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Abstract

This article discuss the existence of solutions for certain classes of nonlinear \p—Caputo fractional derivative differential
inclusion via a nonlocal infinite-point or Riemann-Stieltjes integral boundary conditions and with a feedback control in Banach
spaces. Our approach is based on Schauder’s fixed point theorem. We establish appropriate conditions that guarantee unique so-
lutions and demonstrate that the solution continuously depends on the set of selections and some other functions. Additionally,
we include example to illustrate the key findings.
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1. Introduction

Differential and integral equation models can be found in a wide range of applications (see [10, 13,
15, 16]). In some of these problems, subsidiary conditions are enforced locally. Other times, conditions
outside the area are applied. Because the measurements needed to determine a non-local condition are
perhaps even more accurate with data supplied by a local condition, non-local conditions are regularly
used preferred to local conditions. The resulting fractional boundary value problems (abbreviated BVPs)
with resonant requirements have produced a number of notable achievements. Bai [8] studied a class
of fractional differential equations with m-point boundary conditions. Kosmatov [22] studied the BVP
of three points of fractional order with the resonant case using the same methodology. Given that the
investigation of fractional BVPs at resonance has produced useful results, It must be noted that there
are many issues that include Riemann-Stieltjes integrals. As a result, research on fractional BVPs at
resonance has been successful. It should be noted that these Riemann-Stieltjes integral problems are quite
rare. Therefore, further research is needed. As can be seen in the pertinent publications attributed to
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Ahmad et al. [4], the Riemann-Stieltjes integral has been viewed as both a multipoint and an integral
in one construction, the latter of which is more typical. There are many situations where boundary
value concerns for nonlinear differential equations could come up, such as as those in physics, applied
mathematics, and variations problems of control theory, we recommend to read works [16-18]. The
sensors act linearly; one gives feedback to a controller at one endpoint from a portion of the interval, and
the other provides feedback to a controller at the other extremity. Numerous positive solutions and a few
nonexistent solutions were established by the proof of certain useful characteristics.

The importance of dealing with problems involving control variables is due to the unforeseen factors
that continually upset ecosystems in the actual world, which can lead to changes in biological character-
istics such as survival rates. Ecology has a practical interest in the question of whether an ecosystem can
withstand those unpredictable disruptive events that continue for a short period of time. In the context of
control variables, the disturbance functions are what we refer to as control variables. Chen derived cer-
tain criteria for the long-term stability and overall attractiveness of a nonautonomous Feedback-controlled
Lotka-Volterra system in a study referenced as [11]. This was done through the development of an appro-
priate Lyapunov function.

Nasertayoob has shown the existence of a type of nonlinear functional-integral equations with feed-
back control that are asymptotically stable and globally attractive. This was achieved by utilizing the
measure of noncompactness along with Darbo’s fixed point theorem [25]. In addition, the research inves-
tigates the presence of a positive periodic solution in a nonlinear neutral delay population system with
feedback control under specific conditions. The demonstration relies on the fixed-point theorem of strict-
set-contraction operators [26]. El-Sayed et al. [5] address a functional integral equation with multi-valued
feedback control that meets a constraint functional equation.

Many academics and researcherss have recently develope interest in studying boundary value prob-
lems of fractional order, with interest in this subject expanding across various fields of study (see [1-
3, 20, 24]). The Liouville-Caputo fractional derivative was used to show the existence of continuous

solutions to the non-local first-order BVP [27]
d
=gy DPY), te(01), 0<p<1,

in addition to the infinite-point boundary conditions provided by
oo
Z ¢; v(T5) =vo, ¢ >0,7 €(0,1], and v, € RY,
j=1
alternatively, the Riemann-Stieltjes functional integral boundary conditions

-
J v(o) dh(o) = v, h:[0,T] = R is nondecreasing function.
0

In light of the previously mentioned problems, in this study, we consider a modified version of the
issue discussed in [27]. Specifically, we investigate the existence of solutions for a fractional differential
inclusion of the {-Caputo type.

“DFPy(r) € O1(t, u(x), 19V (t, v(e(r))), 0<a <1, te(0,T] (L1)

equipped with the infinite-point boundary conditions
o0
v(0) + ) ajv(t)=vo, aj >0,75€(0,T] (1.2)
j=1

or Riemann-Stieltjes integro boundary conditions

T

v(0) + J v(n) db(n) = vo, bh:[0,T] = R is nondecreasing function (1.3)
0
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with feedback control provided by

u(e) = @ (v, pu(v), v(v), (1.4)
where ¥ (t) is an increasing function with ¥’ (t) # 0, Vv € I = [0,T], 0 < « < 1, and °D*V is the
P-Caputo fractional derivative, and ©; : [0, T] x R* — P(R) is a multivalued map, where the family of
all nonempty subsets of R is known as P(IR). Our inquiry is centered on the selections of the set-valued
function ©; by varying the inclusion of the functional integral into a coupled system. First, obtain the
continuous solution of the problem (1.1) utilizing the n-point BCs provided by

n
v(0) + > ajv(t)=ve, @5 >0,75€0,1], (1.5)
j=1

and following that, by using the Riemann sum’s characteristics for continuous functions, we show that the
solutions of the BVP with the Riemann-Stieltjes integral provided in (1.1) and (1.3) and also the BVP with
infinite points provided in (1.1) and (1.2). To achieve the main goal, the initial problem is transformed
into a corresponding integral equation, and the Schauder fixed point theorem is applied to prove the
existence of the solution.

The remaining parts of the paper are structured as follows: Our main finding in relation to issues
(1.1)—(1.5) is presented in Section 2. Considering the conclusion of the development, we look into the BVP
given in (1.1)-(1.3) with a feedback control (1.4) and by (1.1)-(1.2) with a feedback control (1.4). We show
that both the infinite-point BC (1.2) and the Riemann-Stieltjes functional integral BC (1.3) satisfy sufficient
criteria for the problem (1.1) in each case, while Section 3 addresses dependency and the uniqueness of
continuous solutions. Section 4 includes an example that will demonstrate our findings.

2. Existence of solution

Consider the assumptions listed below

(i) The multivalued map ©; : I xR — 2R is Lipschitzian, and has a nonempty convex compact subset
of 2R, with Lipschitz constant k > 0

181 (v, 1) = O1(r, V)| <k |p—vl.
Here the set of Lipschitz selections for ©; is not empty and there exists 0; € ©; ( see [7]), with

101 (t, ) —01(t, V)| < k [|u—v[.

(ii) The function ¢ : I — I is a continuous.

(iii) The function 8, : I x R — R, satisfied Caratheodory requirement. There exist a measurable bounded
function a(t) and a constant b > 0, with

02(v, 1) < alt)+ blu, YVt elandpeR.

(iv) w € C(I x R x R,R), and there exists a measurable and bounded function § : I — R, have norm
15[, with
[@(r, v(t), u(e)) < B(x), rel

W) [allvol+ X5y lajl) + k((T) = (0)) < 1, 2RO <1 and Pa() <M, ¥y <o, ¢ >0,
Lemma 2.1. For any v € C(I,R), the solution of the linear fractional boundary value problem
DPPy(t) = 01 (t, (), 1V 02(x, v(9(¥))), x€ (0,1), vel, (2.1)

additionally with feedback control (1.4) and condition (1.5), are equivalent to equation
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Tj / ) B—1
v(r) =a (%Z%‘J Yintbly) —bin) 01(n, u(n),I"“")Gz(n,vw(n))))dn) (2.2)

=" re)
t oL/ _ -1
+ Jo k. (n)(lb(?(ﬁ)ﬂ)(ﬂ)) 01(m, (M), 1%%02(n, v(@(n))))dn,

here a = (1+ Y 5, a;) L

Proof. We begin with investigating the issue (2.1) with the m-point BCs in (1.5). Integrating the two sides
of (2.1), we get
v(r) = v(0) + P70y (x, u(r), 1902 (x, v( (1))

Utilize condition (1.5) to obtain

In actuality, when set vt = ;5 € [0, T] in Eq. (2.3), we obtain

JT]' W) (W(ty) — ()P

o
0 ) 01(n, (), I*¥82(n, v(e(m)))) dn.  (2.4)

V(Tj) = Vo — Z a; \/(Tj) +
j=1

So, we have

() = (o) + | L 01, k() 105 n, v{co(m))) @5)
T/ _ p—1
- [ RO o, ), 1Y, () e

From (2.5) and (2.3)

01(n, M), 1% 02 (n, v(eMm)))) dn

N JTJ‘ ') (P(1) —pm)P!

v(t) =vo — aj (v(r)
j; ! 0 I'(p)
_ ' -

t -1
L )(w(tr)(ﬁ)w(n)) 01(n, 1(n), V03 (n, ¥((n)))) dn)
€./ _ B—1
o [ ORI b, ), ), 17 ea(n, (0(m)) dn

Consequently, we achieve

n n Tj aly/ ) B—1
(HZ aj) vie) =vo = Y ay | P IV e, ), 15 6atn, () an
i—1 j—1

n

T oL/ _ B—1
s Y o) | SRS s, i), 17 s, () dn
j=1

Letting a = (1 + Z};l a; )7L,

Tj / ) B*l
vir)=a (vo Y[R ey, u(n),I"“"’Gz(n,V(cp(n))))dn>
=1
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© ! () (W (x) — ()P
+J0 r(p)

From (2.2), we have

01(m, kM), 1% 02(n, v(@(n))))dn.

n T a1y ) B—1
v(Tj) =a (vozaiJ b el(n,u(n),I""""@z(n,u(n),vw(n))))dn) (2.6)

= o r(p)
T qly! ) p—1
4 [P, 1, ), 17903, V(o)) an,
0 rp)
then
n n T N B—1
(HZaj) viey) =vo = Yo [ IO, ), ), ¥, v )
=1 j=1
n Tj [y ) B—1
n (1+Za1) | AL = o, i, ), 10t (o))
i—1
SO,
n Tj aly/ R p—1
Vi) Y i) = vo | VIO g, i), 1030, o))
j=1
hence

JTi Y (W(h) —pm)P!

ocp
. 10 01(m, uMm), I¥¥02(n, v(e(n))))dn. (2.7)

n
Z aj v(Tj) = Vo — v(T5) +
j=1
From (2.2) we have

n Tj afy/ ) p—1
v(0) = a (vo D e L u(n),I“;wez(n,V(cp(n))))dn)-
1

):
Substitute the value of v(0), we obtain

Tj 11y ) p—1
()=o) + [ YT bt

01(n, kM), I%%02(n, v(e(n))))dn,

and

T qly! ) p—1
v(0) = v(ry) - | POy, ), 17, vign)))n @8)

By combining (2.7) and (2.8), we arrive at n-point BC (1.5)
v(0) + Z aj v(Tj) = Vo. O
j=1

Remark 2.2. From assumption (i), it follows that the set of Lipschitz selection for ©; is not empty. Fur-
thermore, there is 01 € Sg,, where

01 (n, 1) — 61 (n, V)l < K[u— V],
Hence, clearly, we have

101(m, w)| < klu|+067, where 07 = sup [01(n,0)|.
nelo,T]
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The next step shall be taken

wn) =1%%6:(n,v(e(m)), mnel (2.9)
Thus, we can express the equation (2.2) as
n T 41y ) p—1
Vi) = a (vo -3 [ SR o 0, ) i) dn) 210)
j=1 0
T () (o () — ()P
- | o 01 (1, (), win)) dn, vl

Then, the equation (2.2) is equivalent to the coupled system (2.9) and (2.10).

Theorem 2.3. Let assumptions (i) — (v) meet. Then the problem (2.9), (2.10) has at least one continuous solution
u=(v,w), v,w € C(I,R).

Proof. Let the set Q. be specified as
Qr ={u=(v,w) e R |u/ <1)
where

b (Y(T) —(0))*
MNoo+1)

alxo| +[a 35"y lajl + 1167 (W(T) —(0))

M) = (0
T—lay ] lol + 1kT ‘

+(- MNMa—vy+1)

)

T=T1+Ty) =

The set Q, is nonempty, closed, bounded and convex.
Next, set A to signify the operator defined on the space C(I,R) by

Au(t) = Alv,w)(r) = (Aw(t), Azv(t)),

T 11y ) B—1
Arw(r) = a(voZ a | RS, ), wim) an )

. 0 r(p)
T/ _ p—1
N L ) (n)(xb(tr)(mw(n 01(n, u(m),wm))) dn, tel

and

n T !/ ) ﬁ—l
[Arw(r)| =|a (VZ aj J v (n)(w(?gmwmn 61(n, u(m), wn)) dn)
=10
oy _ p—1
v [ AR i) i) an

= (i) —¥(0)P

— )
<alvi+a Y o LI o)+ hwi +7) + DS
j=1

rp+1)

(k(l[3]l + hwl) +-67)

(k([|8]] + wl) + 67) (W (T) —(0))P
rp+1) ’

n
<alvol+la ) gyl +1]
j=1
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then

- (kI8 + wh) +07) (W(T) —p(0))# _
[Aw] < alvol+Ia ; laj] +1] BT .

e*
alvel +[a Y1y o] + 18

j T)—(0))#
1= lax), oyl + IR0

T =

Also

|Axv(t)| =

. . ax—1
Jlb(n)(tb(t) Y(n)) 0,(m, v(e(M)))dn

0 I"(oc)
. Jt W M) (W(r) —pm)*!
= o Mo

[a(m) +b [v(eM))lldn.

Taking supremum over ¢ € I, we have
|A2v|| < [V g (v) + bral%Y(v)
F () (W (x) —p(n) Yt P (M) (x) =)t
< ML Ma—y) n+om L Mo
M ((r) —b(0))* Y (W(r) —(0))*

ST Ta—yrD) T Mt
b (P(T) —lb(O))“)qM (W(T) —(0))*Y

MNo+1) MNoao—vy+1) '

T =(1-

Now

[Aul[x =[lAw|c +[[A2v]lc
<1141

o T)—(0))P
_abvel+la Xty lal +11 R

— B
1_[az)11:1 |C1j| +1]k(ll—‘(T) V¥ (0))

F(p+1)
L b (Y(T) —1|)(0))°‘)_1 M ($(T) —p(0))*Y
MNo+1) MNMa—vy+1)

=T.

Then AQ:, C Q; and the class {Au}, u € Q, is uniformly bounded.
Now, for u = (v,u) € Qy, for all € > 0, 8 > 0 and for each t1,t; € [0, T], t1 < vy such that |v; — 1] < 9,
we have

2P M) (W(r) —pm)P!

Arw(es) — Apw(ey)] < J 101(n, w(n), win))ldn

Y r(p)
Y M) (W(r2) — ()Pt _wl(ﬂ)(ll)(tl)—ll)(n))ﬁ_l:|
+Jo [ r'(R) (B 01(n, k(m))ldn
- B
<K+ b+ o) (52 00
it (S it
B
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and

[A2v(ty) — Agv(ty)]
< J'tz P (s) (W (r2) —p(m))* !
1o I"( o)

L/ (s)(P(ra) —p(m) >t
- Jo Mo

rz V() (b(x
151 r

0afn, vio(m))dn— | 2

N

0 a1y — a1
<J W) =@

162(n, v(em))) W' (m) dn
(—(ﬂ)(tz)—ll)(ﬁ))“ Pr)*  Plr)®™ )
2) +

+J“ (W(r2) =)' = (P(r1) —p(m)* !

Ma+1) MNMa+1) T(ax+1)

Then

Au(ty) — Au(t)) =A(v, w)(r2) — A(v,w)(r1)
Arv(t2), Ayw(t2)) — (A2 v(ry), Ayw(ry))
Arv(t2) — Az v(tr), Aiw(ta) — Agw(tr)),

so,

|Au(r2) — Aufry)lx =lA(v, 1) (r2) — Ay, W) (r1)lx,
=[A1w(r2) — Apw(ra)lc + [Azv(tr2) — Az v(tr)lc

()P ()P () ()

=(k([I8]| + wl) + 67) rp+1) IMo+1)

The class of functions {Au} is hence equi-continuous on Q. The Arzela-Ascoli Theorem [12] proves
that the operator A is compact. There is still evidence to establish the continuity of A : Q. — Q.. Let
Un = (Wn,Vn) be a sequence in Qr with w, — w,and v, = v and since 0;(t,w(t)) is continuous in
C(I,R), then 05 (t, un (t)) converges to 0> (r, p(r)), thus 02 (t, un (@(t))) converges to 0, (¢, u(¢(r))), By using
the Lebesgue Dominated Convergence Theorem and making use of the assumptions (iii)—(iv), we arrive
to

02(n, v(e(n))) dn,

n—00 0 M) n—o0
t oy o a—1
0 o)
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. — (™' mW(tk) —pm)kt
1 n - o
ngr;OAlw (v) =a(v 1akL 0
F(s)(B(x) —p(n)P !
*L r(B)
s TP (m(P(Ti) —W(n))P?
~alvo -3 o] )

nli_rgoel(n, un(m), wn(n))dn)

lim 61(n, un(m), wn(n)dn
n—oo

t1(n, u(n),w(n)) dn)

So,
Im Aun(r) = Iim (Aywn(t), Aovn(t))

n—oo n—oo

=(lim Ajwpn(r) lim Arvy(t))
n—oo n—oo

=(A1w(t), Axv(v))
= Au(t).

After that, Au, — Au as n — oco. As a result, the operator A is continuous. If the Schauder fixed-point
theorem [13] ’s requirements are met, then A has a fixed point u € Q,, and the problem (2.9)-(2.10) has
at least one continuous solutions u = (i, v) € Q, ;v € C(I,R). Therefore, there is at least one solution
u € C(I,R) to the functional integral equation (1.1).

Conversely, when we differentiate (2.2), we obtain

m Tk / — [371
cDPYy(r) = CDM’{ (vo - > akL v (n)(lbm]fgmlbm)) 91(n,|u(n),W(n))dn>
k=

1
T/ (s) (B (ti) —p(m)) P~
*L r(B)

Loun, u(n),W(n))dn},

w(r) = 1990, (x, v(o(1))).
In addition, we find from the equation (2.9)—(2.10)

n / ) p—1
( S [ (n)(u)(?zﬁ)w(n)) o (o) dn)
j=1
t 11)/ ll) t 11) p—1
0 01(m, u(m)) dn 2.11)
_ RS ' (M) (WP (1) —pm)) P
vi0) = a (vo Y . | i 01 (1, (), wn) dn)
w(t) = I1%%0;(r, v(p(v))),
and
n n n T 4l ) g—1
D aviy)=a) g (%Z%‘J v (n)(tb('rﬁzmlb(n)) 61(n, u(n),W(n))dn)
j=1 j=1 j=1 0
n T A1y N B—1 (2.12)
—I-Za]-J Laul w(?gmw(n)) 01(n, (), wn))dn,
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So, (2.11) and (2.12) provide the following

n T 1y N B—1
+Z & (%) —a1+Z ) (voZ A el(n,u(n),W(n))dn)

j=1

n j L) B—1
+5 ajfo M) — DT ), wim))dn.
=1

rp)
Then
n
0) + Z a; v(Tj) = Vo.
j=1
Thus, the problem (1.1)-(1.5) with feedback control (1.4) has v € C(I,IR) as at least one solution. O

2.1. Infinite-point boundary condition (1.2)
Take consideration as well v € C(I,IR) be the solution to the non-local problem provided by (1.1) and
(1.2).

Theorem 2.4. Let assumptions (i)—(v) of Theorem 2.3 meet and S;;' =1+ 3“1 aj be convergent sequence. Then
the non-local problem of (1.1)-(1.2) wzth a feedback control (1.4) given by the followmg equation

n ) — B—-1
i) = Savo =S 3y [ AR SR o, 1, ), 159 0atn, o))
=1 . (2.13)
o[ AR, i, 10t (o)),

has at least one solution v € C(I,R).

Proof. Assume that the infinite point BVP (1.1) and (1.2) with a feedback control (1.4) given by (2.2) has
v € C(I,R) as a solution.

1 = T () (b () —dm)) P P
Vn(t) =—=n—— | Vo — a; 01(m, nm), I%¥02(n, v(e(n))))dn
1+X5 q) ( le ’ Jo re) (2.14)
t oL/ _ B—1
+J V)W) = (n)) 01(m, M), 1% B2 (1, v (@(n))))dn.
0 r'p)
Taking into account the limit to (2.14), as n — oo, we have
Jim o
s 1 = ) ke lb'(ﬂ)(ll)(Tj)—lb(ﬂ))ﬁfl o
77}?@@@ |:Vo - ]Zl (l] JO F(B) el(n/ H(T])/I 92(71/\/((9(‘1)))) dn (215)
T ./ o B—1
+ lim J i 01(m, M), 1902 (n, vin (@(n))))dn.

Now |a;v(Tj)| < lajl||v]|, therefore by comparison test Z}Ll a;v(T;)is convergent. Also,

Tj / L) — -1
JO Y (n)(w(TllgB)w(n)) 01(n, u(n),la;wez(ﬂ,\/(@(ﬂ)))) dn

< JTJ‘ W) (W(t) =)k (

k (8] + 1585 (n, v(0(n))]) +67)dn
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4 ) () — ()P -
<ij L (8] + 5T a(n)+brzL o d0 ]dn)
*ﬂ)(Tk)B
+k 0] FB+ 1)
(B(T) —p(0))P KM ((T) — (0= Kby (p(T) —p(O)*
S TTETY <k”5”+[ Ma—y+D) " Mo+ 1) +k61D

<N,

then

LT M) (T) —pm)P!
lajl |

B 01(m, I%%0,(n, v(e(()))) dnl < |aj| N.

Y - p—1
The sequence 3 ', qj [y v (n)(w(;,()mw(n)) 01(n, 1%%02(n, v(9(n)))) dn is convergent according to
the comparison test.

By applying the Lebesgue-Dominated convergence Theorem [21] and making assumptions (i) — (iii),
we can derive (2.13) from (2.15). In addition, from (2.13), we have

n n T b’ ) B—1
(14 a)viy) =S7'Snvo —Sy'Sn ) _ aiJ VIO T g, tn, ), 159 B, V(o))
j=1

= r(p)

n 5y’ ) p—1
s Y a [PV o 0, ), 1500, () an
=1

n n T / ) p—1
v+ 3 e =ve— 3 ay [ HELEBO g 1, ), 15 gy, v ) an

ot = o rip)
T ' ) p—1
+J Pinltbln)~ bl 01(m, 1), I%% 0z (n, v(e(M))))dn
0 I'(p)
n Ti 1y’ _ p—1
+ ) a1j W) WM™ g ) ), 199 0,0, V() dn
= 0 B)
m Tk 414/ _ p—1
> aw () = o~ vim) o+ | IR o, ) 17, v(pt)an. 216
k=1

From (2.2), we have

Tj fy/ R p—1
v(ma(vo - Y af 91(11,u(n),I“;“’ez(n,\/(@(n))))dn>,

and

n Tj fy/ R p—1
vm)a(voZaJ’J S R 91(11,u(n),l“”"ez(n,u(@(n))))dn)
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So
01(m, kM), 1% 02(n, v(e(n))))dn.

T / N B—l
v(0) = v(t;) _JO ¥ (ﬂ)(ll)(?gmtl)(n))

Return to (2.16) we receive infinite-point (1.2)

[eo.¢]

v(0) + Z aj v(Tj) = Vo.

j=1

As a result, there is at least one solution v € C(I,R) to the nonlocal problem of functional differential
inclusion (1.1)-(1.2). O

2.2. Riemann-Stieltjes Integral BCs (1.3)

Assume that v € C(I, R) be the solution of the non-local problem of (1.1)-(1.5). Let aj; = h(tj) —h(vj_1),
h is non-decreasing function, t; € (tj_1,tj), 0 = tp < t; < r2--- < T. Then, the nonlocal condition (1.5)
will be in the form

v(0)+ > V(1) (blt;) —b(tj_1)) = Vo.
j=1

From [18], we deduce as n — oo the solution of the nonlocal problem (1.1)-(1.5) is continues.

T

Jim > v(5) (i) i) = | vl don)
j=1

0

This means that the Riemann-Steltjes integral condition as n — oo is modified by the non-local constraints
in (1.5) .

n T
¥(0)+ Jim 3 vx) (b)) =bles-1)) =v(0)+ | v(n) dbfn) = v
j=1

Theorem 2.5. Let assumptions (i)—(v) of Theorem 2.3 meet and the function by : I — 1 is an increasing, then the
non-local issue (1.1) and the Riemann-Stieltjes functional integral condition (1.3) with a feedback control (1.4) have
a solution v € C(I,IR) denoted by

v(t) =(1+h(T) —h(0)) 'vo — (1 +h(T)
(T MW () —p(n))PT
. 1
h0)) Jo Jo I'B)
FP' (M) (B(r) —w(n)PT
+J0 r(B)

Proof. The following will be the answer to the non-local problem (1.1)-(1.5) as n — oo:

61(n, u(m), I%¥62(n, v(9(1))))dn db(n) (2.17)

01(n, 1% 02(n, v(e(n))))dn.

1 Tj / ) B—1
(oY [ V)bt

o
0 e 01(n, 1(m), I%%02(n, v(@(n))))dn)

01(n, kM), I%%02(n, v(@(n))))dn
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_n)B-1
N L ) g (), 1% 05(n, v(@()) dn

F(B)
T v o1y - p—1
T h(Tl) SRS _L L : (mwtr)(mwm) 81 (n, w(n), 10>, x((n))))dn db)

o
. rp) 01(m, u(m), I¥%02(n, v(e@(n)))) dn.

O

Consequently, the first-order nonlinear differential Equation (1.1)’s solution v € C(I,R) via the

Riemann-Stieltjes integral condition (1.3) is denoted by (2.17). Thus, the inclusion problem (1.1)-(1.3)
has at least one solution, v € C(I,R).

3. Existence of unique solutions

This section provides the conditions needed for the uniqueness solution for the non-local problems
(1.1)-(1.5) . The next assumption should be taken

(iii)* Let 02 : I x R — R, be a continuous function satisfying the Lipschitz condition, such that

02(t, v) — 02(v, p)| < c [v—pl.

Theorem 3.1. Let the assumptions of Theorem 2.3 be satisfied with replace condition (iii) by (iii)*, if

(a X aj+1) (W(T) =h(0)** P ke
T(p+1DM(at1)

<1

Then the non-local problem (1.1)-(1.5) with a feedback control (1.4) has a unique solution v € C(I,R).

Proof. Assuming there are two solutions vi(t) and v;(t) to equation (2.2), then

o
. FB) 01(m, u(m), I¥¥02(m, v2(@(n))))dn

Tj a1y ) B—1
- [Py, ), 1 2, i) an)
t ! o p—1
N L Wﬂ)(d)(?(m@(”” [61(n, 1(n), IV 8,(n, vi (@) — 11, n(n), 162 (n, va((n)))) ] dn
n T / ) p—1
<a Y o[ IO 0, 0, ), 150, va(on))
=1 "
—01(n, 1m), 1%02(n, vi(@1))))ldn)
T ./ o Bp—1
N L b (n)(‘b(?m‘l’(”” 101, 1(n), 182 (n, vi(@(m)))) — O1(m, wln), 190, va(o(n))) .

Using Lipschitz condition for 61, we obtain
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n LSRN N —1
<ay ajJO “’(“)N’(Tﬁzmw(”” KT 0, (n, vi(@(n))) — 1%02(n, va(@(n)))| dn
=1
T B—1
()~ b))
<a a
2], ()
n .1,/ o x—1
i | T 1, 0(0) — Bal, valeo(r)faean
T _ B—=1 M yy — a1
+L“)(“)(")(?(B)“’(“” kJO ‘“T)(“)(?(“)‘“T” 10207, v ((1)) — B (T, va( (1)) dedh.

Using Lipschitz condition for 6,, we obtain

[vi(t) = va(t)]

e [P ) — )P [ (=) .
<a) ke | i | P ol —valo(iddn
Wb )P " -
e | o I Mileln) —oalo(x) ldvdn
o [P )~ )P (1) (b))
<aj; ajk cl|vi —va| Jo 8 L Mo dt dn
o [P )P (D) () — ()
Fle—val | F(p) J (o) de di,
(@ S7y a5+1) (T —(0)*P ke
[vi—vall < [vi —val|

TR+ 1 (e+1)

Hence

(@ Ty i+ 1) (M) —h(0)*F ke
(1 - J FrB+1r(ae+1) ) [vi —v2| <0.

. Lo T)—(0))*P . .
Since La Zin a]r+(1[5) +(111)) ﬁ(; J:f)( N ke < 1, then vq(r) = v;(t), therefore the solution of the integral

equation (2.2) is unique, and consequence the integral equation (2.2) has a unique solution, and as a result,
this establishes the existence of unique solutions to the non-local problem (1.1), (1.5) with a feedback
control (1.4). O

3.1. Continuous dependence
Theorem 3.2. Count on the assumptions of Theorem 3.1 being valid. Therefore, the solution of the problem (1.1)-
(1.5) is continuously dependent on Sq,.

Proof. Assuming that 01 (r, v(t)) and 0] (r, v(t)) are two different Lipschitzian selections of
©1(t,v(r)), then
01(t, v(r)) —07(r, v(r)l<e, €>0, vel,

then
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[v(r) = v*(x)|

T () () — ()BT
g‘l;‘“ Jo M)

x 101(M, kM), I%% 02 (n, v(e((n))) — 05 (n, 1), IV 02 (m, v*(@(M)))ldn

T/ _ p—1
+J W) =80T (i), 19 85(m, v (@ ())) — 85 (n, (), T 05, v* (o))l

0 I'(p)
= (9 M) (W(Ty) — W)L
e | ()

x 01(n, um), 1% 02 (n, v(@M))) — 01(M, n(n), 1%02(n, v* (9 (n)))ldn
= T’ (M) (W(T) —p(m))PE
—i—a]Zla]- Jo ll(ﬁ)

x 101(m, kM), I%% 02 (n, v* (@ (n))) — 0f (n, u(m), I 02 (m, v*(@(n)))ldn

T/ _ p—1
+J W) =0T g (i), 15765, V(@ (M) — 81, k), 148, (n, v (@(m)))] dn

x (101(m, 1), %02 (m, w(@M))) — 81(m, 1u(n), I 02 (m, w* (@(M)))| + 8)dn

T / _ p—1
+J W) =0T i), 15965, (@ () — 0 (n, ), 1% (n, v (@(n)))] dn

0 r(p)
W) () — ()P
“ |, r(p) b
n Ty R p—1
<a ) apk( [ O e v (1)~ e, v o)l
j=1
RLTARII
r(p+1)
WO )P e o 5 (ble) —b(0))?
x| L 106, v((0)) — 1035, v (0] e L=
([T ) )P 1 () :
<) (| L || o leal, vlp(r))) — el v (ole))ldr d
L 5 0(5) —9(0))F
rp+1)
T/ _ B—1 / _ ax—1
[ L P 7 WD ) gt e
L 5000 ()P
rp+1)
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P M) (W () — M) P M W (1) (W) —P(T)* ! )
ke Jo rp) L Ma) drdn
§ (W(T) —(0)k
(a Z ajkc +1) FB 1)
aZ-:1 clj+1)kc(tb(T)—11)(0))““5 i} o § (W(T) —w(0))#
ST B DM e 1) Iv=~ ””a; ke + U=
Then
i} (a X+ Dke(p(T) —p(0)*x+FY § (W(T) —W(0))B
v —v*|| < (1— k FB T DMt 1) aZa] ke +1) METD)
=€.
Hence,
lv—v*|| <e. O
4. Examples

In this section, we give an illustration to support our findings.
Example 1. Take into account the nonlinear integro-differential inclusion that follows:

DYy (1) € O3 (r, IV Ba(r, v(o(r))), v [0,1], a € (0,1) (&1)

with infinite point boundary condition

= 1 -1
0 +Z )*ZV(L j ):VO/ (42)
j:
and feedback .
u(t) =0.1 u(r) + %cos( t) + et v(t). (4.3)

To demonstrate Theorem 2.3, we select oc = %, P(t)=t, and ©,:[0,1] x R — 2R" in (4.1) as follows:

@1(t,131;t62(t,v(t)) = |:0,t3—|—t+1—|—J dn|,

0

v (t—n)*% v(n)
W(COS(V(T]) + 1) + CT)

set

02(t,v(v)) = %(cos(v(t) +1) + V(t)).

et
The function 01 : [0,1] x R — R is Define the continuous, observe that for 6; € Sg,, then we get
l1+e

101 (x, T8, (x, v((¢)))) — 81 (x, 150, (x, u(o(r))))] < W'V —,

and

[v(v)l

2e

As a result, requirements of conditions (i) and (iii) are meet with k = 5 :?? ~ 0.1889 < 1, a(r) =
4

% cos(v(t)+1) € L10,1],b = and the series Z) 1 ]4 is convergent. Furthermore, [a (Ivol—i-Z?:1 la;]) +

Uk(W(T) —P(0)) ~ 0.6136 < 1 and % ~ 0.203 < 1.

0a(x, ¥(1))] < 5lcos(v(e) + 1l +
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The above nonlocal issue (4.1)-(4.2) with feedback (4.3) has at least one continuous solution, according
to Theorem 2.3, which is a logical consequence.

Example 2. Consider the following nonlinear integro-differential inclusion:
CD%x(t) € O1(t, u(r), [¥¥ 0, (v, x(@(r)), t€[0,1], e (0,1) 4.4)

with infinite point boundary condition

1 K+k—1
x(0) + kzl o x(7k2 " ) = Xo, (4.5)
and feedback 1 .
1 1 4.
() = 20 u(e) + 300 sin(t) + e3 * v(t). (4.6)
For illustrating Theorem 3.1, we choose & = %, P(t) = vr+1, and ©1:[0,1] xR — 2RY in (4.4) as
follows
1 et Yy /(t—s) [2+]|sinx(s)]
O1(t, 27V, (x, =10, J ds|.
i 2(t,x(r)) [ et+5 + 0 2¢/mest1 \ 1+ |sinx(s)] s
et 1 (2+Isinx(v)]
+ |sinx(t
05 (t, = p .
2(e,x(v)) 2evtl <1 —i—lsmx(s))
Define the continuous map 61 : [0,1] x R — IR, notice that for 6; € Sf,, then we have
T T 1
101 (v, 12V 0, (v, x((x)))) — 01 (¢, 12V 10, (x, y((x)))] < Wlx—yl-
and

82(6,x(6)) — 825, y(0))] < o5k~ yl

Thus conditions (i)-(iii)* are satisfied with k = ﬁ, and ¢ = 21? and the series ) 7 % is convergent.
(a ¥ty aetl) (M- ke _ 1

Also T = foin

(4.4)-(4.5) has a unique continuous solution.

< 1. It follows from Theorem 3.1 that the nonlocal problem

5. Conclusion

Considering the nonlocal infinite-point, Riemann-Stieltjes integral boundary conditions (BCs), we de-
scribed the existence criterion for solutions to {-Caputo fractional fractional differential equations and
inclusions. First, we converted the nonlinear fractional boundary value {-Caputo type problem into a
fixed point issue. We have shown that if we can solve the boundary value problems with integral BCs
or infinite-point BCs, we can also solve the boundary value problems with continuous solutions with
m-point BCs. the uniqueness solution, the continuous dependence of the functional differential inclusion
on the set of selections, and certain data were analyzed, and we showed the existence of a continuous
solution for the single-valued and set-valued case. Appropriate examples were presented to ensure the
validity of all the acquired theoretical results.
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