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Abstract

In this paper, we prove some new fixed and common fixed point results in the framework of
partially ordered quasi-metric spaces under linear and nonlinear contractions. Also we obtain some
fixed point results in the framework of G-metric spaces. ©2016 All rights reserved.
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1. Introduction and preliminaries

The fixed point theory is considered as a basic and very simple mathematical setting, since
it has some applications in many interesting fields such as differential equations, economics and
engineering. The existence of a fixed point is a pivotal property of a function. Many necessary or
sufficient conditions for the presence of such points are considered in many areas in mathematics.

The Banach contraction theorem [4] is considered as a fundamental theorem concerning fixed
point theorem in a complete metric space which is appeared in 1922 and rise for its elegant and
simple proof which it is known later as Banach contraction principle. Subsequently, a large number
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of generalizations of Banach contraction principle were obtained, for example in 2008, Agarwal et al.
[1] introduced and proved the following theorem.

Theorem 1.1 ([1, Theorem 2.3]). Let (X, d,�) be a partially ordered complete metric space. Assume
ψ : [0,+∞)→ [0,+∞) is a non-decreasing function with ψ(t) < t for each t > 0. Moreover, suppose
that f is a nondecreasing mapping satisfying the following form

d(f(x), f(y)) ≤ ψ(max{fd(x, y), d(x, f(x)), d(y, f(y))})

for all x ≥ y. Also assume either f is continuous or if (xn) ⊆ X is a nondecreasing sequence with xn
→ x in X, then xn ≤ x for all n holds. If there exists an x0 ∈ X with x0 ≤ f(x0) then f has a fixed
point.

The concept of quasi-metric spaces was generated by Wilson [19] in 1931 as the following:

Definition 1.2. Let X be a non empty set and d : X × X → [0,∞) be a given function which
satisfies

(1) d(x, y) = 0 iff x = y;

(2) d(x, y) ≤ d(x, z) + d(z, y) for any points x, y, z ∈ X.

Then d is called a quasi metric on X and the pair (X, d) is called a quasi metric space.

It is clear that every metric space is a quasi metric space, but the reverse is not necessarily true.
Jleli and Samet [5] and Samet et al. [16] utilized the notion of quasi-metric space to obtain some

fixed point theorems. In their interesting papers, they pointed out that some fixed point results in
G-metric space in sense of Mustafa and Sims [14] can be obtained from quasi-metric space. Agarwal
et. al [2] showed that many fixed point theorems in G-metric spaces can be derived from known
existing results if all arguments are not distinct. For some results in G-metric space, we refer the
reader to [7–18].

The convergence and completeness in a quasi-metric space are defined as follows:

Definition 1.3 ([5]). Let (X, d) be a quasi-metric space, (xn) be a sequence in X, and x ∈ X. Then
the sequence (xn) converges to x if and only if lim

n→∞
d(xn, x) = lim

n→∞
d(x, xn) = 0.

Definition 1.4 ([5]). Let (X, d) be a quasi-metric space and (xn) be a sequence in X. We say that
the sequence (xn) is left-Cauchy if for every ε > 0 there is positive integer N = N(ε) such that
d(xn, xm) ≤ ε for all n ≥ m > N.

Definition 1.5 ([5]). Let (X, d) be a quasi-metric space and (xn) be a sequence in X. We say that
the sequence (xn) is right-Cauchy if for every ε > 0 there is a positive integer N = N(ε) such that
d(xn, xm) ≤ ε for all m ≥ n > N.

Definition 1.6 ([5]). Let (X, d) be a quasi-metric space and (xn) be a sequence in X. We say
that the sequence (xn) is Cauchy if for every ε > 0 there is positive integer N = N(ε) such that
d(xn, xm) ≤ ε for all m,n > N.

Definition 1.7 ([5]). Let (X, d) be a quasi-metric space. We say that

(1) (X, d) is left-complete if and only if every left-Cauchy sequence in X is convergent;

(2) (X, d) is right-complete if and only if every right-Cauchy sequence in X is convergent;

(3) (X, d) is complete if and only if every Cauchy sequence in X is convergent.
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Mustafa and Sims [14] introduced the notion of G-metric spaces as follows:

Definition 1.8 ([14]). Let X be a nonempty set and let G : X × X × X → [0,∞) be a function
satisfying:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) G(x, x, y) > 0 for all x, y ∈ X, with x 6= y,

(G3) G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X, with y 6= z,

(G4) G(x, y, z) = G(p{x, y, z}), where p{x, y, z} is the all possible permutations of {x, y, z} (sym-
metry),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) ∀x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or more specifically a G-metric on X, and the
pair (X,G) is called a G-metric space.

Definition 1.9 ([14]). Let (X,G) be a G-metric space and let (xn) be a sequence of points of X.
Then we say that (xn) is G-convergent to x if lim

n,m→∞
G(x, xn, xm) = 0; that is, for any ε > 0, there

exists k ∈ IN such that G(x, xn, xm) < ε, for all n,m ≥ k.

Proposition 1.10 ([14]). Let (X,G) be a G-metric space. Then the following assertions are equiv-
alent

(1) (xn) is G-convergent to x;

(2) G(xn, xn, x)→ 0 as n →∞;

(3) G(xn, x, x)→ 0 as n →∞.

Definition 1.11 ([14]). Let (X,G) be a G-metric space. A sequence (xn) in X is said to be G-Cauchy
if for every ε > 0, there exists k ∈ IN such that

G(xn, xm, xl) < ε, ∀n,m, l ≥ k.

Proposition 1.12 ([14]). In a G-metric space, the following are equivalent

(1) the sequence (xn) is G-Cauchy;

(2) for every ε > 0, there exists k ∈ IN such that G(xn, xm, xm) < ε for all n,m ≥ k.

Definition 1.13 ([14]). A G-metric space (X,G) is said to be G-complete or complete G-metric
space if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

The following theorem is a relation between G-metric spaces and quasi metric spaces.

Theorem 1.14 ([5]). Let (X,G) be a G-metric space and let d : X × X → [0,∞) defined by
d(x, y) = G(x, y, y). Then

(1) (X, d) is a quasi metric space;

(2) (xn) ⊂ X is G-convergent to x ∈ X iff (xn) is convergent in (X, d);

(3) (xn) ⊂ X is G-Cauchy iff (xn) is Cauchy in (X, d);

(4) (xn) ⊂ X is G-complete iff (xn) is complete in (X, d).
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2. Main result

We start with the following definitions.

Definition 2.1 ([3]). Let (X,�) be a partially ordered set. Two mappings F, G : X → X are said
to be weakly increasing if Fx � GFx and Gx � FGx, for all x ∈ X.

Definition 2.2 ([18]). Let (X,�) be a partially ordered set and A,B be closed subsets of X with
X = A ∪ B. Let f, g : X → X be two mappings. Then the pair (f, g) is said to be (A,B)-weakly
increasing if fx � gfx for all x ∈ A and gx � fgx for all x ∈ B.

Definition 2.3 ([6]). The function φ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied.
(1) φ is continuous and nondecreasing.
(2) φ(t) = 0 if and only if t = 0.

Our main result in this section is the following theorem.

Theorem 2.4. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let A,B be two nonempty closed subsets of X with respect to the topology induced by d
with X = A ∪ B and A ∩ B 6= φ. Let f, g : A ∪ B → A ∪ B such that the pair (f,g) is (A,B)-weakly
increasing with f(A) ⊆ B, g(B) ⊆ A. Let φ, ψ be altering distance functions. Moreover, suppose
that

φd(fx, gy) ≤ φmax{d(x, y), d(fx, x), d(gy, y)} − ψmax{d(x, y), d(fx, x), d(gy, y)} (2.1)

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

φd(gx, fy) ≤ φmax{d(x, y), d(gx, x), d(fy, y)} − ψmax{d(x, y), d(gx, x), d(fy, y)} (2.2)

for all comparative x, y ∈ X with x ∈ B, y ∈ A. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. From 1. there exists x0 ∈ A such that x0 � fx0. Since f(A) ⊆ B, then x1 = fx0 ∈ B.
Also, since g(B) ⊆ A, then x2 = gx1 ∈ B. By continuing this way, we construct a sequence (xn)
in X such that fx2n = x2n+1, x2n ∈ A, gx2n+1 = x2n+2 and x2n+1 ∈ B, n ∈ IN ∪ {0}. Since (f, g)
is (A,B)-weakly increasing, then x0 � fx0 = x1 � gfx0 = gx1 = x2 � fgx1 = fx2 = x3 · · · .
Thus xn � xn+1 for all n ≥ 0. If there exists some k ∈ IN such that x2k = x2k+1, then x2k is a
fixed point for f in A ∩ B. To show that x2k is also a fixed point for g it is equivalent to show that
x2k = x2k+1 = x2k+2. Since x2k � x2k+1, then by (2.2) we have

φd(x2k+2, x2k+1) = φd(gx2k+1, fx2k)

≤ φmax{d(x2k+1, x2k), d(x2k+2, x2k+1), d(x2k+1, x2k)}
− ψmax{d(x2k+1, x2k), d(x2k+2, x2k+1), d(x2k+1, x2k)}
≤ φd(x2k+2, x2k+1)− ψd(x2k+2, x2k+1).

Therefore, ψd(x2k+2, x2k+1) = 0, and so d(x2k+2, x2k+1) = 0. Hence x2k+2 = x2k+1. Thus x2k is a
common fixed point for f and g in A ∩B.
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Now, assume that xn 6= xn+1 for all n ≥ 0. Let n ∈ IN. If n is even, then n = 2t for some t ∈ IN.
By (2.1), we have

φd(xn+1, xn) = φd(x2t+1, x2t) = φd(fx2t, gx2t−1)

≤ φmax{d(x2t, x2t−1), d(x2t+1, x2t), d(x2t, x2t−1)}
− ψmax{d(x2t, x2t−1), d(x2t+1, x2t), d(x2t, x2t−1)}
≤ φmax{d(x2t+1, x2t), d(x2t, x2t−1)}
− ψmax{d(x2t+1, x2t), d(x2t, x2t−1)}.

If max{d(x2t+1, x2t), d(x2t, x2t−1)} = d(x2t+1, x2t), then

φd(x2t+1, x2t) ≤ φd(x2t+1, x2t)− ψd(x2t+1, x2t).

Therefore, ψd(x2t+1, x2t) = 0 and so d(x2t+1, x2t) = 0. Thus x2t+1 = x2t is a contradiction. Hence
max{d(x2t+1, x2t), d(x2t, x2t−1)} = d(x2t, x2t−1). Therefore

d(xn+1, xn) ≤ d(xn, xn−1) (2.3)

and
φd(xn+1, xn) ≤ φd(xn, xn−1)− ψd(xn, xn−1). (2.4)

If n is odd, then n = 2t+ 1 for some t ∈ IN. By (2.2), we have

φd(xn+1, xn) = φd(x2t+2, x2t+1) = φd(gx2t+1, fx2t)

≤ φmax{d(x2t+1, x2t), d(x2t+2, x2t+1), d(x2t+1, x2t)}
− ψmax{d(x2t+1, x2t), d(x2t+2, x2t+1), d(x2t+1, x2t)}
≤ φmax{d(x2t+1, x2t), d(x2t+2, x2t+1)}
− ψmax{d(x2t+1, x2t), d(x2t+2, x2t+1)}.

If max{d(x2t+1, x2t), d(x2t+2, x2t+1)} = d(x2t+2, x2t+1), then φd(x2t+2, x2t+1) ≤ φd(x2t+2, x2t+1) −
ψd(x2t+2, x2t+1). Therefore, ψd(x2t+2, x2t+1) = 0, and so d(x2t+2, x2t+1) = 0. Thus x2t+2 = x2t+1

is a contradiction. Hence max{d(x2t+1, x2t), d(x2t+2, x2t+1)} = d(x2t+1, x2t). Therefore,

d(xn+1, xn) ≤ d(xn, xn−1) (2.5)

and
φd(xn+1, xn) ≤ φd(xn, xn−1)− ψd(xn, xn−1). (2.6)

From (2.3) and (2.5), we have for all n ∈ IN

d(xn+1, xn) ≤ d(xn, xn−1). (2.7)

Thus (d(xn+1, xn) : n ∈ IN) is a nonnegative decreasing sequence, so there exists r ≥ 0 such that
lim
n→∞

d(xn+1, xn) = r. Also, from (2.4) and (2.6), we have for all n ∈ IN

φd(xn+1, xn) ≤ φd(xn, xn−1)− ψd(xn, xn−1). (2.8)

By taking the limit as n→∞ in (2.8), we get φr ≤ φr − ψr which implies that ψr = 0. Therefore,
r = 0. Thus

lim
n→∞

d(xn+1, xn) = 0. (2.9)
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Again, let n ∈ IN. If n is even, then n = 2t for some t ∈ IN. By (2.2), we have

φd(xn, xn+1) = φd(x2t, x2t+1) = φd(gx2t−1, fx2t)

≤ φmax{d(x2t−1, x2t), d(x2t, x2t−1), d(x2t+1, x2t)}
− ψmax{d(x2t−1, x2t), d(x2t, x2t−1), d(x2t+1, x2t)}.

From (2.7), we have d(x2t, x2t−1) > d(x2t+1, x2t). Thus

φd(x2t, x2t+1) ≤ φmax{d(x2t−1, x2t), d(x2t, x2t−1)}
− ψmax{d(x2t−1, x2t), d(x2t, x2t−1)}
≤ φmax{d(x2t−1, x2t), d(x2t, x2t−1)}.

(2.10)

Since φ is an altering distance function, then

d(x2t, x2t+1) ≤ max{d(x2t−1, x2t), d(x2t, x2t−1)}. (2.11)

From (2.7) we have

d(x2t+1, x2t) ≤ d(x2t, x2t−1) ≤ max{d(x2t−1, x2t), d(x2t, x2t−1)}. (2.12)

From (2.11) and (2.12), we have

max{d(x2t+1, x2t), d(x2t, x2t+1)} ≤ max{d(x2t−1, x2t), d(x2t, x2t−1)}. (2.13)

Similarly, we can show that

max{d(x2t+1, x2t+2), d(x2t+2, x2t+1)} ≤ max{d(x2t+1, x2t), d(x2t, x2t+1)}. (2.14)

From (2.13) and (2.14), we get that

max{d(xn, xn+1), d(xn+1, xn)} ≤ max{d(xn, xn−1), d(xn−1, xn)} holds for all n ∈ IN.

So (max{d(xn, xn+1), d(xn+1, xn)}) is a nonnegative decreasing sequence. Hence there exists r ≥ 0
such that

lim
n→∞

max{d(xn, xn+1), d(xn+1, xn)} = r.

From (2.9), we get
lim
n→∞

d(xn, xn+1) = r.

From (2.10), we get
φ(r) ≤ φ(r)− ψ(r).

So ψ(r) = 0, and hence r = 0. Therefore, for all n ∈ IN

lim
n→∞

d(xn, xn+1) = 0.

Now, our claim is to show that (xn) is Cauchy sequence. To show that (xn) is a Cauchy sequence it
is sufficient to show that (x2n) is a Cauchy sequence; that is (x2n) is left-Cauchy and right-Cauchy.
Suppose to the contrary that (x2n) is not left-Cauchy. Then there is ε > 0 and two subsequences
(x2nk

) and (x2mk
) such that (x2nk

) chosen to be the smallest index for which

d(x2nk
, x2mk

) ≥ ε 2nk > 2mk > k. (2.15)
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This means that
d(x2nk−2, x2mk

) < ε.

From (2.15), we get

ε ≤ d(x2nk
, x2mk

) ≤ d(x2nk
, x2nk−1) + d(x2nk−1, x2mk

)

≤ d(x2nk
, x2nk−1) + d(x2nk−1, x2nk−2) + d(x2nk−2, x2mk

).

Taking the limit as k →∞ and using (2.9), we conclude

lim
k→∞

d(x2nk−1, x2mk
) = ε. (2.16)

Again, from (2.15), we obtain

ε ≤ d(x2nk
, x2mk

) ≤ d(x2nk
, x2mk+1) + d(x2mk+1, x2mk

).

Taking the limit as k →∞ and using (2.9), we see that

ε ≤ lim
k→∞

d(x2nk
, x2mk+1). (2.17)

The contraction condition (2.2) yields

φd(x2nk
, x2mk+1) = φd(gx2nk−1, fx2mk

)

≤ φmax{d(x2nk−1, x2mk
), d(x2nk

, x2nk−1), d(x2mk+1, x2mk
)}

− ψmax{d(x2nk−1, x2mk
), d(x2nk

, x2nk−1), d(x2mk+1, x2mk
)}.

Taking the limit as k → ∞ and using the continuity of φ, ψ and using (2.9),(2.16), and (2.17), we
get

φε ≤ φ lim
k→∞

d(x2nk
, x2mk+1) ≤ φε− ψε.

Therefore, ψε = 0, and hence ε = 0 which is 1a contradiction since ε > 0. Hence (x2n) is a left-Cauchy
sequence. In a similar manner we can prove that (x2n) is a right-Cauchy sequence.

Since (X, d) is a complete quasi metric space, then (xn) converges to some element u ∈ X.
Therefore any subsequence of (xn) also converges to u. Thus the subsequences (x2n) and (x2n+1)
also converge to u. Since (x2n) is a sequence in A, A is a closed subset of X and lim

n→∞
x2n = u, then

u ∈ A. Also, since (x2n+1) is a sequence in B, B is a closed subset of X and lim
n→∞

x2n+1 = u, then

u ∈ B.
By using the continuity of f , we get

lim
n→∞

d(xn, fu) = lim
n→∞

d(fxn−1, fu) = 0 and lim
n→∞

d(fu, xn) = lim
n→∞

d(fu, fxn−1) = 0.

Hence
lim
n→∞

d(fu, xn) = lim
n→∞

d(xn, fu) = 0.

Thus (xn) converges to fu. By uniqueness of the limit, we have fu = u. So u is a fixed point of f in
A ∩B.

Now, since u � u, then from (2.2), we get

φd(gu, u) = φd(gu, fu)
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≤ φmax{d(u, u), d(gu, u), d(fu, u)}
− ψmax{d(u, u), d(gu, u), d(fu, u)}.

Thus φd(gu, u) ≤ φd(gu, u)−ψd(gu, u). Hence ψd(gu, u) = 0, and so d(gu, u) = 0. Therefore gu = u.
Hence u is a common fixed point for f and g in A ∩B.

Remark 2.5. The previous theorem is still correct if we choose the function ψ : [0,∞)→ [0,∞) just
as a continuous function.

Corollary 2.6. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let A,B be two nonempty closed subsets of X with respect to the topology induced by
d with X = A ∪ B and A ∩ B 6= φ. Let f : A ∪ B → A ∪ B such that fx � f 2x for all x ∈ X with
f(A) ⊆ B, f(B) ⊆ A. Let φ, ψ be altering distance functions. Also suppose that

φd(fx, fy) ≤ φmax{d(x, y), d(fx, x), d(fy, y)} − ψmax{d(x, y), d(fx, x), d(fy, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B or x ∈ B, y ∈ A. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. It follows from Theorem 2.4 by taking g = f.

Corollary 2.7. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let f, g : X → X such that the pair f and g are weakly increasing mappings. Let φ, ψ
be an altering distance functions. Moreover, suppose that

φd(fx, gy) ≤ φmax{d(x, y), d(fx, x), d(gy, y)} − ψmax{d(x, y), d(fx, x), d(gy, y)}

for all comparative x, y ∈ X, and

φd(gx, fy) ≤ φmax{d(x, y), d(gx, x), d(fy, y)} − ψmax{d(x, y), d(gx, x), d(fy, y)}

for all comparative x, y ∈ X. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. It follows from Theorem 2.4 by taking A = B = X.

By replacing g by f and taking A = B = X in Theorem 2.4 we get the following result.

Corollary 2.8. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let f : X → X such that fx � f 2x. Let φ, ψ be an altering distance functions.
Moreover, suppose that

φd(fx, fy) ≤ φmax{d(x, y), d(fx, x), d(fy, y)} − ψmax{d(x, y), d(fx, x), d(fy, y)}

for all comparative x, y ∈ X. Also,
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1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

If we define φ : [0,∞)→ [0,∞) by φ(t) = t and ψ : [0,∞)→ [0,∞) by ψ(t) = (1−k)t, k ∈ [0, 1),
then we get the following result.

Theorem 2.9. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let A,B be two nonempty closed subsets of X with respect to the topology induced by d
with X = A ∪ B and A ∩ B 6= φ. Let f, g : A ∪ B → A ∪ B such that the pair (f,g) is (A,B)-weakly
increasing with f(A) ⊆ B, g(B) ⊆ A. Suppose that

d(fx, gy) ≤ kmax{d(x, y), d(fx, x), d(gy, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

d(gx, fy) ≤ kmax{d(x, y), d(gx, x), d(fy, y)}

for all comparative x, y ∈ X with x ∈ B, y ∈ A. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Corollary 2.10. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let A,B be two nonempty closed subsets of X with respect to the topology induced by
d with X = A ∪ B and A ∩ B 6= φ. Let f : A ∪ B → A ∪ B such that fx � f 2x forall x ∈ X with
f(A) ⊆ B, f(B) ⊆ A. Suppose that

d(fx, fy) ≤ kmax{d(x, y), d(fx, x), d(fy, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B or x ∈ B, y ∈ A. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. The proof follows from Theorem 2.9 by taking g = f.

Corollary 2.11. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let f, g : X → X such that the pair f and g are weakly increasing. Suppose that

d(fx, gy) ≤ kmax{d(x, y), d(fx, x), d(gy, y)}

for all comparative x, y ∈ X, and

d(gx, fy) ≤ kmax{d(x, y), d(gx, x), d(fy, y)}

for all comparative x, y ∈ X. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,
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2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. It follows from Theorem 2.9 by taking A = B = X

If we take g = f and A = B = X in Theorem 2.9, then we get the following result.

Corollary 2.12. Let (X,�) be a partially ordered set and suppose that (X,d) is a complete quasi-
metric space. Let f : X → X such that fx � f 2x ∀x ∈ X. Suppose that

d(fx, fy) ≤ kmax{d(x, y), d(fx, x), d(fy, y)}

for all comparative x, y ∈ X, and

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

3. Common fixed point theorems in G-metric spaces

Theorem 3.1. Let (X,�) be a partially ordered set and suppose that there exists a G-metric on X
such that (X,G) is a complete G-metric space. Let A,B be two nonempty closed subsets of X with
respect to the topology induced by G with X = A ∪ B. Let f, g : A ∪ B → A ∪ B be two mappings
such that the pair (f, g) is (A,B)-weakly increasing with f(A) ⊆ B, g(B) ⊆ A. Let φ and ψ be an
altering distance functions. Moreover, suppose that

φG(fx, gy, gy) ≤ φmax{G(x, y, y), G(fx, x, x), G(gy, y, y)}
− ψmax{G(x, y, y), G(fx, x, x), G(gy, y, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

φG(gx, fy, fy) ≤ φmax{G(x, y, y), G(gx, x, x), G(fy, y, y)}
− ψmax{G(x, y, y), G(gx, x, x), G(fy, y, y)}

for all comparative x, y ∈ X with x ∈ B, y ∈ A. Also

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. Let d : X × X → [0,∞) defined by d(x, y) = G(x, y, y) for all comparative x, y ∈ X with
x ∈ A, y ∈ B and d(y, x) = G(y, x, x) for all comparative x, y ∈ X with x ∈ A, y ∈ B. Then by
Theorem 1.14, (X, d) is a quasi metric space. From the contractive conditions we have

φd(fx, gy) ≤ φmax{d(x, y), d(fx, x), d(gy, y)} − ψmax{d(x, y), d(fx, x), d(gy, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

φd(gx, fy) ≤ φmax{d(x, y), d(gx, x), d(fy, y)} − ψmax{d(x, y), d(gx, x), d(fy, y)}

for all comparative x, y ∈ X with x ∈ B, y ∈ A. By Theorem 2.4, f and g have a common fixed
point in A ∩B.
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Theorem 3.2. Let (X,�) be a partially ordered set and suppose that there exists a G-metric on X
such that (X,G) is a complete G-metric space. Let A and B be two nonempty closed subsets of X
with respect to the topology induced by G with X = A∪B. Let f, g : A∪B → A∪B be two mappings
such that the pair (f, g) is (A,B)-weakly increasing with f(A) ⊆ B and g(B) ⊆ A. Suppose that
there exists r ∈ [0, 1) such that

G(fx, gy, gy) ≤ k max{G(x, y, y), G(fx, x, x), G(gy, y, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

G(gx, fy, fy) ≤ k max{G(x, y, y), G(gx, x, x), G(fy, y, y)}

for all comparative x, y ∈ X with x ∈ B, y ∈ A. Also,

1. suppose that there exists x0 ∈ A such that x0 � fx0,

2. if f or g is continuous.

Then f and g have a common fixed point in A ∩B.

Proof. As in the proof of Theorem 3.1, we consider the function d : X × X → [0,∞) such that
d(x, y) = G(x, y, y) for all comparative x, y ∈ X with x ∈ A, y ∈ B and d(y, x) = G(y, x, x) for all
comparative x, y ∈ X with x ∈ A, y ∈ B. Then by Theorem 1.14, (X, d) is a quasi metric space.
From the contractive conditions we have

d(fx, gy) ≤ kmax{d(x, y), d(fx, x), d(gy, y)}

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

d(gx, fy) ≤ kmax{d(x, y), d(gx, x), d(fy, y)}

for all comparative x, y ∈ X with x ∈ B, y ∈ A. By Theorem 2.9, f and g have a common fixed
point in A ∩B.

Remark 3.3. We can prove Theorem 3.2 from Theorem 3.1 by choosing φt = t and ψt = (1 − k)t,
where 0 ≤ k < 1.

Next, we introduce an example to support our result.

Example 3.4. Let X = {0, 1, 2, 3, · · · } and define a relation � on X by a, b ∈ X, a � b iff a− b ≥ 0
and let A and B be two subsets of X such that A = {0, 2, 4, 6, · · · }, B = {0, 1, 3, 5, · · · }.

Define d : X ×X → [0,∞) by d(x, y) =

{
0, x = y;

x+ 2y, x 6= y.

Let f, g : A ∪B → A ∪B be defined by fx =

{
0, x = 0, 1, 2;

x− 3, x ≥ 3.
gx =

{
0, x = 0, 1;

x− 1, x ≥ 2.

Also, define φ, ψ : [0,∞)→ [0,∞) by φt = t2, ψt = t. Then

(1) (X, d,�) is a partially ordered complete quasi metric space;

(2) A and B are closed subsets of X with respect to the topology induced by d;

(3) the pare (f, g) is (A,B)-weakly increasing with f(A) ⊆ B, g(B) ⊆ A;

(4) φ and ψ are altering distance functions;

(5) there is x0 ∈ X such that x0 � fx0;
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(6)

φd(fx, gy) ≤ φmax{d(x, y), d(fx, x), d(gy, y)} − ψmax{d(x, y), d(fx, x), d(gy, y)} (3.1)

for all comparative x, y ∈ X with x ∈ A, y ∈ B, and

φd(gx, fy) ≤ φmax{d(x, y), d(gx, x), d(fy, y)} − ψmax{d(x, y), d(gx, x), d(fy, y)} (3.2)

for all comparative x, y ∈ X with x ∈ B, y ∈ A.

Proof. The proofs of (1), (2), (3), (4), and (5) are clear. We show (6).
Let x ∈ A, y ∈ B. Then we have the following cases:

Case (I): If x ∈ {0, 1, 2} and y ∈ {0, 1}, then fx = 0 and gy = 0. Hence the left hand side of (3.1) is
equal to 0 and so (3.1) is satisfied.

Case (II): If x ≥ 3 and y ≥ 2, then

Subcase (1): If x− 3 = y− 1, then φd(fx, gy) = [d(x− 3, y− 1)]2 = [0]2 = 0 and so (3.1) is satisfied.

Subcase (2): If x− 3 6= y − 1, then

φd(fx, gy) = [d(x− 3, y − 1)]2 = [x+ 2y − 5]2 = x2 + 4y2 + 25 + 4xy − 10x− 20y.

On the other hand

[max{d(x, y), d(fx, x), d(gy, y)}]2 −max{d(x, y), d(fx, x), d(gy, y)}
= [max{d(x, y), d(x− 3, x), d(y − 1, y)}]2 −max{d(x, y), d(x− 3, x), d(y − 1, y)}
= [max{x+ 2y, 2x− 3, 2y − 1}]2 −max{x+ 2y, 2x− 3, 2y − 1}.

If max{x+ 2y, 2x− 3, 2y− 1} = x+ 2y, then the right hand side is x2 + 4y2 + 4xy− x− 2y. Assume
to the contrary that x2 + 4y2 + 25 + 4xy − 10x − 20y > x2 + 4y2 + 4xy − x − 2y. Then we have
9x+18y < 25 a contradiction since x ≥ 3 and y ≥ 2. Thus we have x2 +4y2 +25+4xy−10x−20y ≤
x2 + 4y2 + 4xy − x− 2y. If max{x + 2y, 2x− 3, 2y − 1} = 2x− 3 or 2y − 1, then the result is clear
since if a, b ∈ IN with a < b, then a2 − a < b2 − b. Thus (3.1) is satisfied. In a similar manner we
can show that (3.2) is satisfied. Hence all hypothesis of Theorem 3.1 hold true. Therefore f and g
have a common fixed point in A ∩ B. In this example the common fixed point of f and g in A ∩ B
is 0.
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