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Abstract
This paper aims to apply fuzzy set theory to Sheffer stroke BE-algebras. The concepts of fuzzy SBE-ideals and anti-fuzzy

SBE-ideals of Sheffer stroke BE-algebras are introduced, and their important properties are investigated. Characterizations of
SBE-ideals of SBE-algebras are given in terms of fuzzy SBE-ideals and anti-fuzzy SBE-ideals. Relationships between fuzzy SBE-
ideals and anti-fuzzy SBE-ideals and their level subsets are discussed. We especially characterize fuzzy SBE-ideals and anti-fuzzy
SBE-ideals by their level subsets.
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1. Introduction

Sheffer stroke (Sheffer operation), which is one of the two operators that can be used by itself without
any other logical operators, was originally introduced by Sheffer to build a logical formal system [13].
Since it offers novel axiom systems that are straightforward and easily adaptable for a variety of algebraic
structures owing to its commutative property, there are numerous uses for this operation in algebraic
structures, such as Sheffer Stroke Hilbert algebras [8], Sheffer stroke BCK-algebras [9], Sheffer stroke
BCH-algebras [5], strong Sheffer stroke nonassociative MV-algebras [6], Sheffer stroke BL-algebras [10],
Sheffer stroke UP-algebras [7], and Sheffer stroke BE-algebras [1, 2, 11, 12].

Sheffer stroke BE-algebras, or SBE-algebras, were presented by Katican et al. [2] and links between
SBE-algebras and BE-algebras were examined. It is demonstrated by presenting an SBE-filter and an
SBE-subalgebra on an SBE-algebra that any SBE-filter of an SBE-algebra is an SBE-subalgebra, but the
inverse is not true. Relationships between SBE-algebras and Sheffer stroke Hilbert algebras were studied.
Recently, fuzzy Sheffer stroke BE-algebras were explored by Oner et al. [11]. They defined concepts of
fuzzy SBE-subalgebras, fuzzy SBE-filters, and the Cartesian product of fuzzy points and fuzzy subsets
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on SBE-algebras. Additionally, they looked into how different SBE-filters on SBE-algebras related to one
another.

As previously stated, it motivated us to study fuzzy set theory in SBE-algebras. We introduce the
concepts of fuzzy SBE-ideals and anti-fuzzy SBE-ideals of SBE-algebras, and investigate their important
properties. It is demonstrated that every fuzzy SBE-ideal of an SBE-algebra is a fuzzy SBE-subalgebra,
but the inverse does not always hold in general. Also, characterizations of SBE-ideals of SBE-algebras are
given in terms of fuzzy SBE-ideals and anti-fuzzy SBE-ideals. Finally, we will discuss the relationships
between fuzzy SBE-ideals and anti-fuzzy SBE-ideals and their level subsets.

2. Preliminaries

In this section, definitions and notions about BE-algebras and Sheffer stroke BE-algebras are given.

Definition 2.1 ([4]). An algebra 〈X, , 1〉 of type (2, 0) is called a BE-algebra if it satisfies the following
conditions:

(BE-1) a a = 1 for all a ∈ X;
(BE-2) a 1 = 1 for all a ∈ X;
(BE-3) 1 a = a for all a ∈ X;
(BE-4) a (b c) = b (a c) for all a,b, c ∈ X.

Example 2.2 ([4]). Consider X = {1,a,b, c,d} and a binary operation on X has the Cayley table:

 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
1 1 1 1 1 1

Then 〈X, , 1〉 is a BE-algebra.

Definition 2.3 ([2]). Let 〈S, ↑〉 be a groupoid. The operation ↑ on S is said to be a Sheffer stroke (or Sheffer
operation) if it satisfies the following conditions:

(S1) a ↑ b = b ↑ a for all a,b ∈ S;
(S2) (a ↑ a) ↑ (a ↑ b) = a for all a,b ∈ S;
(S3) a ↑ ((b ↑ c) ↑ (b ↑ c)) = ((a ↑ b) ↑ (a ↑ b)) ↑ c for all a,b, c ∈ S;
(S4) (a ↑ ((a ↑ a) ↑ (b ↑ b))) ↑ (a ↑ ((a ↑ a) ↑ (b ↑ b))) = a for all a,b ∈ S.

Definition 2.4 ([2]). A Sheffer stroke BE-algebra (shortly, SBE-algebra) is a structure 〈X, ↑, 1〉 of type (2, 0)
such that 1 is the constant in X, ↑ is a Sheffer operation on X, and the following conditions are satisfied:

(SBE-1) a ↑ (a ↑ a) = 1 for all a ∈ X;
(SBE-2) a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))) = b ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c))) for all a,b, c ∈ X.

In what follows, let X denote an SBE-algebra 〈X, ↑, 1〉 unless otherwise specified.

Example 2.5 ([2]). Consider X = {0,a,b, c, 1} and a binary operation ↑ on X has the Cayley table:

↑ 0 a b c 1
0 1 1 1 1 1
a 1 b 1 1 b
b 1 1 a 1 a
c 1 1 1 c c
1 1 b a c 0
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Then 〈X, ↑, 1〉 is an SBE-algebra. However, 〈X, ↑, 1〉 is not a BE-algebra since a ↑ a 6= 1.

Example 2.6. Consider the BE-algebra 〈X, , 1〉 in Example 2.2. We see that 〈X, , 1〉 is not an SBE-algebra
since a b 6= b a.

From Examples 2.2, 2.5, and 2.6, we have that every SBE-algebra may not be a BE-algebra and every
BE-algebra may not be an SBE-algebra. In 2022, Katican et al. [2] gave relationships between BE-algebras
and SBE-algebras in the following two theorems.

Theorem 2.7 ([2]). Let 〈X, ↑, 1〉 be an SBE-algebra and a binary operation on X defined by a b = a ↑ (b ↑ b)
for all a,b ∈ X. Then 〈X, , 1〉 is a BE-algebra.

Theorem 2.8 ([2]). Let 〈X, , 1〉 be a BE-algebra and 0 be a constant of X such that 0 6= 1. Define a unary
operation ′ and a binary operation ↑ on X by a ′ = a 0 and a ↑ b = a b ′ for all a,b ∈ X. Then 〈X, ↑, 1〉 is an
SBE-algebra.

Definition 2.9. A nonempty subset I of an SBE-algebra X is called an SBE-ideal of X if

(SBEI-1) (∀x ∈ X)(∀a ∈ I), x ↑ (a ↑ a) ∈ I;
(SBEI-2) (∀x ∈ X)(∀a,b ∈ I), (a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x) ∈ I.

Example 2.10. Consider 〈X, ↑, 1〉, where X = {0,a,b, 1} and a binary operation ↑ has the Cayley table:

↑ 0 a b 1
0 1 1 1 1
a 1 b 1 b
b 1 1 a a
1 1 b a 0

Then 〈X, ↑, 1〉 is an SBE-algebra [2]. We see that {1}, {1,a}, and X are SBE-ideals of X.

Definition 2.11 ([2]). An SBE-algebra X is called

(1) commutative if (a ↑ (b ↑ b)) ↑ (b ↑ b) = (b ↑ (a ↑ a)) ↑ (a ↑ a) for all a,b ∈ X;
(2) self-distributive if a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))) = (a ↑ (b ↑ b)) ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c))) for

all a,b, c ∈ X.

Definition 2.12 ([2]). Define a relation - on an SBE-algebra X by for all a,b ∈ X,

a - b if and if only if a ↑ (b ↑ b) = 1.

Definition 2.13. An SBE-algebra X is called transitive if b ↑ (c ↑ c) - (a ↑ (b ↑ b)) ↑ ((a ↑ (c ↑ c)) ↑ (a ↑
(c ↑ c))) for all a,b, c ∈ X.

For the study of Sheffer stroke BE-algebras, the following lemma is crucial.

Lemma 2.14 ([2]). Let X be an SBE-algebra and a,b, c ∈ X. Then the following statements hold:

(1) a ↑ (1 ↑ 1) = 1;
(2) 1 ↑ (a ↑ a) = a;
(3) a ↑ ((b ↑ (a ↑ a)) ↑ (b ↑ (a ↑ a))) = 1;
(4) a ↑ (((a ↑ (b ↑ b)) ↑ (b ↑ b)) ↑ (a ↑ (b ↑ b)) ↑ (b ↑ b)) = 1;
(5) (a ↑ 1) ↑ (a ↑ 1) = a;
(6) ((a ↑ b) ↑ (a ↑ b)) ↑ (a ↑ a) = 1 and ((a ↑ b) ↑ (a ↑ b)) ↑ (b ↑ b) = 1;
(7) a ↑ ((a ↑ b) ↑ (a ↑ b)) = a ↑ b = ((a ↑ b) ↑ (a ↑ b)) ↑ b;
(8) if a - b, then b ↑ b - a ↑ a;
(9) a - b ↑ (a ↑ a);

(10) b - (b ↑ (a ↑ a)) ↑ (a ↑ a);
(11) if X is self-distributive, then a - b implies b ↑ c - a ↑ c;
(12) if X is self-distributive, then b ↑ (c ↑ c) - (c ↑ (a ↑ a)) ↑ ((b ↑ (a ↑ a) ↑ (b ↑ (a ↑ a))).
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3. Fuzzy SBE-ideals and anti-fuzzy SBE-ideals

In this section, fuzzy SBE-ideals and anti-fuzzy SBE-ideals of SBE-algebras are introduced and their
properties are investigated. Moreover, we discuss the relationships among SBE-ideals, fuzzy SBE-ideals,
and anti-fuzzy SBE-ideals of SBE-algebras.

A fuzzy set [16] of a nonempty set X is defined to be a mapping µ : X −→ [0, 1]. Oner et al. [11] studied
fuzzy Sheffer stroke BE-algebras and defined a fuzzy SBE-subalgebra on an SBE-algebra as follows.

Definition 3.1 ([11]). A fuzzy set µ in an SBE-algebra X is called a fuzzy SBE-subalgebra of X if µ(a ↑ (b ↑
b)) > min{µ(a),µ(b)} for all a,b ∈ X.

Example 3.2. Consider the SBE-algebra X in Example 2.5. Define a fuzzy set µ in X by

µ : X→ {0, 1}, x 7→
{

0.3, if x = 0,
0.5, otherwise.

Then µ is a fuzzy SBE-subalgebra of X.

Now, we define a fuzzy SBE-ideal of an SBE-algebra as the following.

Definition 3.3. A fuzzy set µ in an SBE-algebra X is called a fuzzy SBE-ideal of X if

(FSI-1) µ(a ↑ (b ↑ b)) > µ(b) for all a,b ∈ X;
(FSI-2) µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ(a),µ(b)} for all a,b, c ∈ X.

Example 3.4. Consider an SBE-algebra 〈X, ↑, 1〉 defined in Example 2.10. Define a fuzzy set µ in X by
µ(1) = 0.9, µ(a) = 0.7 and µ(b) = µ(0) = 0.2. Then µ is a fuzzy SBE-ideal of X.

Proposition 3.5. Every fuzzy SBE-ideal of an SBE-algebra is a fuzzy SBE-subalgebra.

Proof. It follows from (FSI-1).

The following example illustrates why the inverse of Proposition 3.5 is not true in general.

Example 3.6. The fuzzy SBE-subalgebra µ of an SBE-algebra X in Example 3.2 is not a fuzzy SBE-ideal of
X because

µ((a ↑ ((b ↑ (0 ↑ 0)) ↑ (b ↑ (0 ↑ 0)))) ↑ (0 ↑ 0)) = µ(0) = 0.3 < 0.5 = min{µ(a),µ(b)}.

Proposition 3.7. If µ is a fuzzy SBE-ideal of an SBE-algebra X and a,b ∈ X, then

µ((a ↑ (b ↑ b)) ↑ (b ↑ b)) > µ(a).

Proof. Assume that µ is a fuzzy SBE-ideal of X and a,b ∈ X. Using Lemma 2.14 (2) and (FSI-2), we get

µ((a ↑ (b ↑ b)) ↑ (b ↑ b)) = µ((a ↑ ((1 ↑ (b ↑ b)) ↑ (1 ↑ (b ↑ b)))) ↑ (b ↑ b))
> min{µ(a),µ(1)} = min{µ(a),µ(a ↑ (a ↑ a))} > µ(a).

Proposition 3.8. Every fuzzy SBE-ideal µ of an SBE-algebra X is order-preserving.

Proof. Let a,b ∈ X be such that a - b. Then a ↑ (b ↑ b) = 1. From Lemma 2.14 (2) and Proposition 3.7,
we have

µ(b) = µ(1 ↑ (b ↑ b)) = µ((a ↑ (b ↑ b)) ↑ (b ↑ b)) > µ(a).

Hence, µ is order-preserving.
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Proposition 3.9. If µ is a fuzzy SBE-ideal of an SBE-algebra X and a ∈ X, then

µ(1) > µ(a). (3.1)

Proof. Let a ∈ X. By using (SBE-1) and (FSI-1), we have µ(1) = µ(a ↑ (a ↑ a)) > µ(a).

Proposition 3.10. Let µ be a fuzzy set in an SBE-algebra X, which satisfies µ(1) > µ(a) and

µ(a ↑ (c ↑ c)) > min{µ(a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))),µ(b)} (3.2)

for all a,b, c ∈ X. Then µ is order-preserving.

Proof. Let a,b ∈ X be such that a - b. Then

µ(b) = µ(1 ↑ (b ↑ b)) > min{µ(1 ↑ ((a ↑ (b ↑ b)) ↑ (a ↑ (b ↑ b)))),µ(a)}
= min{µ(1 ↑ (1 ↑ 1)),µ(a)} = min{µ(1),µ(a)} = µ(a).

Hence, µ is order-preserving.

Theorem 3.11. A fuzzy set µ in a transitive SBE-algebra X is a fuzzy SBE-ideal of X if and only if it satisfies (3.1)
and (3.2).

Proof. Assume that µ is a fuzzy SBE-ideal of X. By Proposition 3.9, we have µ(1) > µ(a) for all a ∈ X.
Since X is transitive, we get

(b ↑ (c ↑ c)) ↑ (c ↑ c) - (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))) ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c)))

for all a,b, c ∈ X. Thus,

((b ↑ (c ↑ c)) ↑ (c ↑ c)) ↑ ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))) ↑ ((a ↑ (c ↑ c))
↑ (a ↑ (c ↑ c))) ↑ (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))
↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c)))) = 1

for all a,b, c ∈ X. We consider

µ(a ↑ (c ↑ c)) = µ(1 ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c))))
= µ(((b ↑ (c ↑ c)) ↑ (c ↑ c) ↑ ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))
↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c))) ↑ (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))
↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c))))) ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c)))))

> min{µ((b ↑ (c ↑ c)) ↑ (c ↑ c)),µ(a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))))}
> min{µ(a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))),µ(b)}

for all a,b, c ∈ X. Hence, the conditions (3.1) and (3.2) are true.
Conversely, using (3.1), (3.2), (SBE-1), and Lemma 2.14 (2), we have

µ(a ↑ (b ↑ b)) > min{µ(a ↑ ((b ↑ (b ↑ b)) ↑ (b ↑ (b ↑ b))),µ(b)}
= min{µ(a ↑ (a ↑ 1)),µ(b)} = min{µ(1),µ(b)} = µ(b)

and

µ((a ↑ (b ↑ b)) ↑ (b ↑ b)) > min{µ((a ↑ (b ↑ b)) ↑ ((a ↑ (b ↑ b)) ↑ (a ↑ (b ↑ b))),µ(a)}
= min{µ(1),µ(a)} = µ(a)
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for all a,b ∈ X. Since µ satisfies (3.1) and (3.2) and by Proposition 3.10, we have µ is order-preserving.
Since X is transitive, we see that

µ((b ↑ (c ↑ c)) ↑ (c ↑ c)) 6 µ(a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))) ↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c)))),

for all a,b, c ∈ X. Hence, for all a,b, c ∈ X, we have

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c))))
↑ ((a ↑ (c ↑ c)) ↑ (a ↑ (c ↑ c)))),µ(a)}
> min{µ((b ↑ (c ↑ c)) ↑ (c ↑ c)),µ(a)} > min{µ(a),µ(b)}.

Therefore, µ is a fuzzy SBE-ideal of X.

Corollary 3.12. Let µ be a fuzzy set in a self-distributive SBE-algebra X. Then µ is a fuzzy SBE-ideal of X if and
only if it satisfies conditions (3.1) and (3.2).

Proof. Straightforward.

Definition 3.13. A fuzzy set µ in an SBE-algebra X is called an anti-fuzzy SBE-ideal of X if it satisfies the
two conditions:

(AFSI-1) µ(a ↑ (b ↑ b)) 6 µ(b) for all a,b ∈ X; and
(AFSI-2) µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) 6 max{µ(a),µ(b)} for all a,b, c ∈ X.

Example 3.14. Consider an SBE-algebra 〈X, ↑, 1〉 defined in Example 2.10. Define a fuzzy set µ in X by
µ(1) = 0, µ(a) = 0.2, and µ(b) = µ(0) = 0.6. Then µ is an anti-fuzzy SBE-ideal of X.

Let µ be a fuzzy set in a nonempty set X. The fuzzy set µ̄ in X, defined by µ̄(x) = 1−µ(x) for all x ∈ X,
is called the complement [14] of µ in X. Note that µ = ¯̄µ. Now, we show the relationships between fuzzy
SBE-ideals and anti-fuzzy SBE-ideals and their complement.

Lemma 3.15 ([14]). Let µ be a fuzzy set in a nonempty set X and x,y ∈ X. Then

(1) 1 − max{µ(x),µ(y)} = min{1 − µ(x), 1 − µ(y)}; and
(2) 1 − min{µ(x),µ(y)} = max{1 − µ(x), 1 − µ(y)}.

Theorem 3.16. A fuzzy set µ in an SBE-algebra X is a fuzzy SBE-ideal of X if and only if µ̄ is an anti-fuzzy
SBE-ideal of X.

Proof.

(⇒) Assume that µ is a fuzzy SBE-ideal of X. Let a,b, c ∈ X. Then µ(a ↑ (b ↑ b)) > µ(b) and

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ(a),µ(b)}.

Thus,
µ̄(a ↑ (b ↑ b)) = 1 − µ(a ↑ (b ↑ b)) 6 1 − µ(b) = µ̄(b),

and by Lemma 3.15, we have

µ̄((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) = 1 − µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c))
6 1 − min{µ(a),µ(b)}
= max{1 − µ(a), 1 − µ(b)} = max{µ̄(a), µ̄(b)}.

Hence, µ̄ satisfies the conditions (AFSI-1) and (AFSI-2), that is, µ̄ is an anti-fuzzy SBE-ideal of X.
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(⇐) Assume that µ̄ is an anti-fuzzy SBE-ideal of X. Let a,b ∈ X. By using the condition (AFSI-1), we have
µ̄(a ↑ (b ↑ b)) 6 µ̄(b). Thus, 1−µ(a ↑ (b ↑ b)) 6 1−µ(b), and so µ(a ↑ (b ↑ b)) > µ(b). Hence, µ satisfies
the condition (FSI-1).

Now, let a,b, c ∈ X. By using (AFSI-2) and Lemma 3.15, we have

1 − µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) = µ̄((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c))
6 max{µ̄(a), µ̄(b)}
= max{1 − µ(a), 1 − µ(b)} = 1 − min{µ(a),µ(b)}.

Thus,
µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ(a),µ(b)}.

Hence, µ satisfies the condition (FSI-2). Since µ satisfies the conditions (FSI-1) and (FSI-2), we see that µ
is a fuzzy SBE-ideal of X.

Theorem 3.17. A fuzzy set µ in an SBE-algebra X is an anti-fuzzy SBE-ideal of X if and only if µ̄ is a fuzzy
SBE-ideal of X.

Proof. By using µ = ¯̄µ and Theorem 3.16, we have Theorem 3.17.

For a subset Y of a nonempty set X, the characteristic function χY of Y is defined by

χY : X→ {0, 1}, y 7→
{

1, if y ∈ Y,
0, otherwise.

Note that χY is a fuzzy set in X. Next, we show the relationships among SBE-ideals, fuzzy SBE-ideals,
and anti-fuzzy SBE-ideals of SBE-algebras.

Theorem 3.18. Let Y be a nonempty subset of an SBE-algebra X. The following statements are true.

(1) Y is an SBE-ideal of X;
(2) χY is a fuzzy SBE-ideal of X;
(3) χY is an anti-fuzzy SBE-ideal of X.

Proof.

(1)⇒(2) Assume that Y is an SBE-ideal of X and a,b ∈ X. If b /∈ Y, then χY(a ↑ (b ↑ b)) > 0 = χY(b).
Suppose that b ∈ Y. Then a ↑ (b ↑ b) ∈ Y. Thus, χY(a ↑ (b ↑ b)) = 1 = χY(b). Hence, χY satisfies the
condition (FSI-1).

Now, let a,b, c ∈ X. If a /∈ Y or b /∈ Y, then

χY((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > 0 = min{χY(a),χY(b)}.

Suppose that a,b ∈ Y. Since Y is an SBE-ideal of X, we have (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) ∈
Y. Thus,

χY((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) = 1 = min{χY(a),χY(b)}.

Hence, χY satisfies the condition (FSI-2). Since χY satisfies the two conditions (FSI-1) and (FSI-2), we have
χY is a fuzzy SBE-ideal of X.

(2)⇔(3) It follows from Theorem 3.16.

(3)⇒(1) Assume that χY is an anti-fuzzy SBE-ideal of X. Let a ∈ X and b ∈ Y. Then χY(b) = 1. By the
assumption, we have

χY(a ↑ (b ↑ b)) 6 χY(b) = 1 − χY(b) = 0.

Thus, χY(a ↑ (b ↑ b)) = 0, which implies that a ↑ (b ↑ b) ∈ Y. Hence, Y satisfies the condition (SBEI-1).
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To show that Y satisfies the condition (SBEI-2), let a,b ∈ Y and c ∈ X. Then min{χY(a),χY(b)} = 1. By
the assumption and Lemma 3.15, we have

χY((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) 6 max{χY(a),χY(b)} = 1 − min{χY(a),χY(b)} = 0.

Thus,
χY((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) = 0,

and then (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) ∈ Y. Hence, Y satisfies the condition (SBEI-2). Since
Y satisfies the conditions (SBEI-1) and (SBEI-2), we see that Y is a SBE-ideal of X.

4. Level subsets of fuzzy SBE-ideals and anti-fuzzy SBE-ideals

In this section, we discuss level subsets of fuzzy sets in SBE-algebras. Characterizations of fuzzy
SBE-ideals and anti-fuzzy SBE-ideals of SBE-algebras are given in terms of their level subsets.

Definition 4.1 ([14]). Let µ be a fuzzy set in an SBE-algebra X and t ∈ [0, 1]. The sets

U(µ; t) = {a ∈ X | µ(a) > t} and U+(µ; t) = {a ∈ X | µ(a) > t}

are called an upper t-level subset and an upper t-strong level subset of µ, respectively. The sets

L(µ; t) = {a ∈ X | µ(a) 6 t} and L−(µ; t) = {a ∈ X | µ(a) < t}

are called a lower t-level subset and a lower t-strong level subset of µ, respectively.

Theorem 4.2. Let µ be a fuzzy set in an SBE-algebra X. Then µ is a fuzzy SBE-ideal of X if and only if it satisfies
the condition: for all t ∈ [0, 1], U(µ; t) 6= ∅ implies U(µ; t) is an SBE-ideal of X.

Proof.

(⇒) Assume that µ is a fuzzy SBE-ideal of X, t ∈ [0, 1] and U(µ; t) 6= ∅. Let x ∈ X and a ∈ U(µ; t). Then
µ(a) > t, so µ(x ↑ (a ↑ a)) > µ(a) > t by the condition (FSI-1). Thus, x ↑ (a ↑ a) ∈ U(µ; t). Hence, the
condition (SBEI-1) holds.

Now, let x ∈ X and a,b ∈ U(µ; t). Then µ(a) > t and µ(b) > t. It follows from (FSI-2) that

µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) > min{µ(a),µ(b)} > t,

which implies that (a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x) ∈ U(µ; t). Hence, the condition (SBEI-2)
holds. Therefore, U(µ; t) is an SBE-ideal of X.

(⇐) Assume that U(µ; t) is an SBE-ideal of X for all t ∈ [0, 1] such that U(µ; t) 6= ∅. If µ(a ↑ (b ↑ b)) < µ(b)
for some a,b ∈ X, then there exists t0 ∈ [0, 1] such that µ(a ↑ (b ↑ b)) < t0 < µ(b) by taking

t0 =
µ(a ↑ (b ↑ b)) + µ(b)

2
.

Thus, a ↑ (b ↑ b) /∈ U(µ; t0) and b ∈ U(µ; t0), which is a contradiction with the assumption. Hence,
µ(a ↑ (b ↑ b)) > µ(b) for all a,b ∈ X, that is, the condition (FSI-1) holds.

Now, let a,b, c ∈ X be such that

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) < min{µ(a),µ(b)}.

Taking k0 =
µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) + min{µ(a),µ(b)}

2
, we get that k0 ∈ [0, 1] and

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) < k0 < min{µ(a),µ(b)}.

It follows that a,b ∈ U(µ;k0) and (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) /∈ U(µ;k0). Thus, U(µ;k0) is
not an SBE-ideal of X, which is a contradiction with the assumption. Hence, µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑
(c ↑ c)))) ↑ (c ↑ c)) > min{µ(a),µ(b)} for all a,b, c ∈ X, that is, the condition (FSI-2) holds. Therefore, µ is
a fuzzy SBE-ideal of X.
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Theorem 4.3. Let µ be a fuzzy set in an SBE-algebra X. Then µ is an anti-fuzzy SBE-ideal of X if and only if it
satisfies the condition: for all t ∈ [0, 1], U(µ; t) 6= ∅ implies U(µ; t) is an SBE-ideal of X.

Proof. It follows from Theorems 3.16 and 4.2.

Theorem 4.4. Let µ be a fuzzy set in an SBE-algebra X. Then µ is a fuzzy SBE-ideal of X if and only if it satisfies
the condition: for all t ∈ [0, 1], U+(µ; t) 6= ∅ implies U+(µ; t) is an SBE-ideal of X.

Proof.

(⇒) Assume that µ is a fuzzy SBE-ideal of X, t ∈ [0, 1] and U+(µ; t) 6= ∅. Let x ∈ X and a ∈ U+(µ; t).
Then µ(a) > t. Since µ is a fuzzy SBE-ideal of X, we have µ(x ↑ (a ↑ a)) > t. Thus, x ↑ (a ↑ a) ∈ U+(µ; t).
Hence, the set U+(µ; t) satisfies the condition (SBEI-1).

Now, let x ∈ X and a,b ∈ U+(µ; t). Then µ(a) > t and µ(b) > t. Since µ is an SBE-ideal of X, we get
that

µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) > t,
which implies that (a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x) ∈ U+(µ; t). Hence, the set U+(µ; t) satisfies
the condition (SBEI-2). Since the set U+(µ; t) satisfies the conditions (SBEI-1) and (SBEI-2), we have the
set U+(µ; t) is an SBE-ideal of X.

(⇐) Assume that U+(µ; t) is an SBE-ideal of X for all t ∈ [0, 1] such that U+(µ; t) 6= ∅. Suppose that µ(a ↑
(b ↑ b)) < µ(b) for some a,b ∈ X. Choose t0 = µ(a ↑ (b ↑ b)), we have µ(b) > t0. Thus, b ∈ U+(µ; t0). By
the assumption, we get that U+(µ; t0) is an SBE-ideal of X. Hence, a ↑ (b ↑ b) ∈ U+(µ; t0), that is,

µ(a ↑ (b ↑ b)) > t0 = µ(a ↑ (b ↑ b)).

This is a contradiction. Then µ(a ↑ (b ↑ b)) > µ(b) for all a,b ∈ X, that is, µ satisfies the condition (FSI-1).
Now, we will show that µ satisfies the condition (FSI-2). Let a,b, c ∈ X be such that

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) < min{µ(a),µ(b)}.

Choose k0 = µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)), we have that µ(a) > k0 and µ(b) > k0. Thus,
a,b ∈ U+(µ;k0). By the assumption, we get that (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) ∈ U+(µ;k0),
that is,

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > k0 = µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)).

It is a contradiction. Hence, for all a,b, c ∈ X, we have

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ(a),µ(b)}.

We have that µ satisfies the condition (FSI-2). Since µ satisfies the two conditions (FSI-1) and (FSI-2), we
see that µ is a fuzzy SBE-ideal of X.

Theorem 4.5. Let µ be a fuzzy set in an SBE-algebra X. Then µ is an anti-fuzzy SBE-ideal of X if and only if it
satisfies the condition: for all t ∈ [0, 1], U+(µ; t) 6= ∅ implies U+(µ; t) is an SBE-ideal of X.

Proof. It follows from Theorems 3.16 and 4.4.

Theorem 4.6. Let µ be a fuzzy set in an SBE-algebra X. Then µ̄ is a fuzzy SBE-ideal of X if and only if it satisfies
the condition: for all t ∈ [0, 1], L(µ; t) 6= ∅ implies L(µ; t) is an SBE-ideal of X.

Proof.

(⇒) Assume that µ̄ is a fuzzy SBE-ideal of X, t ∈ [0, 1] and L(µ; t) 6= ∅. Let a ∈ X and b ∈ L(µ; t). Then
µ(b) 6 t. By the assumption, we have

1 − t 6 1 − µ(b) = µ̄(b) 6 µ̄(a ↑ (b ↑ b)) = 1 − µ(a ↑ (b ↑ b)).

Thus, µ(a ↑ (b ↑ b)) 6 t, which implies that a ↑ (b ↑ b) ∈ L(µ; t). Hence, the set L(µ; t) satisfies the
condition (SBEI-1).



N. Chunsee, P. Julatha, A. Iampan, J. Math. Computer Sci., 34 (2024), 283–294 292

Now, let a,b ∈ L(µ; t) and x ∈ X. Then µ(a) 6 t and µ(b) 6 t. By using the assumption and Lemma
3.15, we get that

1−µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x))
= µ̄((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x))
> min{µ̄(a), µ̄(b)} = min{1 − µ(a), 1 − µ(b)} = 1 − max{µ(a),µ(b)} > 1 − t.

Thus,
µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) 6 t,

which implies that
(a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x) ∈ L(µ; t).

Hence, the set L(µ; t) satisfies the condition (SBEI-2). Since the set L(µ; t) satisfies the conditions (SBEI-1)
and (SBEI-2), we have that the set L(µ; t) is an SBE-ideal of X.

(⇐) Assume that L(µ; t) is an SBE-ideal of X for all t ∈ [0, 1] such that L(µ; t) 6= ∅. Let a,b ∈ X. Choose
t0 = µ(b), we get µ(b) 6 t0. Thus, b ∈ L(µ; t0). By the assumption, we get that L(µ; t0) is an SBE-ideal of
X. Hence, a ↑ (b ↑ b) ∈ L(µ; t0), that is,

µ(a ↑ (b ↑ b)) 6 t0 = µ(b).

Then
µ̄(a ↑ (b ↑ b)) = 1 − µ(a ↑ (b ↑ b)) > 1 − µ(b) = µ̄(b).

Hence, µ̄ satisfies the condition (FSI-1).
To show that µ̄ satisfies the condition (FSI-2), let a,b, c ∈ X. Choose k0 = max{µ(a),µ(b)}, we have

a,b ∈ L(µ;k0). By the assumption, we get that L(µ;k0) is an SBE-ideal of X. Hence, (a ↑ ((b ↑ (c ↑ c)) ↑
(b ↑ (c ↑ c)))) ↑ (c ↑ c) ∈ L(µ;k0), that is,

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) 6 k0 = max{µ(a),µ(b)}.

Hence,

µ̄((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (x ↑ c)) = 1 − µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c))
> 1 − max{µ(a),µ(b)}
= min{1 − µ(a), 1 − µ(b)} = min{µ̄(a), µ̄(b)}.

We have that µ̄ satisfies the condition (FSI-2). Since µ̄ satisfies the two conditions (FSI-1) and (FSI-2), we
get that µ̄ is a fuzzy SBE-ideal of X.

Theorem 4.7. Let µ be a fuzzy set in an SBE-algebra X. Then µ is an anti-fuzzy SBE-ideal of X if and only if it
satisfies the condition: for all t ∈ [0, 1], L(µ; t) 6= ∅ implies L(µ; t) is an SBE-ideal of X.

Proof. It follows from Theorems 3.17 and 4.6.

Theorem 4.8. Let µ be a fuzzy set in an SBE-algebra X. Then µ̄ is a fuzzy SBE-ideal of X if and only if it satisfies
the condition: for all t ∈ [0, 1], L−(µ; t) 6= ∅ implies L−(µ; t) is an SBE-ideal of X.

Proof.

(⇒) Assume that µ̄ is a fuzzy SBE-ideal of X, t ∈ [0, 1] and L−(µ; t) 6= ∅. Let a ∈ X and b ∈ L−(µ; t).
Since µ̄ is a fuzzy SBE-ideal of X, we get µ̄(b) 6 µ̄(a ↑ (b ↑ b)). Then 1 − t < 1 − µ(a ↑ (b ↑ b)), so
µ(a ↑ (b ↑ b)) < t. Thus, a ↑ (b ↑ b) ∈ L−(µ; t). Hence, the set L−(µ; t) satisfies the condition (SBEI-1).
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Now, let a,b ∈ L−(µ; t) and x ∈ X. Then max{µ(a),µ(b)} < t. Since µ̄ is a fuzzy SBE-ideal of X, we
have

µ̄((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) > min{µ̄(a), µ̄(b)}.

By using Lemma 3.15, we get that

1 − µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) > 1 − max{µ(a),µ(b)} > 1 − t.

Thus,
µ((a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x)) < t,

which implies that
(a ↑ ((b ↑ (x ↑ x)) ↑ (b ↑ (x ↑ x)))) ↑ (x ↑ x) ∈ L−(µ; t).

Hence, the set L−(µ; t) satisfies the condition (SBEI-2). Since the set L−(µ; t) satisfies the two conditions
(SBEI-1) and (SBEI-2), we have that the set L−(µ; t) is an SBE-ideal of X.

(⇐) Assume that for all t ∈ [0, 1], L−(µ; t) is an SBE-ideal of X if L−(µ; t) is nonempty. Suppose that there
exist a,b ∈ X such that µ̄(a ↑ (b ↑ b)) < µ̄(b). Then µ(a ↑ (b ↑ b)) > µ(b). Choose t0 = µ(a ↑ (b ↑ b)), we
have µ(b) < t0. Thus, b ∈ L−(µ; t0) but a ↑ (b ↑ b) /∈ L−(µ; t0). By the assumption, we have that L−(µ; t0)
is an SBE-ideal of X. Hence, a ↑ (b ↑ b) ∈ L−(µ; t0), a contradiction. Then µ̄(a ↑ (b ↑ b)) > µ̄(b) for all
a,b ∈ X, that is, µ̄ satisfies the condition (FSI-1).

Now, we will show that µ̄ satisfies the condition (FSI-2). Let a,b, c ∈ X be such that

µ̄((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) < min{µ̄(a), µ̄(b)}.

By using Lemma 3.15, we get min{µ̄(a), µ̄(b)} = 1 − max{µ(a),µ(b)}, and so

µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > max{µ(a),µ(b)}.

Choose
k0 = µ((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)),

we have a,b ∈ L−(µ;k0) but (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) /∈ L−(µ;k0). By the assumption,
the set L−(µ;k0) is an SBE-ideal of X. Thus, (a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c) ∈ L−(µ;k0), a
contradiction. Hence,

µ̄((a ↑ ((b ↑ (c ↑ c)) ↑ (b ↑ (c ↑ c)))) ↑ (c ↑ c)) > min{µ̄(a), µ̄(b)},

for all a,b, c ∈ X. We have that µ̄ satisfies the condition (FSI-2). Since µ̄ satisfies the two conditions (FSI-1)
and (FSI-2), we have that µ̄ is a fuzzy SBE-ideal of X.

Theorem 4.9. Let µ be a fuzzy set in an SBE-algebra X. Then µ is an anti-fuzzy SBE-ideal of X if and only if it
satisfies the condition: for all t ∈ [0, 1], L−(µ; t) 6= ∅ implies L−(µ; t) is an SBE-ideal of X.

Proof. It follows from Theorems 3.17 and 4.8.

5. Conclusions

In the present paper, we have introduced the concepts of fuzzy SBE-ideals and anti-fuzzy SBE-ideals
of SBE-algebras and given their important properties. We have discussed the relationships between fuzzy
SBE-ideals and anti-fuzzy SBE-ideals and their level subsets. Further, characterizations of SBE-ideals of
SBE-algebras in terms of fuzzy SBE-ideals and anti-fuzzy SBE-ideals.

Our research group plans to extend the study of this article toQ-fuzzy sets and intuitionistic fuzzy sets
in the near future, building on the work of [15] and [3], respectively, and to additional kinds of SBE-ideals
in SBE-algebras.
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