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Abstract

Since mass media plays an important role in influencing the non-adopter population, the adoption rate changes with the
media awareness rate. Motivated by this concept, in this paper, a model of three non-intersecting classes of non-adopters,
adopters for product-I and adopters for product-II is proposed. Under the influence of media coverage and word-of-mouth,
the dynamic behaviour of the system is investigated. The basic influence numbers R01 and R02 associated with the first and
second innovations help in performing stability analysis. It is observed from stability analysis that adopter-free equilibrium
is conditionally stable. Also, the system has no stable interior equilibrium point. The basic influence numbers determine
the sustainability of a particular product in the market. The optimal control theory is used to reduce the frustration rate
in both adopter classes. The Hamiltonian function is constructed using the extended optimum control model and is then
solved according to Pontryagin’s maximum principle to get the cost. Also, coexistence is possible with the implementation of
optimal control. Sensitivity analysis has been performed for both the basic influence numbers R01 and R02 . Lastly, numerical
experimentations have been executed to assist analytical findings with distinct sets of parameters.
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1. Introduction

In the present article, we have strived to present an innovation dissemination model in a competitive
market. The innovation dissemination model is mainly helpful in predicting product life cycles and trends
in product purchase. The Bass model is a significant device for predicting the adoption of an innovation
for which no close substitute exists in the marketplace [1]. The model attempts to forecast how many
customers will eventually adopt the new product and when they will do so. Researchers in this field are
relaxing the assumptions of this model and presenting sophisticated models. Jain et al. [12] looked at
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the impact of pricing on the adoption of novel durable goods. Jones et al. [13] introduced a new model
for the spread of products that had two concurrent acceptance processes: one for retailers and one for
consumers. This model assumes that there is an essential interaction between these two processes and that
the customer will buy the product only from retail outlets. The Lotka-Volterra equation [16] has been used
in markets where two or more closely substituted products are competing for their sustainability. Modis
[22] examined the behaviour of company stocks as if they were competing for investors’ resources. Kekana
et al. [14] analyzed the global stability of equilibria for two competing products in an innovation diffusion
model. Yu et al. [30] presented the mathematical model for three competitive products with advertisement
effect, interpersonal valid contact rate, and return rate from adopter class to non-adopter class as key
parameters and discussed the global stability of equilibria. Kim et al. [15] presented the situation of the
Korean mobile phone market and observed a commensal relationship. Horsky et al. [10] examined the
effect of advertising on the sales growth of new products that were purchased infrequently. In recent years,
the bifurcation analysis of different innovation diffusion models has been studied [18, 19]. Many models
regarding innovation diffusion have been developed and analyzed in recent years [7, 11, 20, 26, 27, 31].

Motivation and novelty in the paper

Numerous disciplines, including engineering, environmental management, energy systems,
economics, and medicine, can greatly benefit from optimal control theory. It helps in optimizing control
strategies and resource allocation, leading to improved system performance, efficient resource utilisation,
and decision-making. It is extensively used in engineering systems, including electrical, automotive, and
aeronautical systems. It aids in designing control strategies that optimize system performance while min-
imizing costs or energy consumption. It is used in environmental management, including the prevention
of pollution and the management of natural resources. It assists in choosing the best regulations and
preventative measures to reduce pollution, save resources, and advance sustainable development. To
maximize energy production and distribution, it is used in energy systems, including power grids and re-
newable energy systems. Using mathematical modelling and optimization approaches to create plans for
preventing the spread of infectious illnesses is known as optimal control in epidemiology. To lessen the
impact of the disease on a community, it entails determining the optimal distribution of control measures,
such as vaccination campaigns, quarantine measures, or social isolation. Mathematical modelling helps
in comprehending the dynamics of disease transmission and its control strategy. In epidemic models,
the theory of optimal control is particularly fascinating and helpful [7, 17, 25, 28]. As far as innovation
diffusion modelling is concerned, Chugh et al. [2] analyzed a four-compartmental system with the help
of optimal control theory to examine the interaction and market dissemination of two product categories.
Its usefulness motivates us to adopt this theory in innovation diffusion modelling. In our present article,
we will discuss this theory.

Dhar et al. [4] studied a model considering only the word-of-mouth effect and ignoring the adver-
tisement effect on innovation diffusion. Chugh et al. [3] modified the model [4] and presented a model
with the concept of cooperativeness in a competitive market. But both research papers ignored the media
effect [3, 4]. In this paper, we consider the effects of word-of-mouth as well as media alerts.

Structure of the paper

In the present paper, using the stability theory of differential equations and two competing products,
we offer a non-linear mathematical model to investigate the impact of advertising and word-of-mouth on
innovation dissemination. This article has been organized in the following way. In Section 2, a realistic
mathematical model is framed with two competing products under internal and external influence. Sec-
tion 3 deals with basic influence numbers. The study regarding the stability and Hopf-bifurcation analysis
is presented in Sections 4 and 5, respectively. In Section 6, we use optimal control theory to reduce the
frustration rate in both adopter classes. We run a numerical simulation to examine the impacts of optimal
control and show a fall in the cost function. Sensitivity analysis and numerical validation are performed
in Sections 7 and 8, respectively. Finally, a brief conclusion of the model is presented in Section 9.
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2. Mathematical assumptions and proposed model

In this paper, a population is classified into three non-intersecting classes namely, N(t);A1(t);A2(t),
where N(t) is the non-adopter population, A1(t) is the adopter population of innovation-I, A2(t) is the
adopter population of innovation-II at time ‘t’ and a non-linear dynamical mathematical model is pro-
posed. Our proposed model hinges on the following assumptions.

1. Adopters will adopt only one innovation at a time. The situation in which an adopter uses more
than one innovation simultaneously is ignored.

2. It is assumed that Λ is the constant enrollment rate in the non-user class and δ is the constant fatality
rate for all classes of the population.

3. Adopters will only positively impact non-adopters.
4. The rate at which non-users contact users of the first (second) product before the media alert is

denoted by β1(β3) and β2(β4) is the additional contact rate due to the media alert for the adopter
A1(A2). Hence, β1 + β2A1

m+A1
( β3 + β4A2

m+A2
) is the total contact rate after media alert. We chose

these contact rates to model the media alert with the assumption that β2A1
m+A1

( β4A2
m+A2

) will reflect
the transmission rate when adopter individuals appear and are reported. When A1(A2) → ∞, the
increased value of the transmission rate approaches its maximum β2(β4), and the increased value
of the transmission rate equals half of the maximum β2(β4) when the reported adopter arrives at
‘m’ [5]. Here ‘m’ is half media saturation rate.

5. The rate at which users of the first (second) product frustrate and join the non-adopter class is
γ1(γ2).

6. Competition rate δ1(δ2) causes a reduction in the adoption of the first (second) adopter population.

Based on the assumptions, Figure 1 illustrates the system’s schematic flow.

Figure 1: Schematic flow diagram of the suggested model (N,A1,A2).

In view of the schematic flow, the proposed mathematical model is hegemonized by a system of
ordinary differential equations given below:

dN

dt
= Λ−

(
β1 +

β2A1

m+A1

)
NA1 −

(
β3 +

β4A2

m+A2

)
NA2 + γ1A1 + γ2A2 − δN, (2.1)

dA1

dt
=

(
β1 +

β2A1

m+A1

)
NA1 − γ1A1 − δ1A1A2 − δA1, (2.2)

dA2

dt
=

(
β3 +

β4A2

m+A2

)
NA2 − γ2A2 − δ2A1A2 − δA2, (2.3)

with initial conditions N(0) > 0, A1(0) > 0, and A2(0) > 0.
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Positivity and boundedness of proposed model
The positivity and boundedness of the solutions to system (2.1)-(2.3) are discussed. Here, positivity

means that the population will survive, whereas boundedness means that natural expansion will be
constrained by the availability of resources. For boundedness and positivity, the following theorem has
been stated and proved.

Theorem 2.1. The solutions of the system (2.1)-(2.3), with the initial conditions, are non-negative and ultimately
bounded.

Proof. It is clear that

dN

dt

∣∣∣∣
N=0

= Λ+ γ1A1 + γ2A2 > 0,
dA1

dt

∣∣∣∣
A1=0

= 0 > 0, and
dA2

dt

∣∣∣∣
A2=0

= 0 > 0.

On the boundary of hyperplanes, the aforementioned rates are positive. Any point we choose that initiates
in the interior of R3

+ will always stay in the closed plane. This suggests that all possible system solutions
are non-negative. Also, it can be perceived easily from system (2.1)-(2.3) that

d

dt
(N+A1 +A2) 6 Λ− δ(N+A1 +A2),

and lim supt→∞(N +A1 +A2) 6 Λ
δ . It shows the upper boundedness of the system, and the feasible

region for the system is Ω = {(N,A1,A2) : 0 6 N+A1 +A2 6 Λ
δ ,N > 0,A1 > 0,A2 > 0}. This set is known

as the positively invariant region for all solutions of system (2.1)-(2.3).

3. Basic influence number

The basic influence number is defined and calculated in this section. It is a concept of epidemiology,
where it is known as the basic reproduction number. This number helps in knowing whether innovation
will proliferate or not in the population. It is usually symbolized by R0. When R0 < 1, the innovation will
run out of the market in the future as per the value of R0, and when R0 > 1, the innovation may expand
in the market. The rate of expansion completely depends upon the value of R0. E1(

Λ
δ , 0, 0), the adopter-

free equilibrium of the system (2.1)-(2.3) is discussed in section 4. Let F be the vector representing the
new adopters from the direct (word-of-mouth) or indirect (media coverage) contact of adopter population
with non-adopter population from system equations of adopter compartments (i.e., (2.2)-(2.3, [24]). The
remaining transfer terms of adopter compartments (i.e., (2.2)-(2.3), [24]) are being represented by V, and
we have

F =

(
(β1 +

β2A1
m+A1

)NA1

(β3 +
β4A2
m+A2

)NA2

)
, V =

(
γ1A1 + δ1A1A2 + δA1
γ2A2 + δ2A1A2 + δA2

)
.

And Jacobian matrices around the adopter-free equilibrium E1 are given by

F = J(F)E1 =

(
β1Λ
δ 0
0 β3Λ

δ

)
, V = J(V)E1 =

(
γ1 + δ 0

0 γ2 + δ

)
.

Here K = FV−1 is the next generation matrix and given by

FV−1 =

(
β1Λ

δ(γ1+δ)
0

0 β3Λ
δ(γ2+δ)

)
.

The spectral radius of matrix FV−1 is denoted by ρ(FV−1). As calculated in [29], the basic influence
number connected with our proposed mathematical model (2.1)-(2.3) is the spectral radius of matrix
FV−1, denoted by R0. Therefore, R0 = max(R01 ,R02). The basic influence numbers associated with first
and second innovation respectively in the absence of each other are denoted by R01 and R02 and given by
R01 =

Λβ1
δ(δ+γ1)

and R02 =
Λβ3

δ(δ+γ2)
.
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4. The stability analysis of the model

The system (2.1)-(2.3) has the following four feasible steady states, namely

1. E1(
Λ
δ , 0, 0): corresponds to adopter-free situation;

2. E2(Ñ, Ã1, 0): corresponds to a situation in which A2 will dissipate, for Λβ1
δ(δ+γ1)

= R01 > 1, Ñ=Λδ − Ã1,

Ã1 = −B2+
√
B2

2−4B1B3
2B1

, B1 = δ(β1 + β2), B2 = δ(δ + γ1)(1 − R01) + δmβ1 −Λβ2 and B3 = δm(δ +
γ1)(1 −R01);

3. E3(N̂, 0, Â2): corresponds to a situation in which A1 will dissipate, for Λβ3
δ(δ+γ2)

= R02 > 1, N̂ =

Λ
δ − Â2, Â2 = −C2+

√
C2

2−4C1C3
2C1

, C1 = δ(β3 + β4), C2 = δ(δ+ γ2)(1 − R02) + δmβ3 −Λβ4 and C3 =
δm(δ+ γ2)(1 −R02);

4. E4(
︷︸︸︷
N ,
︷︸︸︷
A1 ,
︷︸︸︷
A2 ): corresponds to a situation in which both A1 and A2 will sustain in the market.

Theorem 4.1. The adopter-free equilibrium E1(
Λ
δ , 0, 0) is stable for R01 < 1 and R02 < 1.

Proof. Firstly, the general variational matrix associated with the system is calculated and given below

J=

 K1 L1 M1
K2 L2 M2
K3 L3 M3

 ,

where K1 = −δ− (β1 +
β2A1
m+A1

)A1 − (β3 +
β4A2
m+A2

)A2, L1 = −(β1 +
β2A1
m+A1

)N−A1N( mβ2
(m+A1)2 ) + γ1, M1 =

−(β3 +
β4A2
m+A2

)N−A2N( mβ4
(m+A2)2 ) + γ2, K2 = (β1 +

β2A1
m+A1

)A1, L2 = (β1 +
β2A1
m+A1

)N+A1N( mβ2
(m+A1)2 ) − γ1 −

δ1A2 − δ, M2 = −A1δ1, K3 = (β3 +
β4A2
m+A2

)A2, L3 = −δ2A2, M3 = (β3 +
β4A2
m+A2

)N+A2N( mβ4
(m+A2)2 ) − γ2 −

δ2A1 − δ. The characteristic equation about the adopter-free equilibrium E1 is given below

(δ+ λ)[(δ+ γ1)(R01 − 1) − λ][(δ+ γ2)(R02 − 1) − λ] = 0. (4.1)

The roots of the above equation, commonly known as characteristic values of matrix are λ1 = −δ, λ2 =
(δ+γ1)(R01 − 1), and λ3 = (δ+γ2)(R02 − 1). For R01 < 1 and R02 < 1, all the roots of (4.1) contain negative
real parts. Therefore the equilibrium point E1 is always locally asymptotically stable under the conditions
R01 < 1 and R02 < 1. This situation has been graphically shown in Figure 2.

Theorem 4.2. For R01 > 1, there exists unique adopter-I dominating equilibrium E2(Ñ, Ã1, 0) and it is condition-
ally stable.

Proof. First of all, we will prove uniqueness of this equilibrium. The values of Ã1 are given by a quadratic

equation B1Ã1
2
+ B2Ã1 + B3 = 0, where B1 = δ(β1 + β2), B2 = δ(δ+ γ1)(1 − R01) + δmβ1 −Λβ2, B3 =

δm(δ+ γ1)(1 −R01). The value of Ñ can be obtained by Ñ+ Ã1 = Λ
δ . It is clear that B1 is always positive.

For R01 > 1, B3 will be negative, hence by Descartes rule of signs, the above quadratic equation will have
only one positive solution irrespective of the sign of B2 and it ends first part of the Theorem 4.2.

Secondly, about the adopter-I dominating equilibrium E2(Ñ, Ã1, 0), the characteristic equation of

general variational matrix J gives roots λ1 = −δ, λ2 = Ã1[Ñ( mβ2

(m+Ã1)2 ) − (β1 +
β2Ã1

m+Ã1
)], λ3 = (γ2 +

δ)(R02 − 1) − (β3 + δ2)Ã1 and all the eigenvalues must have negative real parts if R02 < 1 and (Λδ −

Ã1)(
mβ2

(m+Ã1)2 ) < β1 +
β2Ã1

m+Ã1
. So the system will be conditionally stable under the conditions R02 < 1 and

(Λδ − Ã1)(
mβ2

(m+Ã1)2 ) < β1 +
β2Ã1

m+Ã1
. This situation has been graphically represented in Figure 3 of numerical

simulation section.
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Theorem 4.3. For R02 > 1, there exists unique adopter-II dominating equilibrium E3(N̂, 0, Â2) and it is condition-
ally stable.

Proof. Proof of this theorem is similar as that of Theorem 4.2. This situation has been graphically repre-
sented in Figure 4 of numerical simulation section.

Theorem 4.4. The positive interior equilibrium E4(N̂, Â1, Â2) is always unstable.

Proof. The variational matrix around the positive interior equilibrium E4(N̂, Â1, Â2) is given by

J=

 −δ− Â1S− Â2T γ1 − N̂S− Â1N̂U γ2 − N̂T − Â2N̂V

Â1S W −δ1Â1

Â2T −δ2Â2 X

 ,

where W = −δ − γ1 + N̂S + Â1N̂U − δ1Â2, X = −δ − γ2 + N̂T + Â2N̂V − δ2Â1, S = β1 +
β2Â1

m+Â1
, T =

β3 +
β4Â2

m+Â2
, U = mβ2

(m+Â1)2 , V = mβ4

(m+Â2)2 .

Let us assume that the characteristic equation about the interior equilibrium E4(N̂, Â1, Â2) is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = δ+ Â1S+ Â2T , a2 = −δ1δ2Â1Â2 + Â1S(δ+ δ1Â2) + Â2T(δ+ δ2Â1), a3 = −Â1Â2[δ1δ2(−δ−

Â1S− Â2T) + δ1T(−δ− δ1Â2) + δ2S(−δ− δ2Â1)]. Using the conditions N̂S+ Â1N̂U− δ1Â2 − δ = γ1, N̂T +
Â2N̂V − δ2Â1 − δ = γ2. It is clear that a1,a3 > 0, but after simplification, we get a1a2 − a3 < 0 is always.
The system is therefore unstable around E4 according to the Routh-Hurwitz criterion.

Remark 4.5. The system (2.1)-(2.3) has no stable interior equilibrium E4. In long run, either system will be
adopter-free E1 or one of the innovations will survive, i.e., E2 or E3 will be stable.

5. Hopf-bifurcation analysis of E2 and E3

Now, we investigate the system’s potential for Hopf-bifurcation, by taking “δ” (i.e., the constant fatality
rate of all classes of the population) as the bifurcation parameter. The characteristic equation about the
E2(Ñ, Ã1, 0) is

λ3 + b1λ
2 + b2λ+ b3 = 0, (5.1)

where values of b1, b2, and b3 are given in Appendix A. The necessary and sufficient conditions for
the existence of the Hopf-bifurcation are, if there exist δ = δ∗ such that (i) bj(δ∗) > 0, j = 1, 2, 3; (ii)
b1(δ

∗)b2(δ
∗)-b3(δ

∗)=0; and (iii) if we consider the eigen values of the characteristic equation (5.1) are of
the form λj =uj + ιvj, then d

dλ(uj) 6= 0, j = 1, 2, 3. Putting λ = u+ ιv in (5.1) we get

(u+ ιv)3 + b1(u+ ιv)2 + b2(u+ ιv) + b3 = 0. (5.2)

On separating the real and imaginary parts of equation (5.2) and eliminating v between real and imaginary
parts, we get

8u3 + 8b1u
2 + 2(b2

1 + b2)u+ b1b2 − b3 = 0. (5.3)

It is clear from above that u(δ∗) = 0 if and only if b1(δ
∗)b2(δ

∗)-b3(δ
∗)=0. The existence of threshold

value δ = δ∗ is ensured by positive root of (ii). Hence the discriminant of 8u2 + 8b1u+ 2(b2
1 + b2) = 0 is

64b2
1 − 64(b2

1 + b2) < 0, which ensures that d
dλ(b1b2 − b3) 6= 0 at δ = δ∗. Again differentiating (5.3) with

respect to δ, we have (24u2 + 16b1u+ 2(b2
1 +b2))

du
dλ + (8u2 + 4b1u)

db1
dλ + 2udb2

dλ + d
dλ(b1b2 −b3) = 0. Now

since at δ = δ∗, u(δ∗) = 0, we get [dudλ ]δ=δ∗ =
− d
dλ (b1b2−b3)

2(b2
1+b2)

6= 0, which satisfies transversality condition of
hopf-bifurcation. The analytical value of δ is difficult to determine from (ii). Numerically, it is observed
that for realistic value of δ, there is no Hopf-bifurcation for set-1, 2, 3 in Table 2. A very small change in the
value of δ, switches equilibrium point E2 into E3 and vice versa. Hopf bifurcation analysis at equilibrium
point E3 is similar as we discussed the same for E2.
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6. Optimal control of innovation diffusion model

As we know, the presence of a high frustration rate in the market is not good for the health of busi-
nesses. Here, we try to control this frustration rate. Frustration with a product jeopardizes its existence.
So in order to remain in the market, we need to reduce its frustration rate. To achieve this goal, we have to
make some efforts and bear some costs. We will form a strategy in such a way that we get the most out of
our goal with the least effort and cost. By using Pontryagin’s maximal principle [23], we aim to identify
the necessary conditions for the optimal control of the innovation diffusion model in this part. Our main
objective is to reduce the frustration rate in both adopter classes. We suggest two time-dependent control
variables in the range [0, tf] called u(t) and v(t), where tf is the final time. Keeping this strategy in mind,
we have the following innovation diffusion control model

Ṅ = Λ−
(
β1 +

β2A1
m+A1

)
NA1 −

(
β3 +

β4A2
m+A2

)
NA2 + (γ1 − u(t))A1 + (γ2 − v(t))A2 − δN,

Ȧ1 =
(
β1 +

β2A1
m+A1

)
NA1 − (γ1 − u(t))A1 − δ1A1A2 − δA1,

Ȧ2 =
(
β3 +

β4A2
m+A2

)
NA2 − (γ2 − v(t))A2 − δ2A1A2 − δA2.

(6.1)

The objective functional that this study takes into consideration is

J(u, v,A1,A2) =

∫tf
0

(
p1A1 + p2A2 +

1
2
p3u

2 +
1
2
p4v

2
)
dt. (6.2)

The control function u(t) and v(t) are bounded, Lebesgue-integrable function. Here, our aim is to mini-
mize the frustration rate in both adopter classes. We want to get the maximum result with the minimum
cost and effort.

In the above-mentioned objective functional, the quantity p1(p2) represents the cost associated with
reducing the frustration rate of compartment A1(A2), p3, and p4 are positive weight parameter, and tf is
the extent of the intervention period. The main objective is to find an optimal control pair (u∗, v∗) such
that

J(u∗, v∗) = min
U
J(u, v)

where the control set U defined as follows

U = {(u, v)|0 6 u(t), v(t) 6 1, t ∈ [0, tf]},

is Lebesgue measurable. The optimal control problem is solved using Pontryagin’s maximal principle,
which specifies the necessary conditions that an optimal solution must meet. In its application, the initial
stage is to demonstrate that the system (6.1) has an optimal control, and then we derive the optimality
system. Furthermore, the Lagrangian and Hamiltonian are defined for the optimal control problem (6.1)-
(6.2). The Lagrangian expression is

L = p1A1 + p2A2 +
1
2
p3u

2 +
1
2
p4v

2.

And, we express the Hamiltonian in the following way in order to minimise this Lagrangian:

H = p1A1 + p2A2 +
1
2
p3u

2 +
1
2
p4v

2 + λ1

[
Λ−

(
β1 +

β2A1

m+A1

)
NA1 −

(
β3 +

β4A2

m+A2

)
NA2

+ (γ1 − u(t))A1 + (γ2 − v(t))A2 − δN

]
+ λ2

[(
β1 +

β2A1

m+A1

)
NA1 − (γ1 − u(t))A1

− δ1A1A2 − δA1

]
+ λ3

[(
β3 +

β4A2

m+A2

)
NA2 − (γ2 − v(t))A2 − δ2A1A2 − δA2

]
.
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Here λ1, λ2, and λ3 are the adjoint or co-state variables. If we assume x1 = N, x2 = A1, and x3 = A2, the
system of (6.1) can be determined again using the following formula:

ẋi =
∂H
∂λi

, i = 1, 2, 3.

Pontryagin’s maximum principle [23] transforms (6.1)-(6.2) into a Hamiltonian’s point-wise minimization
problem [9] with regard to u and v.

Theorem 6.1. Given the optimal control u∗, v∗ and state variablesN, A1, and A2 of the corresponding state system
(6.1)-(6.2), which minimizes J(u, v) over U, there exist adjoint variables λ1, λ2, and λ3 satisfying

dλi
dt

= −
∂H
∂λi

, i = 1, 2, 3,

with transversality conditions
λ1(tf) = λ2(tf) = λ3(tf) = 0,

and
u∗ = max{min{A1

(λ1 − λ2)

p3
,umax}, 0}, v∗ = max{min{A2

(λ1 − λ3)

p4
, vmax}, 0}.

Proof. We will show the existence of optimal control by using Corollary (4.1) of Fleming and Rishel [6]. We
can infer that the model (6.1) is bounded because our state variables are non-negative and a super-solution
of the system of equations (6.1) is taken into account. In addition, the control set U is by definition convex
and closed. As a result, the optimal system (6.1)-(6.2) is bounded, ensuring the compactness required for
optimal control to exist. Thus, all conditions for the existence of controls have been met. One can follow
[21] for more information in-depth.

We have the following in accordance with Pontryagin’s maximum principle:

dλ1

dt
= (λ1 − λ2)

(
β1 +

β2A1

m+A1

)
A1 + (λ1 − λ3)

(
β3 +

β4A2

m+A2

)
A2 + λ1δ,

dλ2

dt
= (λ1 − λ2)

[(
β1 +

β2A1

m+A1

)
N+

mβ2NA1

(m+A1)2 − (γ1 − u(t))

]
+ δ1λ2A2 + δλ2 + λ3δ2A2 − p1,

dλ3

dt
= (λ1 − λ3)

[(
β3 +

β4A2

m+A2

)
N+

mβ4NA2

(m+A2)2 − (γ2 − v(t))

]
+ δ1λ2A1 + δλ3 + λ3δ2A1 − p2.

We take into account three situations to describe our control. First, consider the set {t|0 < u∗(t) < umax},
in which we get

0 =
∂H
∂u

∣∣∣∣
u∗

= p3u
∗ − (λ1 − λ2)A1.

From the above equation, we get

u∗ =
λ1 − λ2

p3
A1.

Secondly, consider the set {t|u∗(t) = 0}, in which we have

0 6
∂H
∂u

∣∣∣∣
u∗

= p3u
∗ − (λ1 − λ2)A1,

thus
0 >

λ1 − λ2

p3
A1.

And then

u∗ = max
{
λ1 − λ2

p3
A1, 0

}
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holds on this set. Finally, consider the set {t|u∗(t) = umax}, in which we get

0 >
∂H
∂u

∣∣∣∣
u∗

= p3u
max − (λ1 − λ2)A1,

which gives

umax 6
λ1 − λ2

p3
A1.

So

u∗ = min
{
A1

(λ1 − λ2)

p3
,umax

}
.

Based on these three situations, we characterize optimal control as

u∗ = max
{

min
{
A1

(λ1 − λ2)

p3
,umax}, 0

}
.

Thus u∗ verifies these standard control arguments involving the limits of the controls

u∗ =


0, if ξ∗ 6 0,
ξ∗, if 0 < ξ∗ < umax,
umax, if ξ∗ > umax,


where ξ∗ = λ1−λ2

p3
A1. Additionally, ∂

2H
∂u2 > 0 shows that the optimal control minimizes the Hamiltonian.

Continuing like this, we have

v∗ = max
{

min
{
A1

(λ1 − λ3)

p4
, vmax}, 0

}
.

And, v∗ verifies these standard control arguments involving the limits of the controls

v∗ =


0, if η∗ 6 0,
η∗, if 0 < η∗ < vmax,
vmax, if η∗ > vmax,


where η∗ = λ1−λ3

p4
A2. Moreover, ∂

2H
∂v2 > 0 shows that the optimal control minimizes the Hamiltonian.

We present and discuss the outcomes of the numerical simulation of the control measure (strategy)
for the extended model (6.1) and objective functional (6.2) as a way of concluding this section. The state
system is solved with some initial guesses using the forward fourth-order Runge-Kutta method, while
the adjoint system is solved using the backward fourth-order Runge-Kutta methodology. We take a set
of parametric values defined in Set-8 with the initial conditions N(0) = 0, A1(0) = 0.4, and A2(0) = 0.85.
We draw two figures that correspond to Set-8. One is without control, and the other is with a control
strategy. From Figures 9 and 10, it is clear that the level of the non-adopter population increases after
the implementation of the control strategy. It is good because this non-adopter population is a potential
buyer of innovations. Also, after a decrease in frustration rate, we observe that the face of the curve
that corresponds to users of the second innovation, which was approaching zero, visible in Figure 9,
transforms, and it starts increasing slowly, visible in Figure 10. We are achieving our target with the
minimum cost, which is also shown in Figure 10. Thus, the coexistence of products in a competitive
market is possible by adopting the above-mentioned strategy, which reduces the frustration rate.
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7. Sensitivity analysis

In this section, sensitivity analysis has been performed for basic reproduction numbers R01 and R02

associated with first and second innovations, respectively. Sensitivity analysis describes the role of each
parameter in the innovation diffusion dynamics. It is used to detect degree of impactness of parameters,
i.e., high, moderate, or low. The basic influence number R01(=

Λβ1
δ(δ+γ1)

) is a function of four parameters.
The normalized sensitivity indices of basic influence numbers R01(R02) w.r.t. parameters are presented

in Table 1. From Table 1, it is observed that Λ and β1 have positive impact on R01 , while γ1 and δ have
negative impact. It is also shown that Λ and β3 have positive impact on R02 , while γ2 and δ have negative
impact. Hence, significant changes in R01(R02) can be observed by small changes in these parameters.

Table 1: The normalized sensitivity indices for the basic influence numbers R01 (R02 ).

Parameter(yj) Parametric Value Sensitivity index of R01 (R02 ) w.r.t. yj

Λ 0.30 1
β1(β3) 0.20 1
γ1(γ2) 0.10 -0.33
δ 0.20 -1.66

8. Numerical simulations

For ensuring the analytic conclusions, numerical simulations have been carried out with the help
of MATLAB’s built-in ode45, and bvp4c. In Table 2, sets of different parametric values are taken. In
Table 3, the values of basic influence numbers and equilibrium points are calculated for different sets of
parametric values. The Figures (2)-(9) show population distribution w.r.t. time for various cases. The
simulation result of the model with optimal control is shown in Figure 10.

Table 2: Assumed different sets of parametric values.

Set No. Λ β1 β2 β3 β4 γ1 γ2 m δ δ1 δ2

Set-1 0.30 0.15 0.15 0.20 0.20 0.20 0.25 0.90 0.50 0.10 0.20
Set-2 0.30 0.30 0.30 0.25 0.25 0.10 0.20 0.50 0.20 0.10 0.20
Set-3 0.30 0.25 0.25 0.30 0.30 0.20 0.10 0.50 0.20 0.10 0.20
Set-4 0.25 0.25 0.30 0.22 0.25 0.30 0.35 0.50 0.10 0.10 0.20
Set-5 0.25 0.24 0.30 0.28 0.25 0.35 0.29 0.50 0.10 0.10 0.20
Set-6 0.30 0.28 0.30 0.28 0.25 0.30 0.35 0.50 0.152 0.10 0.20
Set-7 0.30 0.28 0.30 0.28 0.25 0.30 0.35 0.50 0.151 0.10 0.20
Set-8 0.38 0.28 0.30 0.28 0.25 0.30 0.35 0.50 0.125 0.10 0.20

Table 3: Equilibrium points R01 and R02 w.r.t. different sets of parametric values.

Parameters R01 R02 Stable equilibrium point Figure

Set-1 0.1286 0.16 E1=(0.60,0,0) 2
Set-2 1.5 0.9375 E2=(0.61,0.89,0) 3
Set-3 0.9375 1.5 E3=(0.61,0,0.89) 4
Set-4 1.5625 1.2223 E2=(0.8322,1.6678,0) 5
Set-5 1.3334 1.79487 E3=(0.8256,0,1.6744) 6
Set-6 1.22264 1.10086 E2=(0.937,1.0366,0) 7
Set-7 1.23346 1.11036 E3=(1.1478,0,0.8390) 8
Set-8 2.00282 1.792 E2=(0.8142,2.2002,0) 9
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Figure 2: Corresponds to adopter-free equilibrium with R01 = 0.1286 and R02 = 0.16.
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Figure 3: Corresponds to adopter-I dominating equilibrium with R01 = 1.5 and R02 = 0.9375.
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Figure 4: Corresponds to adopter-II dominating equilibrium with R01 = 0.9375 and R02 = 1.5.
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Figure 5: Corresponds to adopter-I dominating equilibrium in spite of R01 > R02 > 1.
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Figure 6: Corresponds to adopter-II dominating equilibrium in spite of R02 > R01 > 1.
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Figure 7: The system is stable with equilibrium point E2=(0.937,1.0366,0) for the parametric values defined in Set-6 with δ=0.152.
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Figure 8: The system is stable with equilibrium point E3=(1.1478,0,0.8390) for the parametric values defined in Set-7 with δ=0.151.
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Figure 9: Distribution of non-adopter, adopter of Innovation-I, adopter of innovation-II populaion without control.
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9. Conclusions and future scope

The present model concludes that the sustainability of a product in the market depends mainly upon
positive advertisement, media coverage, personal interaction, immigration, and emigration. The present
model discusses the impact of competitiveness under the simultaneous effects of media coverage and
personal interaction. From the qualitative study of the model, we obtained the following results and
observations.

[i] It is observed that the system has four steady states, and the local stability of each equilibrium
has been studied. The adopter-free equilibrium E1 is stable, in which both products vanished from
the market under the conditions mentioned in Theorem 4.1. The conditions for the stability of the
other two boundary equilibria E2 and E3 are discussed in Theorems 4.2 and 4.3. Since the interior
equilibrium E4 is always unstable, as discussed in Theorem 4.4, the co-existence of the users of both
products in the market is not always possible.

[ii] The use of an optimal control strategy makes coexistence possible. Following the widespread use
of the control strategy, the non-adopter population level rises. It is advantageous since this non-
adopting group has the capacity to purchase innovations. Additionally, we see that the face of the
curve corresponding to users of the second invention, which was nearing zero, seen in Figure 9,
alters and starts expanding gradually, as apparent in Figure 10. Thus, the coexistence of products in
a competitive market is possible by adopting the optimal control strategy.

[iii] Sensitivity analysis shows the impact of parameters on basic influence numbers. Some parameters
impact the basic influence numbers positively, while others do so negatively.

[iv] Numerical simulations executed with different sets of parameters assist in analytical findings. It is
observed that if (a) R01 < 1, R02 < 1, then the adopter-free equilibrium E1 is stable (see Figure 2);
(b) R01 > 1, R02 <1, then only the first adopter will survive, and E2 is the stable equilibrium point
(see Figure 3); (c) R01 < 1, R02 > 1, then only the second adopter will survive, and E3 is the stable
equilibrium point (see Figure 4); (d) R01 > R02 > 1, then E2 may be stable and R02 > R01 > 1, then
E3 may be stable. It is shown in Figures 5, 6. A small change in Hopf bifurcation parameter “δ”
switches the equilibrium point (see Figures 7, 8).

In the future, one can develop and analyze the said model with delays in adoption. Also, we can
classify the non-adopter population on the basis of their income.
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Appendix A

Here, we will give the values of b1,b2, and b3 associated with equation (5.1), b1=−(λ1 + λ2 + λ3),
b2=λ1λ2 + λ2λ3 + λ3λ1, and b3=−λ1λ2λ3. And λ1=−δ, λ2=Ñβ3 − δ− γ2 − Ã1δ2,

λ3 = −
Ã1

3
(β1 +β2) + Ã1

2 (
γ1 + δ+β1(2m− Ñ) +β2(m− Ñ)

)
+ Ã1m

(
β1(m− 2Ñ) + 2

(
γ1 + δ−β2Ñ

))
+m2

(
γ1 + δ−β1Ñ

)
m2 + Ã1

2
+ 2mÃ1

.
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