytes (y) increases rapidly in the absence
of controls u1 and u2 to 3100 cells/ml at 11 days and then declines sharply before rising to a small peak
of approximately 500 cells/ml at 86 day. A possible explanation for the second peak being smaller is
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that the high levels of y in the first peak lead to a high concentration of CTLs which can help reduce
the concentration of infected hepatocytes in the second peak. For the optimal controls, the concentration
reaches a peak at approximately 970 cells/ml at 29 days showing the effectiveness of the therapy. As for
the uninfected hepatocytes, the peak in the infected hepatocytes at approximately 200 days shows the
increase in infection when the rate at which the drugs are administered is reduced.

Figure 3 (e) shows the same dynamical patterns for the concentration of intracellular HBV DNA-
containing capsids (c) as the patterns for the infected hepatocytes. That is, for zero controls the concen-
tration increases rapidly to a peak of 500 cells/ml at 12 days, then decreases rapidly to near zero and then
rises to a second peak of 80 cells/ml at 86 days. With the optimal controls, the concentration increases
more slowly to an initial peak of 44 cells/ml at 30 days and then to a second peak of 60 cells/ml at ap-
proximately 140 days. The increase in the second peak for the optimal control can be associated with the
reproduction in the drug therapies at 140 days. These results indicate that the control drugs significantly
reduce the concentration of intracellular HBV DNA-containing capsids. Since intracellular HBV DNA-
containing capsids play a role in the virus life cycle, as they assemble around viral reverse transcriptase,
this reduction in them leads to a reduction in the concentration of free viruses as shown in Figure 3 (f).

Figure 3 (f) shows similar dynamical patterns for the concentrations of free viruses (v) as for the
capsids (c) in Figure 3 (e). For zero controls, the concentration increases rapidly to a peak of 90 cells/ml
at 6 days, then decreases rapidly to near zero and then rises again to a second peak of 45 cells/ml at 74
days. With the optimal controls, the concentration increases more slowly to an initial peak of 28 cells/ml
at 20 days and then to a second peak of 49 cells/ml at 126 days. The increase in the second peak for the
optimal control can be associated with the reduction in the drug therapies at 126 days.

Figure 3 (g) again shows similar dynamical patterns for the concentrations of antibodies (w). For zero
controls, the concentration increases rapidly to a peak of 1640 cells/ml at 16 days, then decreases rapidly
to near zero and then rises again to a second peak of 290 cells/ml at 101 days. With the optimal controls,
the concentration increases more slowly to an initial peak of 130 cells/ml at 39 days and then to a second
peak of 222 cells/ml at 150 days. The increase in the second peak for the optimal control can again be
associated with the reduction in the drug therapies at 150 days.

Figure 3 (h) again shows similar dynamical patterns for the concentrations of CTLS (z). For zero
control, the concentration of CTLs (z) increases rapidly to a peak of 790 cells/ml at 24 days and then
decreases rapidly to zero. For the optimal controls, the concentration rises to a small peak of 89 cells/ml
at 49 days and then also decreases to zero.

In general, the results show that the therapy greatly reduces the level of infection. This effect can
also be seen from the value of the integral for the state variables

∫350
0 (x(t) +w(t) + z(t))dt, which has a

value of 393190 cells/ml for the optimal control case and a value of 220630 cells/ml for the zero control
case. The results in Figures 3 (d)-(h) clearly show the effectiveness of the controls in producing a large
reduction in the concentration of infected hepatocytes, intracellular HBV DNA-containing capsids, free
viruses, and antibodies and therefore to a reduction in the concentration of antibodies and CTLs.

4.3. Numerical simulation of basic reproduction number against controls

In this section, we show the relationship between the values of the optimal controls and the basic
reproduction number for the cases of zero delays and nonzero delays.

Figures 4 (a) and (b) show, respectively, the dynamical behavior of R0 vs time when both controls are
in the optimal states shown in Figures 3 (a) and (b) for the zero delay case and nonzero delay case. In
both cases, it can be seen that when the controls are set at their maximum allowed level of effectiveness
(u1 = u2 = 0.7), the values of R0 are a minimum and therefore the rate of reduction in the infected
populations will be a maximum. However, as the level of the controls is reduced, the value of R0 increases
and the rate of reduction of the infected populations becomes slower. Near the end of the period of 350
days, the control levels are reduced to zero and R0 becomes greater than 1 showing that the infection will
begin to increase. The results show that the control levels should be maintained at a nonzero minimum
level to keep R0 < 1.
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Figure 4: Plots of basic reproductive number vs time for optimal levels of effectiveness of u1 and u2 (see Figures 3 (a) and (b)).
(a) Zero time delays. (b) Nonzero time delays: τ1 = 2 days, τ2 = 4 days.

Figures 5 and 6 show a comparison between the values of the basic reproductive number for zero
delay and nonzero delay cases τ1 = 2 days and τ2 = 4 days for a range of values of the controls u1 and
u2. It can be seen that R0 increases with time slower in the delay case than in the nondelay case. A
comparison of Figure 5 (a) for zero delay shows that the value of R0 starts increasing once the control u1
drops after 138 days, whereas Figure 6 (a) for nonzero delay shows R0 does not start increasing until 150
days which is slower than the zero delay case. A similar pattern can be seen in comparing the zero delay
Figure 5 (b) with the nonzero delay 6 (b) where R0 starts increasing at approximately 98 days for the zero
delay case and 110 days for the nonzero case.
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Figure 5: Plots of basic reproductive number vs time for nondelay case. (a) u1 optimal and u2 = 0. (b) u1 = 0 and u2 optimal.
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Figure 6: Plots of basic reproductive number vs time for delay case (τ1 = 2 days, τ2 = 4 days). (a) u1 optimal and u2 = 0; (b)
u1 = 0 and u2 optimal.
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Finally, in Figure 7 we show the plots of R0 vs u1 and R0 vs u2. It can be seen that in both cases a
value of approximately 0.2 gives a value of R0 = 1 and could therefore be used, if required, to maintain
an infection-free system.
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Figure 7: Plots of basic reproductive number vs optimal control values for zero delay. (a) R0 vs u1; (b) R0 vs u2.

5. Conclusions

In this article, we have studied an optimal control problem for two drug therapies in a time delay
model for HBV infection. The model consists of six populations: uninfected hepatocytes, infected hepato-
cytes, HBV DNA-containing-capsids, free viruses, antibodies and cytotoxic T-lymphocytes. The two time
delays in the model are a delay in virus production after cell infection and a delay in antigenic stimulation
generation. The model also includes an adaptive immune response, a cure rate for infected hepatocytes
to uninfected hepatocytes and HBV DNA-containing capsids. The two optimal therapies are for blocking
new infection of uninfected cells and for inhibiting viral production by infected cells. The solutions of the
model are proved to be nonnegative, unique and bounded. The model is shown to have three equilibrium
states, namely infection-free, immune-free and endemic. The basic reproduction number for the stability
of the infection-free equilibrium has been derived and a sensitivity analysis has been carried out to deter-
mine the most important parameters to change to control the disease. The Pontryagin maximum principle
is used to find the optimal control to maximize the concentrations of uninfected hepatocytes, antibodies
and cytotoxic T-lynphocytes at mininmum cost. The existence of optimal control pairs is proved and an
algorithm is developed for solution of the state and costate equations for the time delayed Pontryagin
maximum principle. Numerical simulations are then carried out to illustrate the dynamical behavior of
the solutions of the time delayed optimal control model of HBV infection. The results show that the effects
of the intracellular delays is to slow down the rate of infection. Finally, the results show that the two opti-
mal control therapies considered in this paper can reduce the basic reproductive number to less than one
and can significantly reduce the concentration of infected hepatocytes, intracellular HBV DNA-containing
capsids, free viruses, antibodies and cytotoxic T-lymphocytes and can also slow down the time of their
epidemic peaks. Both control therapies have therefore been shown to be useful measures for reducing
HBV infection. In this paper, we have shown examples of the effect of the therapy for a period of 350 days
for values of parameters selected from published papers, if available, or that we assumed to be reasonable
if published values could not be found.

In this paper, we have not considered the possibility of memory or history effects in the state vari-
ables of the model. There is now a large literature on fractional derivatives and integrals and their
applications to develop models which include these memory or history effects. Extensive reviews of the
basic concepts of fractional calculus and its applications can be found in books by Podlubny [54], Hil-
fer [33], Kilbas et al. [40], Petráš [53], and in the PhD thesis of Kisela [41]. In recent years, there have
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also been many new definitions of fractional derivatives which have been developed for various pur-
poses including biology. Some examples of useful fractional derivatives include Riemann-Liouville [54],
Caputo [10, 54], Hadamard [39], Katugampala [35], Caputo-Fabrizio [11], Atangana-Baleanu [5, 6], and
Hattaf [30, 36]. Examples of fractional calculus models related to HBV infection include Bachraoui et
al. [7] and Hattaf [30, 36]. Furthermore, spatiotemporal dynamics have not been included in this study.
Some works that are related to spatiotemporal dynamics include Hattaf and Yousfi [31], Hattaf [29], and
Manna and Hattaf [45]. In future work, it would be interesting to develop further fractional calculus
models and spatiotemporal dynamics for HBV infection models.
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