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Abstract 
In this paper a numerical method for solving “fuzzy partial differential equation” (FPDE) is considered. 
We present finite volume method that solves some FPDEs such as fuzzy hyperbolic equations, fuzzy 
parabolic equations and fuzzy elliptic equations. We obtain explicit, implicit and Crank–Nicolson schemes 
for solving fuzzy heat equation and then see if stability and consistency of these methods exist, and 
conditions for stability and consistency are given. These methods are illustrated by solving some 
examples. 
 

Keywords: Fuzzy Partial Differential Equations, Finite Volume Methods. 

 
 
1. Introduction 
 
     Partial differential equations form the basis of very many mathematical models of physical, 
chemical and biological phenomena, and more recently their use has spread into economics, 
financial forecasting, image processing and other fields. Knowledge about dynamical systems 
modeled by differential equations is often incomplete or vague. For example, for parametric 
quantities, functional relationships, or initial conditions, the well-known methods of solving 
FPDE analytically or numerically can only be used for finding the selected system behavior, e.g., 
by fixing unknown parameters to some plausible values. However, in this way it is not possible 
to characterize the whole set of system behaviors compatible with our partial knowledge. It 
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motivates us all such systems as Fuzzy Input-Fuzzy Output (FIFO) systems. To investigate the 
predictions of FPDE models of such phenomena it is often necessary to approximate their 
solutions numerically, since the exact solutions for these kinds of problems are almost 
impossible. In this work we will present the finite volume method that is a discretization 
method which is well suited for the numerical solution of various types of fuzzy partial 
differential equations (elliptic, parabolic or hyperbolic, for instance). The method might be 
called the conservation law approach in that develops the difference scheme using a physical 
conservation law. In [2], J. Buckley and T. Feuring proposed a method to solve elementary fuzzy 
partial differential equations. In [1] T. Allahviranloo used a numerical method to solve FPDE 
that was based on the Seikala derivative. In this paper, our purpose is to solve fuzzy parabolic 
equations using the finite volume method. 
 
 

2. Preliminaries 
  
      We begin this section with defining the notation we will use in the paper. We place a ~ sign 
over a letter to denote a fuzzy subset of the real numbers. We write Ã(x), a number in [0,1], for 
the membership function of Ã evaluated at x. An α-cut of Ã, written Ã[α], is defined as  {x| Ã (x) ≥ 
α } for 0 < α ≤ 1. Since the α-cuts of fuzzy numbers are always closed and bounded, the intervals 

we write, [ ] [ ( ), ( )]N N N   for all α.  

 
We represent an arbitrary fuzzy number by an ordered pair of functions (u(α), ū(α)), 0 ≤ α ≤ 1, 
which satisfies the following requirements: 
1. u(α) is a bounded left continuous non decreasing function over [0, 1]. 
2. ū(α) is a bounded left continuous non increasing function over [0, 1]. 
3. u(α) ≤ ū(α), 0 ≤ α ≤ 1. 
 
A crisp number a is simply represented by u(α) = ū(α) = a, 0 ≤ α ≤ 1. The set of all the fuzzy 
numbers is denoted by E1. A popular fuzzy number is the triangular fuzzy number u = (m,r,β) 
which 
  

                   

1

( ) 1

0 .

x m
m r x m

r

m x
u x m x m

otherwise





   




    





 

 
Its parametric form is  
 

                    ( ) ( 1) , ( ) ( 1).u m r u m           
 
 
Lemma 2.1. Let v,w є E1 and s be real number. Then for 0 ≤ α ≤ 1 

                    ( ) ( ) ( ) ( ),u v if and only if u v and u v        
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( ( ) ( ) , ( ) ( ))

( ( ) ( ) , ( ) ( ))

. (min { ( ). ( ), ( ). ( ), ( ). ( ), ( ). ( )},

max { ( ). ( ), ( ). ( ), ( ). ( ), ( ). ( )})

( ( ), ( )). [10]

u v v w v w

u v v w v w

v w v w v w v w v w

v w v w v w v w

sv s v v see

   

   

       

       

 

   

   



  
 
E1 with addition and multiplication as defined by Lemma 2.1 is a convex cone which is then 
embedded isomorphically and isometrically in to a Banach space. 
 
It is shown [7] that (E1, D) is a complete metric space. 
 
Definition 2.1. For arbitrary fuzzy numbers ( , )u u u  and  the quantity 

 

                   
0 1

( , ) sup {max (| ( ) ( ) |,| ( ) ( ) |)}D u v u v u v


   
 

  
 

 
is the Hausdorff distance between u and v. 
 

3. Fuzzy partial differential equations 
 
      Consider the FPDE 
 
                   ϕ (Dx,Dy)Ũ (x, y) = F̃ (x,y,K̃ ),                                                                                      (3.1) 

subject to certain boundary conditions where the operator ϕ(Dx,Dy) will be a polynomial, with a 
constant coefficient, in Dx and Dy, where Dx(Dy) stands for the partial differential with respect to 
x(y). The boundary conditions can be of the form Ũ (0, y) = C̃1, Ũ (x, 0) = C̃2, Ũ (M1, y) = C̃3, . . . , Ũ 
(0, y) = C̃1 ,Ũ(0, y) = g1(y; C̃4), Ũ (x, 0) = f1(x; C̃5), . . . . F̃(x, y, K̃) is the fuzzy function which has                
K̃ = (K̃1, . . . ,K̃n) for K̃i a triangular fuzzy number in Ji, 1 ≤ i ≤ n. Let I1 = [0,M1], I2 = [0,M2]. The fuzzy 
function Ũ maps I1 × I2 into fuzzy numbers. Also let C ̃= (C̃1, . . . , C̃m) with C̃i being triangular fuzzy 
numbers in the intervals Li ,1 ≤ i ≤m. Let 

                   1 1

[ ] [ ], [ ] [ ] .
n n

i i

i i

K K C C   
 

      

Suppose Ũ (x, y) [α] = [U(x, y; α), Ū(x, y; α)]. We assume that the U(x, y; α) and Ū(x, y; α) have 
continuous partial derivatives so that ϕ (Dx,Dy)U(x, y; α) and ϕ(Dx,Dy)U(x, y; α) are continuous 
for all (x, y) є I1 × I2 and all α. Define 
 
                    Γ(x, y; α) = ϕ(Dx,Dy)Ũ (x, y)[α] = [ϕ(Dx,Dy)U(x, y; α), ϕ(Dx,Dy)Ū(x, y; α)],             (3.2) 
 

for all (x, y) є I1 × I2 and all α. 
 
Definition 3.1 If for each fixed (x, y) є I1 × I2, Γ(x, y; α) defines the α-cut of a fuzzy number, then 
we will say that Ũ (x, y) is differentiable. (See [2]). 
 
Sufficient conditions for Γ(x, y; α) to define α-cuts of a fuzzy number are: 
1. ϕ(Dx,Dy)U(x, y; α) is an increasing function of α for each (x, y) є I1×I2; 
2. ϕ(Dx,Dy)Ū(x, y; α) is an decreasing function of α for each (x, y) є I1×I2; 
3. ϕ(Dx,Dy)U(x, y; 1) ≤ ϕ(Dx,Dy)Ū(x, y; 1) for all (x, y) є I1 × I2. 
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Consider the system of partial differential equations 
 
                         ϕ (Dx,Dy)U(x, y; α) = F(x, y; α),                                                                                 (3.3) 

                         ϕ (Dx,Dy)Ū(x, y; α) = F (x, y; α)                                                                                 (3.4) 
      
for all (x, y) є I1 × I2 and all α є [0, 1], where 
 
                          F(x, y; α) = min {F(x, y, k) |k є K[α]},                                                                       (3.5) 

                         F (x, y; α) = max {F(x, y, k) |k є K [α]}.                                                                    (3.6) 
 
We append to equations (3.3) and (3.4) any boundary conditions, for example, if they were                 
Ũ (0, y) = C̃1 and Ũ (M1, y) = C ̃2, then we add 
 
                           U (0, y; α) = C1(α), U(M1, y; α) = C1(α) 
 
to equation (3.3) and 
 

                            Ū(0, y; α) = C1(α), Ū(M1, y; α) = 2C (α) 

 
to equation (3.4) where C ̃i[α] = [C1(α),C2(α)], i = 1, 2. Let U(x, y; α) and Ū(x, y; α) solves equations 
(3.3) and (3.4), plus the boundary equations, respectively. 
 
 
Definition 3.2 If for all (x, y) є I1×I2, Ũ (x, y) [α] = [U(x, y; α), Ū(x, y; α)] defines the α-cut of a fuzzy 
number, then Ũ (x, y) is the solution for (3.1). (See [2]). 
 
 
 

4. Fuzzy parabolic equations 
 
       Consider the fuzzy heat equation which is an example of the fuzzy parabolic equations.  
 

                   2( , ) ( , ), 0 1, 0, (4.1)t xxU x t U x t x t      

where 

                   
1 2(0, ) , (1, ) , 0

( ,0) ( ), 0 1.

U t K U t K t

U x f x x

  

  

   


 

Since any fuzzy number u can be written as u= (u(α), ū(α)), 0 ≤ α ≤ 1 (see[3]) thus If xxU E and 

tU E
 
then we have 

                  

2

1 2

( , ; ) ( , ; ) (4.2)

(0, ; ) ( ), (1, ; ) ( ), 0,

( ,0; ) ( ; ), 0 1, [0,1],

t xxU x t U x t

U t K U t K t

U x f x x

  

   

  



  

   

 

                  

2

1 2

( , ; ) ( , ; ) (4.3)

(0, ; ) ( ), (1, ; ) ( ), 0,

( ,0; ) ( ; ), 0 1, [0,1].

t xxU x t U x t

U t K U t K t

U x f x x
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5. Finite volume method 
 
       In this section we shall solve problems (4.2), (4.3) numerically. Our method is to reduce the 
problem above to a discrete problem that we are able to solve. First we consider the grid is 
placed on the interval (0,1) given in Figure 1.  

 
 x0 = 0 x1 xk                                            xM-1            xM =1               x     

                                                                                                                                                      
                   x1/2    xk-1/2         xk+1/2  
 

Figure 1. Grid placed on the interval (0,1) whit blocks centered at the grid points. 
 

If we wish to refer to one of the points in the grid, we shall call the points xk, k = 0, . . . M  where        
xk  = k ∆x, ∆x=1/M, k = 0, . . . M. We shall refer to endpoint of the interval about the point xk as xk + 

1/2. This interval is referred to as the control volume associated with the kth grid point. To derive 

a difference equation associated with the kth grid point above we integrate of  the equations 

(4.2), (4.3) over each interval (xk-1/2, xk+1/2) (which we refer to as the kth cell). Assuming that   

is constant, we get   
 

1/2 1/2

1/2 1/2

2( , ; ) ( , ; ) ,
k k

k k

x x

t xx
x x

U x t dx U x t dx  
 

 

 
   

1/2 1/2

1/2 1/2

2( , ; ) ( , ; ) (5.1)
k k

k k

x x

t xx
x x

U x t dx U x t dx  
 

 

 
 

 
We note that both sides of equations (4.1) are still functions of t. If we integrate from tn = n∆t to       
tn+1 = (n+1) ∆t, we get 
 

                   1 1/2 1 1/2

1/2 1/2

2( , ; ) ( , ; ) ,
n k n k

n k n k

t x t x

t xxt x t x
U x t dxdt U x t dxdt  

   

 

     

                   
1 1/2 1 1/2

1/2 1/2

2( , ; ) ( , ; ) . (5.2)
n k n k

n k n k

t x t x

t xx
t x t x

U x t dxdt U x t dxdt  
   

 

   
   

 
From the above calculation, we get  
 

                  
1/2 1

1/2

2

1 1/2 1/2( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) ,
k n

k n

x t

n n x k x k
x t

U x t U x t dx U x t U x t dt    
 


       

                   
1/2 1

1/2

2

1 1/2 1/2( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) (5.3)
k n

k n

x t

n n x k x k
x t

U x t U x t dx U x t U x t dt    
 


     

 
 
which we call equations (5.3) integral form of the conservation law. Hence, equations (5.3) are 
exact equations. We now proceed to obtain an approximation of fuzzy partial differential 
equation (4.1). We do this approximating the integral form of conservation law given in 
equations (5.3). We begin by approximating the integrals on the left by midpoint rule with 
respect to x. we get 
 

                   
1/2

1/2

3

1 1( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) ( ),
k

k

x

n n k n k n
x

U x t U x t dx x U x t U x t O t x   



         

                  
1/2

1/2

3

1 1( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) ( ). (5.4)
k

k

x

n n k n k n
x

U x t U x t dx x U x t U x t O t x   



       

 
 
Where the ∆t term is due to the fact that the functions we are integrating are in the forms 

1( , ; ) ( , ; )n nU x t U x t   and 1( , ; ) ( , ; )n nU x t U x t   . We approximate the integrals on the right 

by the lower rectangular rule with respect to t (evaluating the function at tn). We get     
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1 2

1/2 1/2 1/2 1/2( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) ( ),
n

n

t

x k x k x k n x k n
t

U x t U x t dt t U x t U x t O t x   


           

   

1 2

1/2 1/2 1/2 1/2( ( , ; ) ( , ; )) ( ( , ; ) ( , ; )) ( ). (5.5)
n

n

t

x k x k x k n x k n
t

U x t U x t dt t U x t U x t O t x   


         
 

 
Where the ∆x term in the order of approximation is due to the fact that the integrands are a 

difference in k. We are then left to approximate the terms 1/2 1/2( , ; ) ( , ; )x k n x k nU x t U x t   and

1/2 1/2( , ; ) ( , ; ) x k n x k nU x t U x t  . If we expand Taylor series about xk, we get 

 

                    
2

3

1/2 1/2( , ; ) ( , ; ) ( , ; ) ( ),x
x k n x k n k n

U
U x t U x t x t O x

x


      


 

                     
2

3

1/2 1/2( , ; ) ( , ; ) ( , ; ) ( ) (5.6)x
x k n x k n k n

U
U x t U x t x t O x

x


      

  
 

where 2 2

1 1 1 12 , 2 , ( , ; )x k n k n k n k n x k n k n k n k n k n k nU U U U U U U U U U x t            and

( , ; )k n k nU U x t  . We then combine equations (5.4)-(5.6) with (5.3) to get 

                    
2

3 2 3 2( ) ( ) ( ),


          


t k n x k n

t
x U O t x U O t x O t x

x


   

                    

2
3 2 3 2( ) ( ) ( ) (5.7)t k n x k n

t
x U O t x U O t x O t x

x


 


          

  
 

Where 1 1,    t k n k n k n t k n k n k nU U U U U U  .And, finally, we note that if we replace the 

functions  evaluation Uk n  and  Ūk n  by the approximations  uk n  and ūk n  and approximate 
equations (5.7) by dropping the  O terms, we obtain difference equations 
 

2
2

0 1 2

0

,

( ), ( ), 0,1,2,...

( ; ), 1,2,..., 1,

t k n x k n

n M n

k k

t
x u u

x

u K u K n N

u f x k M


 

 




 



  

  
         

2
2

0 1 2

0

, (5.8)

( ), ( ), 0,1,2,...

( ; ), 1,2,..., 1.

t k n x k n

n M n

k k

t
x u u

x

u K u K n N

u f x k M


 

 




 



  

  
 

 
Clearly each value at time level tn+1 can be independently calculated from values at time level tn; 
for this reason this is called an explicit difference scheme.  

The stability limit 
2

2

( )
 

2

x
t




  is a very severe restriction, and implies that very many time steps 

will be necessary to follow the solution over a reasonably large time interval. We shall now show 
how the use of an upper rectangular rule with respect to t gives a difference scheme which 
avoids this restriction, but at the cost of a slightly more sophisticated calculation. If we replace 
the integrals on the right (4.3) by the upper rectangular rule with respect to t (evaluating the 
function at tn+1), the integrals on the left remaining the same, we obtain the scheme 
 

                 
2

3 2 3 2

1( ) ( ) ( ),


          


t k n x k n

t
x U O t x U O t x O t x

x


   

                 

2
3 2 3 2

1( ) ( ) ( ) (5.9)t k n x k n

t
x U O t x U O t x O t x

x
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instead of (5.7). Now if we replace the function evaluation Uk n  and  Ūk n  by the approximations uk 

n  and ūkn  and approximate equations (5.9) by dropping the O  terms, we obtain difference 
equations 
 

                 
2

2

1,


 


t k n x k n

t
x u u

x


      

2
2

1. (5.10)t k n x k n

t
x u u

x


  


 

  
 
This is an example of an implicit scheme, which is not so easy to use as the explicit scheme 
described earlier. The schemes (5.10) involve six unknown values of u and ū on the new time 
level n + 1; we cannot immediately calculate the values of ukn, ūkn since the equations involve the 
four neighbouring values uk+1n+1, uk-1n−1, ūk+1n+1 and ūk-1n−1 which are also unknown. We must now 
write the equations in the form 
 

                 

1 1 1 1 1

2

1 1 1 1 1 2

(1 2 ) ,

(1 2 ) , . (5.11)

k n k n k n k n

k n k n k n k n

u ru r u ru

t
u ru r u ru r

x



    

    

    


     

  
 
Giving k the values 1, 2, . . . , (M− 1) we thus obtain a system of  2(M –1) linear equations in the     
2(M −1) unknowns uk n+1  and ūk n+1 , k = 1, 2, . . . , M−1. Instead of calculating each of these 
unknowns by a separate trivial formula, we must now solve this system of equations to give the 
values simultaneously. Note that in the first and last of these equations, corresponding to k = 1 
and k = M − 1, we incorporate the known values of u0 n+1, uM n+1, ū0 n+1 and ūM n+1  given by the 
boundary conditions. 
We have now considered two finite volume methods, which differ only in that one approximates 
the integrals on the right (5.3) by the lower rectangular rule (evaluating the function at tn) and 
the other uses from the upper rectangular rule (evaluating the function at tn+1). If we replace the 
integrals on the right (5.3) by the trapezoidal rule with respect to t (average of the lower 
rectangular rule and the upper rectangular rule), the integrals on the left remaining the same, we 
obtain the scheme 
 

  

2 2
3 2 3 2 3 3

1( ) ( ) ( ) ( ),
2 2



 
              

 
t k n x k n x k n

t t
x U O t x U O t x U O t x O t x

x x

 
  

 

  

2 2
3 2 3 2 3 3

1( ) ( ) ( ) ( ).(5.12)
2 2

t k n x k n x k n

t t
x U O t x U O t x U O t x O t x

x x

 
   

 
              

   
 
Now if we replace the function evaluation Uk n  and  Ūk n  by the approximations  uk n  and ūkn  and

 approximate equations (5.12) by dropping the O  terms, we obtain difference equations  
  

               

2 2
2 2

1,
2 2



 
  

 
t k n x k n x k n

t t
x u u u

x x

 
    

2 2
2 2

1. (5.13)
2 2

t k n x k n x k n

t t
x u u u

x x

 
   

 
  

 
  

           
This is well known and popular Crank–Nicolson scheme. Where we must solve a system of 
equations in the form 

                  
1 1 1 1 1 1 1(1 ) (1 ) ,

2 2 2 2
k n k n k n k n k n k n

r r r r
u r u u u r u u                

                

2

1 1 1 1 1 1 1 2
(1 ) (1 ) , . (5.14)

2 2 2 2
k n k n k n k n k n k n

r r r r t
u r u u u r u u r

x
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A natural generalization is to take weighted average of the two formulae (explicit and implicit). 
Since the time difference on the left-hand sides is the same, we obtain difference equations 
 

    
2 2

2 2 2 2

1 1( (1 ) ), ( (1 ) ). (5.15)t k n x k n x k n t k n x k n x k n

t t
x u u u x u u u

x x

 
        

 
       

   
 
We shall assume that we are using an average with nonnegative weights, so that 0 ≤ θ ≤ 1; θ = 0 

gives the explicit scheme, θ = 1 the fully implicit scheme and 
1

2
  Crank–Nicolson scheme. 

 

6. Consistency and stability 
 
Definition 6.1 At any point away from the boundary we can define the truncation error 

[ , ]k n k nT T    

 

                   

2
2 2

1

2
2 2

1

: ( (1 ) )

: ( (1 ) ). (6.16)

k n t k n x k n x k n

k n t k n x k n x k n

t
T x U U U

x

t
T x U U U

x


   


   






    




    

  
 
Definition 6.2 the difference scheme is consistence with fuzzy partial differential equation (4.1) 
if   

 
00, 0 , 0 ( , ) (0,1) (0, )k n k nT T as x t x t t        (for some t0 >t). 

 
If we now use Taylor expansions to calculate the truncation error we obtain 

                  

2 2 2 3

2
3 3

2 2
3 2 5

1 1
[ ] [ ( ) ( ) ( ) ]

2 12

1
[ ( ) ( ) ]
24 8

1 2
[ ( ) ( ) ( ) ( ) ( ) ],
12 2 6!

k n t xx xxt xxxx

ttt xxtt

xxxxt xxxxxx

T x tU x tU x t U x tU

x t U x t U

x t U x t U

  



 


            

     

      

 

                  

 

                

2 2 2 3

2
3 3

2 2
3 2 5

1 1
[ ] [ ( ) ( ) ( ) ]

2 12

1
[ ( ) ( ) ]
24 8

1 2
[ ( ) ( ) ( ) ( ) ( ) ]. (6.17)
12 2 6!

k n t xx xxt xxxx

ttt xxtt

xxxxt xxxxxx

T x tU x tU x t U x tU

x t U x t U

x t U x t U

  



 


            

     

      
 

 

Theorem 6.1 the difference scheme (5.15) is consistence for all values θ if , ,ttt xxxx xxxxxxU U U

and , ,ttt xxxx xxxxxxU U U  be uniformly bounded on (0,1)×(0,t0) (for some t0 >t). 

 
Proof: See [6],[8],[11]. 
 
One interpretation of stability of a difference scheme is that for a stable difference scheme small 
errors in the initial conditions cause small errors in the solution.   
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Theorem 6.2 equation (5.15) stable for 0 ≤ θ < 
1

2
if and only if r ≤ 

1

2
(1 − 2θ) −1, and stable for all 

r when 
1

2
≤ θ ≤ 1. 

 
Proof: See [6],[8],[11]. 
 
 

7. Examples 
 
Example 7.1 Consider the fuzzy parabolic equation 
 

                  ( , ) ( , ), 0 1, 0, (7.1)t xxU x t U x t x t    
 

 
with the boundary conditions 
 

                  
(0, ) (1, ) 0, 0

( ,0) ( ) sin( ),  0    1.

U t U t t

U x f x k x x

  

   

 

 
 

 

and  [ ] [ ( ),  ( )] [   1,  1  ].   k k k      

The exact solution for 
 

                  
2( , ; ) ( , ; ) 0, t xxU x t U x t    

                  
2( , ; ) ( , ; ) 0 t xxU x t U x t    

 

for 0<x<1,t>0 are 
2

( , ; ) ( ) sin( ) tU x y k e x   and
2

( , ; ) ( ) sin( )tU x y k e x   . We use the 

explicit, implicit and Crank–Nicolson schemes approximate the exact solution at the point (0.1, 
0.0001) with ∆x = 0.1, ∆t = 0.00001, N=10, at the point (0.1, 0.1) with ∆x = 0.1, ∆t = 0.01, N=10 
and at the point (0.1, 0.1) with ∆x = 0.1, ∆t = 0.00001, N=10000. Figure. 2, Figure. 3 and Figure. 4 
show the exact and approximate solutions for each [0,1] . Table 1 shows the Hausdorff 

distance between the solutions.  
 

 
 

Figure 2. Results obtained at the point (0.1, 0.0001) with explicit, implicit 
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and Crank–Nicolson schemes; ∆x = 0.1, ∆t = 0.00001, N=10(Example 7.1) 

 

 
 

  Figure 3. Results obtained at the point (0.1, 0.1) with explicit, implicit  
                                           and Crank–Nicolson schemes; ∆x = 0.1, ∆t = 0.01, N=10 (Example 7.1) 
 

 
 

Figure 4. Results obtained at the point (0.1, 0.1) with explicit, implicit 
and Crank–Nicolson schemes; ∆x = 0.1, ∆t = 0.00001, N=10000 (Example 7.1) 

 
Table 1. Hausdorff distance between the solutions (Example 7.1) 

 

 
 

(x , 
t) 

    (∆x , 
∆t) 

 
N 

(0.1,0.0001)  (0.1,0.00001) 10 (0.1,0.1) (0.1,0.01) 10 (0.1,0.1) (0.1,0.00001) 10000 

Hausdorff distance 
between the exact 
solution and the 
explicit scheme 
solution 

 

                     2.4×10-6 

 

              4.8689×10-3 

 

                   9.300×10-4 

Hausdorff distance 
between the exact 
solution and the 
implicit scheme 
solution 

              

                     2.5×10-6 

 

              2.2793×10-3 

 

                   9.411×10-4 

Hausdorff distance 
between the exact 
solution and the 
Crank–Nicolson 
scheme solution 

                 

                     2.5×10-6 

 

              3.5755×10-3 

 

                  9.356×10-4 
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Example 7.2 Consider the previous example with [ ] [ ( ),  ( )] [0.5  + 0.5,1.5 0.5 ].  k k k      
 We use the equations explicit, implicit, and Crank–Nicolson approximate the exact solution at 
the point (0.4, 0.5) with ∆x = 0.1, ∆t = 0.0005, N=1000 and ∆x = 0.1, ∆t = 0.01, N =50. Figure.5, 
Figure.6 and Figure. 7 show the exact and approximate solutions for each [0,1] .Table 2 shows 

the Hausdorff distance between the solutions. 
 
 

 
 

Figure 5. Results obtained at the point (0.4, 0.5) with explicit, implicit 
and Crank–Nicolson schemes; ∆x = 0.1, ∆t = 0.0005, N=1000 (Example 7.2) 

 

 
 

Figure 6. Results obtained at the point (0.4, 0.5) with implicit and 
Crank–Nicolson schemes; ∆x = 0.1, ∆t = 0.01, N=50(Example 7.2) 
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Figure 7. Results obtained at the point (0.4, 0.5) with explicit scheme; 
∆x = 0.1, ∆t = 0.01, N=50 (Example 7.2) 

 
 
 
                Table 2. Hausdorff distance between the solutions (Example 7.2) 

 
 
 
 

We see that at the point (0.4, 0.5) whit ∆x = 0.1, ∆t = 0.01, N=50, r =0.01/ (0.1)2 =1 therefore 
explicit scheme in this point is an unstable mode (by theorem6.2) that Figure 7 shows clearly 
this instability. Furthermore Table 3 shows at the point (0.4, 0.5) whit ∆x = 0.1, ∆t = 0.01, N=50 
the explicit scheme solutions don’t define the α-cuts of a fuzzy number for some α. 
 

 
 
   

Table 3. Results obtained at the point (0.4, 0.5) with 

Explicit scheme; ∆x = 0.1, ∆t = 0.01, N=50 (Example 7.2) 

α u(x4 ,t50;α) ū(x4 ,t50;α) 
0 -4.309453×106 -3.035247×106 

0.1 -2.830447×106 -4.418238×106 
0.2 -3.38239×105 -1.327518×106 
0.3 -1.936428×106 -6.688252×106 
0.4 -6.63759×105 -3.872857×106 
0.5 -2.209119×106 -9.84858×105 
0.6 -6.692739×106 -6.76479×104 
0.7 -3.69562×105 -1.0279862×107 
0.8 3.26223×105 -8.618906×106 
0.9 2.1003×104 -5.233417×106 
1 -5.660894×106 -5.660894×106 

 
 
 
 
 
 

 

          (x , t)  (∆x , ∆t)     N (0.4,0.5)  (0.1,0.0005) 1000 (0.4,0.5) (0.1,0.01)   50 

Hausdorff distance between the exact  
solution and the explicit scheme solution 

      

                   2.960×10-4 

 

             ×1.02798621 107 

Hausdorff distance between the exact 
solution  and the implicit scheme solution 

              

                   5.519×10-4 

 

                  3.119×10-3 

Hausdorff distance between the exact 
solution and the Crank–Nicolson scheme 
solution 

                 

                   4.235×10-4 

 

                  3.819×10-4 
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8. Conclusions 
We presented difference methods for solving Fuzzy parabolic equations. These numerical 
solutions are based on the seikkala derivative. If these solutions define α-cuts of a fuzzy number, 
then the solutions of FPDE, would exist, which has been concluded from the numerical values. 
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