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Abstract

Since mass media plays an important role in influencing the non-adopter population, the adoption rate changes with the
media awareness rate. Motivated by this concept, in this paper, a model of three non-intersecting classes of non-adopters,
adopters for product-I and adopters for product-II is proposed. Under the influence of media coverage and word-of-mouth,
the dynamic behaviour of the system is investigated. The basic influence numbers Ry, and R, associated with the first and
second innovations help in performing stability analysis. It is observed from stability analysis that adopter-free equilibrium
is conditionally stable. Also, the system has no stable interior equilibrium point. The basic influence numbers determine
the sustainability of a particular product in the market. The optimal control theory is used to reduce the frustration rate
in both adopter classes. The Hamiltonian function is constructed using the extended optimum control model and is then
solved according to Pontryagin’s maximum principle to get the cost. Also, coexistence is possible with the implementation of
optimal control. Sensitivity analysis has been performed for both the basic influence numbers Ry, and Ry,. Lastly, numerical
experimentations have been executed to assist analytical findings with distinct sets of parameters.
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1. Introduction

In the present article, we have strived to present an innovation dissemination model in a competitive
market. The innovation dissemination model is mainly helpful in predicting product life cycles and trends
in product purchase. The Bass model is a significant device for predicting the adoption of an innovation
for which no close substitute exists in the marketplace [1]. The model attempts to forecast how many
customers will eventually adopt the new product and when they will do so. Researchers in this field are
relaxing the assumptions of this model and presenting sophisticated models. Jain et al. [12] looked at
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the impact of pricing on the adoption of novel durable goods. Jones et al. [13] introduced a new model
for the spread of products that had two concurrent acceptance processes: one for retailers and one for
consumers. This model assumes that there is an essential interaction between these two processes and that
the customer will buy the product only from retail outlets. The Lotka-Volterra equation [16] has been used
in markets where two or more closely substituted products are competing for their sustainability. Modis
[22] examined the behaviour of company stocks as if they were competing for investors’ resources. Kekana
et al. [14] analyzed the global stability of equilibria for two competing products in an innovation diffusion
model. Yu et al. [30] presented the mathematical model for three competitive products with advertisement
effect, interpersonal valid contact rate, and return rate from adopter class to non-adopter class as key
parameters and discussed the global stability of equilibria. Kim et al. [15] presented the situation of the
Korean mobile phone market and observed a commensal relationship. Horsky et al. [10] examined the
effect of advertising on the sales growth of new products that were purchased infrequently. In recent years,
the bifurcation analysis of different innovation diffusion models has been studied [18, 19]. Many models
regarding innovation diffusion have been developed and analyzed in recent years [7, 11, 20, 26, 27, 31].

Motivation and novelty in the paper

Numerous disciplines, including engineering, environmental management, energy systems,
economics, and medicine, can greatly benefit from optimal control theory. It helps in optimizing control
strategies and resource allocation, leading to improved system performance, efficient resource utilisation,
and decision-making. It is extensively used in engineering systems, including electrical, automotive, and
aeronautical systems. It aids in designing control strategies that optimize system performance while min-
imizing costs or energy consumption. It is used in environmental management, including the prevention
of pollution and the management of natural resources. It assists in choosing the best regulations and
preventative measures to reduce pollution, save resources, and advance sustainable development. To
maximize energy production and distribution, it is used in energy systems, including power grids and re-
newable energy systems. Using mathematical modelling and optimization approaches to create plans for
preventing the spread of infectious illnesses is known as optimal control in epidemiology. To lessen the
impact of the disease on a community, it entails determining the optimal distribution of control measures,
such as vaccination campaigns, quarantine measures, or social isolation. Mathematical modelling helps
in comprehending the dynamics of disease transmission and its control strategy. In epidemic models,
the theory of optimal control is particularly fascinating and helpful [7, 17, 25, 28]. As far as innovation
diffusion modelling is concerned, Chugh et al. [2] analyzed a four-compartmental system with the help
of optimal control theory to examine the interaction and market dissemination of two product categories.
Its usefulness motivates us to adopt this theory in innovation diffusion modelling. In our present article,
we will discuss this theory.

Dhar et al. [4] studied a model considering only the word-of-mouth effect and ignoring the adver-
tisement effect on innovation diffusion. Chugh et al. [3] modified the model [4] and presented a model
with the concept of cooperativeness in a competitive market. But both research papers ignored the media
effect [3, 4]. In this paper, we consider the effects of word-of-mouth as well as media alerts.

Structure of the paper

In the present paper, using the stability theory of differential equations and two competing products,
we offer a non-linear mathematical model to investigate the impact of advertising and word-of-mouth on
innovation dissemination. This article has been organized in the following way. In Section 2, a realistic
mathematical model is framed with two competing products under internal and external influence. Sec-
tion 3 deals with basic influence numbers. The study regarding the stability and Hopf-bifurcation analysis
is presented in Sections 4 and 5, respectively. In Section 6, we use optimal control theory to reduce the
frustration rate in both adopter classes. We run a numerical simulation to examine the impacts of optimal
control and show a fall in the cost function. Sensitivity analysis and numerical validation are performed
in Sections 7 and 8, respectively. Finally, a brief conclusion of the model is presented in Section 9.
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2. Mathematical assumptions and proposed model

In this paper, a population is classified into three non-intersecting classes namely, N(t); A1(t); Az(t),
where N(t) is the non-adopter population, A;(t) is the adopter population of innovation-I, A, (t) is the
adopter population of innovation-II at time ‘t” and a non-linear dynamical mathematical model is pro-
posed. Our proposed model hinges on the following assumptions.

1. Adopters will adopt only one innovation at a time. The situation in which an adopter uses more
than one innovation simultaneously is ignored.

2. Itis assumed that A is the constant enrollment rate in the non-user class and 6 is the constant fatality
rate for all classes of the population.

3. Adopters will only positively impact non-adopters.

4. The rate at which non-users contact users of the first (second) product before the media alert is
denoted by 31(3) and PB2(pB4) is the additional contact rate due to the media alert for the adopter

A1(Aj). Hence, 1 + nﬁf}{l( B3z + %) is the total contact rate after media alert. We chose
B2A1 ( BaAsz

these contact rates to model the media alert with the assumption that [2273-(;747%) will reflect
the transmission rate when adopter individuals appear and are reported. When A;(A3) — oo, the
increased value of the transmission rate approaches its maximum (,(4), and the increased value
of the transmission rate equals half of the maximum 2(f34) when the reported adopter arrives at
‘m’ [5]. Here ‘m’ is half media saturation rate.

5. The rate at which users of the first (second) product frustrate and join the non-adopter class is
Y1(v2).

6. Competition rate 61(52) causes a reduction in the adoption of the first (second) adopter population.

Based on the assumptions, Figure 1 illustrates the system’s schematic flow.

O [Bi+(BAu)/(M+A)IAN <] 8,8, A, o 58,8,

N Vify

e — N N Al Az

I ¥Y2A2 | 1

[Ba+ (BaAz)/(m+Az)1AN

Figure 1: Schematic flow diagram of the suggested model (N, A1, A;).

In view of the schematic flow, the proposed mathematical model is hegemonized by a system of
ordinary differential equations given below:

dN B2A1 BaA2

— = A ——— | NA{ — NA A As — 0N, 2.1
m <5l+m+A1 1 B3+m+/—\2 2+ V1AL +V2A2 (2.1)
dAq B2A1

A _ NA; —y1A1 — 81A1A2 — 5A,, 22
i (Bl+m+A1> 1—Y1A1 — 01 A1A; 1 (2.2)
dAs B4Ar

R NA> —v2A2 — 02A1A7 — OA,, 2.3
T <B3+m+Az> 2 —Y2A2 — 52A1 A 2 (2.3)

with initial conditions N(0) > 0, A;(0) > 0, and A,(0) > 0.



S. Chugh, J. Dhar, R. K. Guha, ]J. Math. Computer Sci., 35 (2024), 1-15 4

Positivity and boundedness of proposed model

The positivity and boundedness of the solutions to system (2.1)-(2.3) are discussed. Here, positivity
means that the population will survive, whereas boundedness means that natural expansion will be
constrained by the availability of resources. For boundedness and positivity, the following theorem has
been stated and proved.

Theorem 2.1. The solutions of the system (2.1)-(2.3), with the initial conditions, are non-negative and ultimately
bounded.

Proof. 1t is clear that

dN dAy

dA
hadh = A+ V1AL + 7242 > 0, 2

=0>0, and —/—= =0=>0.
dt |a,—0 dt |a,—0
On the boundary of hyperplanes, the aforementioned rates are positive. Any point we choose that initiates
in the interior of R will always stay in the closed plane. This suggests that all possible system solutions
are non-negative. Also, it can be perceived easily from system (2.1)-(2.3) that

d

a(N +A1+A) KA=BJN+A;+Ay),
and limsup, , (N +A;+Ay) < 2. It shows the upper boundedness of the system, and the feasible
region for the system is QO ={(N,A1,A2) : 0 <K N+ A;+A; < %, N >0,A; > 0,A; > 0}. This set is known
as the positively invariant region for all solutions of system (2.1)-(2.3). O

3. Basic influence number

The basic influence number is defined and calculated in this section. It is a concept of epidemiology,
where it is known as the basic reproduction number. This number helps in knowing whether innovation
will proliferate or not in the population. It is usually symbolized by Rg. When Ry < 1, the innovation will
run out of the market in the future as per the value of Ry, and when Ry > 1, the innovation may expand
in the market. The rate of expansion completely depends upon the value of Rg. E; (%,0, 0), the adopter-
free equilibrium of the system (2.1)-(2.3) is discussed in section 4. Let J be the vector representing the
new adopters from the direct (word-of-mouth) or indirect (media coverage) contact of adopter population
with non-adopter population from system equations of adopter compartments (i.e., (2.2)-(2.3, [24]). The
remaining transfer terms of adopter compartments (i.e., (2.2)-(2.3), [24]) are being represented by V, and

we have
952 (B]‘FHEZT%)NA] _ < Y]A1+61A1A2—|—6A1 >
(B3 + 2452 )NA, )7 YaAs + 52A1 A0 +5A; |

And Jacobian matrices around the adopter-free equilibrium E; are given by

BiA

lemEl:( : W), v:nm:(ylgé YZOH_)).

5

Here K = FV~1 is the next generation matrix and given by

1 S(B]Aé) 0
-1 _ +
Fvii= | ot A -

d(v2+9)

The spectral radius of matrix FV~! is denoted by p(FV™1). As calculated in [29], the basic influence
number connected with our proposed mathematical model (2.1)-(2.3) is the spectral radius of matrix
FV—! denoted by Ro. Therefore, Ry = max(Ro,, Ro,). The basic influence numbers associated with first
and second innovation respectively in the absence of each other are denoted by Ry, and Ry, and given by

_ _AB __AB
Roy = 5754y and Ro, = 575557
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4. The stability analysis of the model

The system (2.1)-(2.3) has the following four feasible steady states, namely

Eq (%, 0,0): corresponds to adopter-free situation;

2. Ez(ﬁ /Tl, 0): corresponds to a situation in which A, will dissipate, for W =R, > 1, N—— — Avl,

Ay = —BEVBIABE B (8, 4 By), By = 5(5+v1)(1— Ro,) + 5mBr — ABz and By = sm(5 +
Y1) (1 —Ro,);

3. Eg(N,O,//\\z): corresponds to a situation in which A; will dissipate, for B(in/ =Ry, > 1, N =

—

A Ao Ap =~V OO ¢ §(By + Ba), Co = 8(5+72)(1—Ro,) + 5mPs — Ay and C3 =
dm(d +v2)(1—Ro,);

SITRITh
4. E4( N, Ay, Ay ): corresponds to a situation in which both A; and A; will sustain in the market.

Theorem 4.1. The adopter-free equilibrium E1(%,0,0) is stable for Ro, < 1 and Ry, < 1.

Proof. Firstly, the general variational matrix associated with the system is calculated and given below

Ki L My
J= K2 Lo Mz |,

Kz L3 Ms
where K; = —8 — (B1 + Tﬁifxl) — (Ba+ 2480, L = —(B1 + 255N — AIN(G 82 ) + v, My =
—(B3 + 255N — AN (3BE57) +v2, Ko = (B1 + £250) A, Ly = (B1 + 2250 )N +A1N((m“;§§])2) —y1—
8142 =8, My = —A181, K3 = (B3 + 2452) A0, 13 = —82A2, M = (B3 + 452 )N + AN(2BL) — v —

d2A1 — 6. The characteristic equation about the adopter-free equilibrium E; is given below

(8 A)(5+v1)(Ro, —1) —AI[(5 +72)(Ro, — 1) — Al = 0. (4.1)
The roots of the above equation, commonly known as characteristic values of matrix are Ay = =9, A =

(04+7v1)(Ro, —1), and A3 = (6 +7v2)(Ro, —1). For Ry, < 1 and Ry, < 1, all the roots of (4.1) contain negative
real parts. Therefore the equilibrium point E; is always locally asymptotically stable under the conditions
Ro, <1 and Ro, < 1. This situation has been graphically shown in Figure 2. O

Theorem 4.2. For Ry, > 1, there exists unique adopter-I dominating equilibrium Ex(N, A1,0) and it is condition-
ally stable.

Proof. First of all, we will prove uniqueness of this equilibrium. The values of A1 are given by a quadratic
equation BiA; + BaA; + Bs = 0, where By = 8(B1+ Ba), B» = 8(5 +v1)(1 — Ro,) + 5mpP1 — ABa, By =
dm(d 4 v1)(1 —Rp,). The value of N can be obtained by N+ A~1 = 2 Tt is clear that By is always positive.
For Ro, > 1, B3 will be negative, hence by Descartes rule of signs, the above quadratic equation will have
only one positive solution irrespective of the sign of B, and it ends first part of the Theorem 4.2.
Secondly, about the adopter-I dominating equilibrium E2(N,A1,0), the characteristic equation of

.. . . _ N mpBo [32A1 —
general variational matrix ] gives roots Ay = =05, A2 = Aq[N( A 5) —(B1 + A )N, A3 = (v2 +

d)(Ro, —1) — (B3 + Sz)Avl and all the eigenvalues must have negative real parts if Rp, < 1 and (% —

—~ mp, BrAq . .re ‘e
A1) (7(m+;\v] )< P1+ A So the system will be conditionally stable under the conditions Ry, < 1 and

(& — A1)( ﬁ) < B1+ TE:% . This situation has been graphically represented in Figure 3 of numerical

simulation section. O
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Theorem 4.3. For Ry, > 1, there exists unique adopter-1I dominating equilibrium E3(N,0, A;) and it is condition-
ally stable.

Proof. Proof of this theorem is similar as that of Theorem 4.2. This situation has been graphically repre-
sented in Figure 4 of numerical simulation section. O
Theorem 4.4. The positive interior equilibrium E4(N, A7, Az) is always unstable.
Proof. The variational matrix around the positive interior equilibrium E4(N //\\1, ;‘\\2) is given by

-0 — A1$ AT y1—NS—A;NU v, —NT— AZNV

J= A15 w —51A, ,
AzT —07A5 X

where W = =8 —y1 + NS + ANU = 81A2, X = =8 =72+ NT+ ANV —8A1, § = 1+ 24L, T =
1

f34A2 _ __mpy _ _ mpy
B3 + m+A,’ SU= (m+7\\1)2'v_ (Mm+Az)2

Let us assume that the characteristic equation about the interior equilibrium E4(N, 7\\1, 7\\2) is
)\3+al7\2+a2?\+a3 =0,

where a; = &+ A1S + A2T @ = —6162A1A2 + A1S(8 + 81A2) + AzT(é + 62/\1) a; = —7‘\\17\\2[6162( 5 —
A1$ AZT) + 81 T(—6— 861A2) + 625(—8 — 5A7)]. Using the conditions NS + A;NU — 8;A, — 6 = yq, NT +
AZNV 62A1 — & =y». Itis clear that a;, az > 0, but after simplification, we get aja; — az < 0 is always.
The system is therefore unstable around E4 according to the Routh-Hurwitz criterion. O

Remark 4.5. The system (2.1)-(2.3) has no stable interior equilibrium E4. In long run, either system will be
adopter-free E; or one of the innovations will survive, i.e., E; or E3 will be stable.

5. Hopf-bifurcation analysis of E, and E;

Now, we investigate the system’s potential for Hopf-bifurcation, by taking “5” (i.e., the constant fatality
rate of all classes of the population) as the bifurcation parameter. The characteristic equation about the
E2(N, A7,0) is

A+ biAZ + oA+ b3 =0, (5.1)

where values of bj, by, and bs are given in Appendix A. The necessary and sufficient conditions for
the existence of the Hopf-bifurcation are, if there exist & = 6* such that (i) b;(6*) > 0, j = 1,2,3; (ii)
b1(8%)b2(8%)-b3(8*)=0; and (iii) if we consider the eigen values of the characteristic equation (5.1) are of
the form A; =u; + w;j, then %(uj) #0,j =1,2,3. Putting A = u+ v in (5.1) we get

(4w +b1(u+w)?+br(u+w) + bz =0. (5.2)

On separating the real and imaginary parts of equation (5.2) and eliminating v between real and imaginary
parts, we get
8u® + 8bju” 4 2(b? + by)u+byby — bz = 0. (5.3)

It is clear from above that u(0*) = 0 if and only if b (8*)b2(8*)-b3(6*)=0. The existence of threshold
value 8 = 6* is ensured by positive root of (ii) Hence the discriminant of 8u? + 8bqu + 2(b2 +by) =0is
64b2 64(b2 +b2) < 0, which ensures that 4 (blbz —b3) #0at 6 =8*. Again dlfferentlatmg (5.3) with
respect to 5, we have (24u? + 16b1u—i-2(b2 —I—bz)) + (8u? +4biu) dbl —i-ZU,db2 + 45 d_ (b1by —bsz) = 0. Now

-4 (blbz bs)

2(b2+by)
hopf-bifurcation. The analytical value of 6 is difﬁcult to determine from (ii). Numerically, it is observed
that for realistic value of o, there is no Hopf-bifurcation for set-1, 2, 3 in Table 2. A very small change in the
value of 8, switches equilibrium point E> into E3 and vice versa. Hopf bifurcation analysis at equilibrium
point E3 is similar as we discussed the same for E,.

since at & = 0%, u(6*) =0, we get [ No=s* #0, wh1ch satisfies transversality condition of
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6. Optimal control of innovation diffusion model

As we know, the presence of a high frustration rate in the market is not good for the health of busi-
nesses. Here, we try to control this frustration rate. Frustration with a product jeopardizes its existence.
So in order to remain in the market, we need to reduce its frustration rate. To achieve this goal, we have to
make some efforts and bear some costs. We will form a strategy in such a way that we get the most out of
our goal with the least effort and cost. By using Pontryagin’s maximal principle [23], we aim to identify
the necessary conditions for the optimal control of the innovation diffusion model in this part. Our main
objective is to reduce the frustration rate in both adopter classes. We suggest two time-dependent control
variables in the range [0, t¢] called u(t) and v(t), where t¢ is the final time. Keeping this strategy in mind,
we have the following innovation diffusion control model

N = A= (Br+ B0 ) NAL— (Ba + 8452 ) NA2 + (v1 —u(t)A1 + (v2— v(t)) A2 — 8N,

Ay =B+ nﬁf}{ NA1 — (v1 —u(t)) A1 — 81A1A2 — 8Ay, (6.1)
Ay = B3+ n(ii/\;\zz NAz — (v2 = V(t))A2 — 82A1A2 — 8A,.

The objective functional that this study takes into consideration is

tr 1 1
Jw,v, A, A2) = J <P1A1 +Pp2A2 + §P3u2 + 2P4V2) dt. (6.2)
0

The control function u(t) and v(t) are bounded, Lebesgue-integrable function. Here, our aim is to mini-
mize the frustration rate in both adopter classes. We want to get the maximum result with the minimum
cost and effort.

In the above-mentioned objective functional, the quantity p1(p2) represents the cost associated with
reducing the frustration rate of compartment A;(A;), p3, and p4 are positive weight parameter, and t¢ is
the extent of the intervention period. The main objective is to find an optimal control pair (u*,v*) such
that

J(u*r\)*) = m&n ](LL,\))

where the control set 4 defined as follows
U={(u,v)|0 <ult),v(t) <1,te(0te]},

is Lebesgue measurable. The optimal control problem is solved using Pontryagin’s maximal principle,
which specifies the necessary conditions that an optimal solution must meet. In its application, the initial
stage is to demonstrate that the system (6.1) has an optimal control, and then we derive the optimality
system. Furthermore, the Lagrangian and Hamiltonian are defined for the optimal control problem (6.1)-
(6.2). The Lagrangian expression is

1 1
L =piA1 +p2Ax+ §p3u2 + §p4v2.

And, we express the Hamiltonian in the following way in order to minimise this Lagrangian:

1 1 BoA1 BaAr
H=pA Ao+ =p3u? + Zpav? + A A — NA; — NA
P1A1 + P2 2+2P3u +2P4V + 1[ <Bl+m+A1> 1 (B3+m+/\2 2

B2A1
m+ A

(v —ut)A; + (vZ—v(t))Az—sN} +Az[(ﬁl+

BsAr
m-+A;

)Nm (v —ult)Ar

—01A1A, — 5A1:| + A3 [ <f33 + > NA,; — (y2 —Vv(t))Ar — 60A1A, — 5A2:| .
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Here A1, Ay, and A3 are the adjoint or co-state variables. If we assume x; = N, x, = Ay, and x3 = Ay, the
system of (6.1) can be determined again using the following formula:

oH
G=—, 1=1,2,3.
X =3 N i
Pontryagin’s maximum principle [23] transforms (6.1)-(6.2) into a Hamiltonian’s point-wise minimization
problem [9] with regard to u and v.

Theorem 6.1. Given the optimal control uw*, v* and state variables N, A1, and A, of the corresponding state system
(6.1)-(6.2), which minimizes J(u,v) over Y, there exist adjoint variables Ay, Ay, and A3 satisfying
dh __oH
at oA

1=1,2,3,

with transversality conditions
M(te) = Aa(te) = As(te) =0,

and

(A1 —A2)
3

u* = max{min{A; , U™ 0}, v* = max{min{A, , v 0}

(A1 —As)
4
Proof. We will show the existence of optimal control by using Corollary (4.1) of Fleming and Rishel [6]. We
can infer that the model (6.1) is bounded because our state variables are non-negative and a super-solution
of the system of equations (6.1) is taken into account. In addition, the control set 4l is by definition convex
and closed. As a result, the optimal system (6.1)-(6.2) is bounded, ensuring the compactness required for
optimal control to exist. Thus, all conditions for the existence of controls have been met. One can follow
[21] for more information in-depth.
We have the following in accordance with Pontryagin’s maximum principle:

dAq B2A1 BaA2

— = (A1 —A A A —A A A19,

m (M 2)([51+m+A1) 1+ M 3)(B3+m+A2 2+ A1

d?\z BZAl mBQNAl

— = (A=A N — —u(t 1AM A OA A3drAr —pq,
=M 2)[<Bl+m+Al> 1AL (v1 —u( ))]Jr 1A2A2 + 8A2 + A382A2 — P1
d}\g [54A2 m[54NA2

— = (A1 —A N — —v(t 1A A OA A300A1 —Po.
- WM 3)[<Bg+m+A2> (ot A, (y2 —v( ))]+ 1A2A1 + 0A3 + A302A1 — P2

We take into account three situations to describe our control. First, consider the set {t|0 < u*(t) < u™&},
in which we get
oH
0 —

= 0 = paut — (M — M)AL
u pau’ — (A1 —A2)A4

u*

From the above equation, we get
IS Gt

P3
Secondly, consider the set {tju*(t) = 0}, in which we have

Al

O<afH

< = (A —A2)Aq,
u pau’ — (A —A2)Aq

u*

thus N
L M~ A

0>
P3

A —A
u* = max{ ! 2A1,0}

A

And then
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holds on this set. Finally, consider the set {tju*(t) = u™®}, in which we get

oH
0> 3ul = Pau™ ™ — (A — A2)Aq,
which gives
A —A
umax 172A1
P3
So
u* = min {Al Ll _ AZ),umaX}.
P3

Based on these three situations, we characterize optimal control as
. A —A
u* = max { min {A; (1]92),umax},0}.
3

Thus u* verifies these standard control arguments involving the limits of the controls

0, if £&* <0,
ut=<¢ &, o< & <um,
umax if E,* 2 umax

where £* = L;”Al. Additionally, % > 0 shows that the optimal control minimizes the Hamiltonian.
Continuing like this, we have

v* = max { min {A1 0\1;}\3),\)“‘”}, 0}.
4

And, v* verifies these standard control arguments involving the limits of the controls

0, if n* <0,
vi=4¢ ', if0 <t <vm,
Vmax’ lf T]* 2 vmax,

92H

where n* = %Az. Moreover, v

> 0 shows that the optimal control minimizes the Hamiltonian. [

We present and discuss the outcomes of the numerical simulation of the control measure (strategy)
for the extended model (6.1) and objective functional (6.2) as a way of concluding this section. The state
system is solved with some initial guesses using the forward fourth-order Runge-Kutta method, while
the adjoint system is solved using the backward fourth-order Runge-Kutta methodology. We take a set
of parametric values defined in Set-8 with the initial conditions N(0) = 0, A1(0) = 0.4, and A;(0) = 0.85.
We draw two figures that correspond to Set-8. One is without control, and the other is with a control
strategy. From Figures 9 and 10, it is clear that the level of the non-adopter population increases after
the implementation of the control strategy. It is good because this non-adopter population is a potential
buyer of innovations. Also, after a decrease in frustration rate, we observe that the face of the curve
that corresponds to users of the second innovation, which was approaching zero, visible in Figure 9,
transforms, and it starts increasing slowly, visible in Figure 10. We are achieving our target with the
minimum cost, which is also shown in Figure 10. Thus, the coexistence of products in a competitive
market is possible by adopting the above-mentioned strategy, which reduces the frustration rate.
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7. Sensitivity analysis

In this section, sensitivity analysis has been performed for basic reproduction numbers Ry, and Ry,
associated with first and second innovations, respectively. Sensitivity analysis describes the role of each
parameter in the innovation diffusion dynamics. It is used to detect degree of impactness of parameters,
i.e., high, moderate, or low. The basic influence number R, (= %) is a function of four parameters.

The normalized sensitivity indices of basic influence numbers Ry, (Ro,) w.r.t. parameters are presented
in Table 1. From Table 1, it is observed that A and 31 have positive impact on Rg,, while y; and $ have
negative impact. It is also shown that A and (33 have positive impact on Ry,, while vy, and & have negative

impact. Hence, significant changes in Ro, (Ro,) can be observed by small changes in these parameters.

Table 1: The normalized sensitivity indices for the basic influence numbers Rg, (Ry, ).

Parameter(y;) Parametric Value Sensitivity index of Ro, (Ro,) w.r.t. y;

A 0.30 1

B1(B3) 0.20 1

Y1(v2) 0.10 -0.33
5 0.20 -1.66

8. Numerical simulations

For ensuring the analytic conclusions, numerical simulations have been carried out with the help
of MATLAB's built-in ode45, and bvp4c. In Table 2, sets of different parametric values are taken. In
Table 3, the values of basic influence numbers and equilibrium points are calculated for different sets of
parametric values. The Figures (2)-(9) show population distribution w.r.t. time for various cases. The
simulation result of the model with optimal control is shown in Figure 10.

Table 2: Assumed different sets of parametric values.

SetNo. A B1 B2 Bz Bs Y1 Y2 m 5 81 )

Set-1 030 0.15 015 020 020 020 025 090 050 010 0.20
Set-2 030 030 030 025 025 010 020 050 020 010 0.20
Set-3 030 025 025 030 030 020 010 050 020 010 0.20
Set-4 025 025 030 022 025 030 035 050 010 010 0.20
Set-5 025 024 030 028 025 035 029 050 010 0.10 0.20
Set-6 030 028 030 028 025 030 035 050 0.152 010 0.20
Set-7 030 028 030 028 025 030 035 050 0151 010 0.20
Set-8 038 028 030 028 025 030 035 050 0125 010 0.20

Table 3: Equilibrium points R, and Rg, w.r.t. different sets of parametric values.

Parameters Ro, Ro, Stable equilibrium point Figure
Set-1 0.1286 0.16 E1=(0.60,0,0) 2
Set-2 1.5 0.9375 E»=(0.61,0.89,0) 3
Set-3 0.9375 1.5 E3=(0.61,0,0.89) 4
Set-4 1.5625  1.2223 E»=(0.8322,1.6678,0) 5
Set-5 1.3334 1.79487 E3=(0.8256,0,1.6744) 6
Set-6 1.22264 1.10086 E2=(0.937,1.0366,0) 7
Set-7 1.23346 1.11036 E3=(1.1478,0,0.8390) 8
Set-8 2.00282  1.792 E»=(0.8142,2.2002,0) 9
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Figure 3: Corresponds to adopter-I dominating equilibrium with Ry, = 1.5 and R, = 0.9375.
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S. Chugh, J. Dhar, R. K. Guha, J. Math.

Computer Sci., 35 (2024), 1-15

12

o

Non-Adopter Population
T T T

IS
T

@

SN
T

Population (N)
T

Users of Innovation-I

Users of Innovation-II

Population (A1)

100

Time(t)

Figure 5: Corresponds to adopter-I dominating equilibrium in spite of Rg,

&

N
T

Population
T

0.85 —

Users of Innovation-I

Population (A,)

30 40 50 60 70 80

Time(t)

Figure 6: Corresponds to adopter-II dominating equilibrium in spite of Ry,

o
©
8

o
©
&

o

©

2
T

Population (N)
T T

o
©

o
©

°

o
&

Users of Innovation-I

5
2

5
5

Population (A‘)

o
©
8

°

Time(t)

90 100 0 10 20 30 40 50 60 70 80 90 100
Time(t)
> R, > 1.
Non-Adopter Population
T T T
1 1 1 1 1 1
40 50 60 70 80 90 100
Time(t)
Users of Innovation-ll
T 18 T T T T T T T T T
— 18 q
>
< . i
c
o
=12 T
o
2 1
o
o 08 1
. 06 S SR
90 100 0 10 20 30 40 50 60 70 80 90 100
Time(t)
> Ro, > 1.
Non-Adopter Population
T T T
1 1 1 1 1 1
20 25 30 35 40 45 50
Time(t)
Users of Innovation-ll
T 0.2 T T T T T T T T T
gNQ.WS T
c
o
=01 B
o
3
&
o 0.05 T
45 50 0 5 10 15 20 25 30 35 40 45 50
Time(t)

Figure 7: The system is stable with equilibrium point E»=(0.937,1.0366,0) for the parametric values defined in Set-6 with 5=0.152.



S. Chugh, J. Dhar, R. K. Guha, ]J. Math. Computer Sci., 35 (2024), 1-15 13

Non-Adopter Population
T T T

= 13— —

=S

St B

kSt

3 12 -

Q

o

o 1.15 =

11 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time(t)
Users of Innovation-I Users of Innovation-ll
0. T T T T T T T T T 0.9 T T T T T T T T T

—_ A 08 1
< 015 <

c c 07 7
o o
= 0.1 =

© ©
=] S 06 1
5 3
o %% o os q

o PP S R S 04 R S
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time(t) Time(t)

Figure 8: The system is stable with equilibrium point E3=(1.1478,0,0.8390) for the parametric values defined in Set-7 with 5=0.151.

Non-Adopter Population
T

Population (N)
—
| |

=
&

T
1

0 5 10 15 20 25 30

Time(t)
Users of Innovation-I Users of Innovation-Il
25 T T T T T T T T T 1 T T T T T

s:‘ 2 s‘/\‘ 08 T

.S 15 '5 06 ,
© ©

S 1 S 04 T
Q Q

g os g o2 g

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30

Time(t) Time(t)

Figure 9: Distribution of non-adopter, adopter of Innovation-I, adopter of innovation-II populaion without control.

1 Final cg8t: J=0.11512  0.10582 0.10194 0.099978 0.098875 0.098206 0.097779 0.097496 0.097303 0.097208 0.097135 0.097078 0.097034 0.097023)

Distribution of u(t), v(1),N(1), A (t) and A,(t)

Time

Figure 10: Simulation result of model with optimal control and optimal control curves.



S. Chugh, J. Dhar, R. K. Guha, ]J. Math. Computer Sci., 35 (2024), 1-15 14

9. Conclusions and future scope

The present model concludes that the sustainability of a product in the market depends mainly upon
positive advertisement, media coverage, personal interaction, immigration, and emigration. The present
model discusses the impact of competitiveness under the simultaneous effects of media coverage and
personal interaction. From the qualitative study of the model, we obtained the following results and
observations.

[i] It is observed that the system has four steady states, and the local stability of each equilibrium
has been studied. The adopter-free equilibrium E; is stable, in which both products vanished from
the market under the conditions mentioned in Theorem 4.1. The conditions for the stability of the
other two boundary equilibria E; and E3 are discussed in Theorems 4.2 and 4.3. Since the interior
equilibrium E4 is always unstable, as discussed in Theorem 4.4, the co-existence of the users of both
products in the market is not always possible.

[ii] The use of an optimal control strategy makes coexistence possible. Following the widespread use
of the control strategy, the non-adopter population level rises. It is advantageous since this non-
adopting group has the capacity to purchase innovations. Additionally, we see that the face of the
curve corresponding to users of the second invention, which was nearing zero, seen in Figure 9,
alters and starts expanding gradually, as apparent in Figure 10. Thus, the coexistence of products in
a competitive market is possible by adopting the optimal control strategy.

[iii] Sensitivity analysis shows the impact of parameters on basic influence numbers. Some parameters
impact the basic influence numbers positively, while others do so negatively.

[iv] Numerical simulations executed with different sets of parameters assist in analytical findings. It is
observed that if (a) Ro, < 1, Rg, < 1, then the adopter-free equilibrium E; is stable (see Figure 2);
(b) Ro, > 1, Ro, <1, then only the first adopter will survive, and E, is the stable equilibrium point
(see Figure 3); (c) Ro, < 1, R, > 1, then only the second adopter will survive, and Ej is the stable
equilibrium point (see Figure 4); (d) Ro, > Ro, > 1, then E; may be stable and Ro, > Ro, > 1, then
E3 may be stable. It is shown in Figures 5, 6. A small change in Hopf bifurcation parameter “5”
switches the equilibrium point (see Figures 7, 8).

In the future, one can develop and analyze the said model with delays in adoption. Also, we can
classify the non-adopter population on the basis of their income.
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