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Dynamic behaviors of a commensal symbiosis model with
ratio-dependent functional response and one party can not
survive independently
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Abstract

We propose a two-species commensal symbiosis model with ratio-dependent functional response

dx

dt
= x

(
− a1 − b1x+

c1y

x+ y

)
,

dy

dt
= y(a2 − b2y).

For autonomous case, we show that the unique positive equilibrium is globally stable if a1 < c1 holds,
and the boundary equilibrium (0, a2

b2
) is globally stable if a1 > c1 holds. For nonautonomous case,

some sufficient conditions which ensure the permanence and global attractivity of the system are
obtained. Numeric simulations are carried out to show the feasibility of the main results. c©2016 All
rights reserved.
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1. Introduction

During the last decades, many scholars investigated the dynamic behaviors of the mutualism
model or commensalism model, see [1, 2, 4, 5, 8–12, 14–17, 19–21, 23–29] and the references cited
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therein. However, only recently did scholars paid attention to the commensal symbiosis model with
one party can not survive independently (see [4, 5, 25]).

Based on the traditional two-species Lotka-Volterra model, Zhu et al. [29] proposed the following
model:

ẋ = x
(
a1 + b1x+ c1y

)
,

ẏ = y
(
a2 + b2y

)
,

(1.1)

where a1 < 0, a2 > 0, b1 < 0, b2 < 0, c1 > 0. Here, a1 < 0 means that the first species can not survive
independently. Some qualitative analysis of the above system are carried out.

Yang et al. [25] argued that the non-autonomous case is more suitable, since the environment are
change continuously, they investigated the dynamic behaviors of the following two-species commen-
salism model.

ẋ = x
(
− a1(t)− b1(t)x+ c1(t)y

)
, (1.2)

ẏ = y
(
a2(t)− b2(t)y

)
,

where a1(t), a2(t), b1(t), c1(t), b2(t) are all continuous functions bounded above and below by positive
constants. Such topic as persistent, extinction and stability were investigated in [16].

Corresponding to system (1.2), Chen et al. [4, 5] proposed a discrete commensal symbiosis model

x1(k + 1) = x1(k) exp
{
− a1(k)− b1(k)x1(k) + c1(k)x2(k)

}
,

x2(k + 1) = x2(k) exp
{
a2(k)− b2(k)x2(k)

}
.

They investigated the existence of positive ω-periodic solution, the permanence, extinction and global
attractivity of the system.

It brings to our attention that all of the above system made the assumption that the influence of
the second species to the first one is linearized. Already, during the past two decades, in the study of
predator-prey system, many scholars argued that in many conditions, especially when the predators
have to search for food (consequently, have to share or compete for food), ratio-dependent functional
response is more plausible, see [3, 6, 7, 13, 18, 22] and the references cited therein. Stimulated
by the works of [3, 6, 7, 13, 18], in this paper, we study the following commensalism model with
ratio-dependent functional response and one party can not survive independently:

dx

dt
= x

(
− a1 − b1x+

c1y

x+ y

)
, (1.3)

dy

dt
= y(a2 − b2y).

Throughout this paper, we assume that (H1) or (H2) holds, here:

(H1) ai, bi, i = 1, 2, c1 are all positive constants;

(H2) ai(t), bi(t), i = 1, 2, c1(t) are all continuous functions bounded above and below by some positive
constants.

We arrange the paper as follows: In the next section, we investigate the existence and local
stability property of the equilibria of system (1.3). In Section 3, we will investigate the global
stability property of positive equilibrium of the system. In Section 4, for the nonautonomous case,
we obtain some sufficient conditions which ensure the permanence and global stability property of
the system. In Section 5, two examples together with their numeric simulations are presented to
show the feasibility of our main results. We end this paper by a brief discussion.
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2. The existence and local stability of the equilibria

The equilibria of system (1.3) is determined by the system

x
(
− a1 − b1x+

c1y

x+ y

)
= 0,

y(a2 − b2y) = 0.

System (1.3) always admits the boundary equilibrium A1

(
0, a2

b2

)
, also, if a1 < c1, then system

(1.3) admits a unique positive equilibrium A2

(
x∗, y∗

)
, where

x∗ =
−(a2b1 + a1b2) +

√
(a2b1 + a1b2)2 − 4(a1a2 − a2c1)b1b2

2b1b2
, y∗ =

a2
b2
.

Obviously, A2

(
x∗, y∗

)
satisfies the equation

− a1 − b1x∗ +
c1y
∗

x∗ + y∗
= 0, (2.1)

a2 − b2y∗ = 0.

Concerned with the local stability property of the above three equilibria, we have

Theorem 2.1. A1

(
0, a2

b2

)
is unstable if a1 < c1 and locally stable if a1 > c1. Besides, if A2

(
x∗, y∗

)
exists, then it is locally stable.

Proof. The Jacobian matrix of the system (1.3) is calculated as

J(x, y) =

 −a1 − 2b1x+
c1y

x+ y
− c1xy

(x+ y)2
c1x

2

(x+ y)2

0 −2b2y + a2

 .

Then the Jacobian matrix of the system (1.3) about the equilibrium A1(0,
a2
b2

) is given by(
−a1 + c1 0

0 −a2

)
.

The corresponding eigenvalues are λ1 = −a1 + c1, λ2 = −a2 < 0. Obviously, if a1 > c1, then
λ1 < 0, in this case, A2(0,

r2
a22

) is locally stable, and A1(0,
r2
a22

) is unstable if a1 < c1.
By using (2.1), the Jacobian matrix about the positive equilibrium A2 is given by −b1x∗ −

c1x
∗y∗

(x∗ + y∗)2
c1(x

∗)2

(x∗ + y∗)2

0 −a2

 .

The eigenvalues of the above matrix are λ1 = −b1x∗ −
c1x
∗y∗

(x∗ + y∗)2
< 0, λ2 = −a2 < 0.

Hence, A2(x
∗, y∗) is locally stable. This ends the proof of Theorem 2.1.

3. Global stability of the equilibria

Since both boundary equilibrium and positive equilibrium are all possible locally stable, it is
natural to find out suitable conditions which ensure the global stability property of the equilibria.
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Lemma 3.1 ([7]). System
dy

dt
= y(a− by)

has a unique globally attractive positive equilibrium y∗ = a
b
.

Lemma 3.2. Assume that c
d
> a, then system

dy

dt
= y
(
− a− by +

c

y + d

)
admits a unique positive equilibrium y∗ which is globally attractive, where a, b, c are all positive con-
stants.

Proof. Set F (y) = −a− by+
c

y + d
. By simple computation, F (y) = 0 has a unique positive solution

y∗ =
1

2

−bd− a+
√
b2d2 − 2abd+ a2 + 4bc

b
.

Since F (0) = −a+ c
d
> 0, and F

′
(y) = −bd

2 + 2bdy + by2 + c

(y + d)2
< 0, F (y∗) = 0, it follows that

F (y) > 0 for all y ∈ (0, y∗),

and
F (y) < 0 for all y ∈ (y∗,+∞).

Then it follows from Theorem 2.1 in [7] that y∗ is globally stable, i.e., lim
t→+∞

y(t) = y∗. This ends the

proof of Lemma 3.2.

Theorem 3.3. Assume that a1 > c1 holds, then A1

(
0, a2

b2

)
is globally stable.

Proof. Noting that the second equation of (1.3) takes the form

dy

dt
= y(a2 − b2y). (3.1)

By applying Lemma 3.1 to system (3.1), we know that system (3.1) has a unique globally attractive
positive equilibrium y∗ = a2

b2
. i.e., lim

t→+∞
y(t) = y∗.

From the first equation of system (1.3), it immediately follows that

dx

dt
≤ x(−a1 + c1),

hence,

x(t) ≤ x(0) exp{(−a1 + c1)t} → 0 as t→ +∞.

This ends the proof of Theorem 3.3.

Theorem 3.4. Assume that a1 < c1 holds, then A2

(
x∗, y∗

)
is globally stable.
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Proof. In the proof of Theorem 3.3, we had showed that lim
t→+∞

y(t) = a2
b2
. That is, for any ε > 0 small

enough, there exists a T > 0 such that for all t > T

y∗ − ε < y(t) < y∗ + ε for all t > T. (3.2)

For t > T , it follows from the first equation of system (1.3) and (3.2) that

dx

dt
≤ x

(
− a1 − b1x+

c1(y
∗ + ε)

x+ (y∗ + ε)

)
. (3.3)

Now let us consider the differential equation

du

dt
= u

(
− a1 − b1u+

c1(y
∗ + ε)

u+ (y∗ + ε)

)
, (3.4)

since

−a1 +
c1(y

∗ + ε)

y∗ + ε
= −a1 + c1 > 0,

it follows from Lemma 3.2 that system (3.4) admits a unique global stable positive equilibrium

u∗ε =
1

2

−b1(y∗ + ε)− a1 +
√
b21(y

∗ + ε)2 − 2a1b1(y∗ + ε) + a21 + 4b1c1(y∗ + ε)

b1
.

By applying differential inequality theory to (3.3), it follows that

lim sup
t→+∞

x(t) ≤ u∗ε + ε. (3.5)

For t > T , from the first equation of system (1.3) and (3.2), we also have

dx

dt
≥ x

(
− a1 − b1x+

c1(y
∗ − ε)

x+ (y∗ − ε)

)
. (3.6)

Now let us consider the differential equation

dv

dt
= v
(
− a1 − b1v +

c1(y
∗ − ε)

v + (y∗ − ε)

)
, (3.7)

since

−a1 +
c1(y

∗ − ε)
y∗ − ε

= −a1 + c1 > 0,

it follows from Lemma 3.2 that system (3.7) admits a unique global stable positive equilibrium

v∗ε =
1

2

−b1(y∗ − ε)− a1 +
√
b21(y

∗ − ε)2 − 2a1b1(y∗ − ε) + a21 + 4b1c1(y∗ − ε)
b1

.

By applying differential inequality theory to (3.6), it follows that

lim inf
t→+∞

x(t) ≥ v∗ε − ε. (3.8)

Setting ε→ 0 in (3.5) and (3.8) leads to

lim
t→+∞

x(t) = x∗,

where

x∗ =
1

2

−b1y∗ − a1 +
√
b21(y

∗)2 − 2a1b1y∗ + a21 + 4b1c1y∗

b1
.

This completes the proof.
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4. Nonautonomous case

Now let us consider the system

dx

dt
= x

(
− a1(t)− b1(t)x+

c1(t)y

x+ y

)
, (4.1)

dy

dt
= y(a2(t)− b2(t)y),

where ai(t), bi(t), c1(t), i = 1, 2 are all continuous functions bounded above and below by positive
constants. For the rest of the paper, for a bounded continuous function g defined on R, let gL and
gM be defined as

gL = inf
t∈R

g(t), gM = sup
t∈R

g(t).

Theorem 4.1. Assume that cL1 > aM1 holds, then system (4.1) is permanent.

Proof. Let (x(t), y(t)) be any solution of system (4.1) with the initial conditions x(0) > 0, y(0) > 0.
From the first equation of system (4.1) it follows that

ẋ(t) ≤ x(−aL1 + cM1 − bL1 x). (4.2)

Thus

lim sup
t→+∞

x(t) ≤ −a
L
1 + cM1
bL1

def
= M1.

From the second equation of system (4.1), we have

ẏ(t) ≤ y
(
aM2 − bL2 y

)
,

thus,

lim sup
t→+∞

y(t) ≤ aM2
bL2

def
= M2.

From the second equation of system (4.1), we have

ẏ(t) ≥ y
(
aL2 − bM2 y

)
,

thus,

lim inf
t→+∞

y(t) ≥ aL2
bM2

def
= m2. (4.3)

For any ε > 0 small enough, it follows from (4.3) that there exists a T > 0 such that

y(t) > m2 − ε, for all t > T.

From the first equation of system (4.1), it follows that

ẋ(t) ≥ x
(
− aM1 − bM1 x+

cL1 (m2 − ε)
x+ (m2 − ε)

)
.
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Now let us consider the equation

ẇ(t) = w
(
− aM1 − bM1 w +

cL1 (m2 − ε)
w + (m2 − ε)

)
. (4.4)

Since

−aM1 +
cL1 (m2 − ε)
m2 − ε

= −aM1 + cL1 > 0,

it follows from Lemma 3.2 that (4.4) admits a unique positive equilibrium

w∗ε =
1

2

−bM1 (m2 − ε)− aM1 +
√

∆(ε)

bM1
,

where
∆(ε) = (bM1 )2(m2 − ε)2 − 2aM1 b

M
1 (m2 − ε) + (aM1 )2 + 4bM1 c

M
1 (m2 − ε),

which is globally stable. Thus

lim inf
t→+∞

x(t) ≥ w∗ε − ε.

Setting ε→ 0, it immediately follows that

lim inf
t→+∞

x(t) ≥ m1.

where

m1 =
1

2

−bM1 m2 − aM1 +
√

(bM1 )2m2
2 − 2aM1 b

M
1 m2 + (aM1 )2 + 4bM1 c

M
1 m2

bM1
.

This ends the proof of Theorem 4.1.

Before we state the stability property of this section, we introduce some notations. Set

A1(t)
def
= b1(t)−

c1(t)M2

(m1 +m2)2
,

A2(t)
def
= b2(t)−

c1(t)M1

(m1 +m2)2
.

Theorem 4.2. Assume that cL1 > aM1 , assume further that

lim inf
t→+∞

{
A1(t), A2(t)

}
> 0, (4.5)

then for any positive solutions (x(t), y(t)) and (x1(t), y1(t)) of system (4.1), one has

lim
t→+∞

(|x(t)− x1(t)|+ |y(t)− y1(t)|) = 0.

Proof. Condition (4.5) implies that there exists a positive constant ε small enough (without loss of
generality, we may assume that ε < 1

2
{m1,m2} ) and large enough T1 > 0 such that
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A1(ε, t)
def
= b1(t)−

c1(t)(M2 + ε)

(m1 +m2 − 2ε)2
≥ ε, (4.6)

A2(ε, t)
def
= b2(t)−

c1(t)(M1 + ε)

(m1 +m2 − 2ε)2
≥ ε.

For two arbitrary positive solutions (x(t), y(t))T and (x1(t), y1(t))
T of system (4.1). For above

ε > 0, it follows from Theorem 4.1 that there exists a T > T1, such that for all t ≥ T ,

x(t), x1(t) < M1 + ε, y(t), y1(t) < M2 + ε,

x(t), x1(t) > m1 − ε, y(t), y1(t) > m2 − ε.

Now we let

V (t) = | lnx(t)− lnx1(t)|+ | ln y(t)− ln y1(t)|.

Then for t > T , we have

D+V (t) ≤ sgn(x(t)− x1(t))
(
− b1(t)x(t) +

c1(t)y(t)

x(t) + y(t)
+ b1(t)x1(t)−

c1(t)y1(t)

x1(t) + y1(t)

)
+ sgn(y(t)− y1(t))

(
− b2(t)y(t) + b2(t)y1(t)

)
≤ −b1(t)|x(t)− x1(t)|+ c1(t)

∣∣∣ y(t)

x(t) + y(t)
− y1(t)

x1(t) + y1(t)

∣∣∣− b2(t)|y(t)− y1(t)| (4.7)

≤ −
(
b1(t)−

c1(t)(M2 + ε)

(m1 +m2 − ε)2
)
|x(t)− x1(t)|

−
(
b2(t)−

c1(t)(M1 + ε)

(m1 +m2 − ε)2
)
|y(t)− y1(t)|.

From (4.7), by using (4.6), similar to the analysis of (3.6)-(3.8) in [22], one can conclude that

lim
t→+∞

[
|x(t)− x1(t)|+ |y(t)− y1(t)|

]
= 0.

This ends the proof of the Theorem 4.2.

5. Numeric simulations

Now let us consider the following example.

Example 5.1. Consider the following system

dx

dt
= x

(
− a1 − x+

y

x+ y

)
, (5.1)

dy

dt
= y(1− y).

In this system, corresponding to system (1.3), we take b1 = c1 = a2 = b2 = 1.

(1) Now take a1 = 2, then a1 > c1, it follows from Theorem 3.3 that (0, 1) is globally stable.
Numeric simulation (Fig. 1) support this assertion.

(2) Now take a1 = 1
2
, then a1 < c1, it follow from Theorem 3.4 that the unique positive equilibrium

(0.281, 1) is globally stable. Numeric simulation (Fig. 2) support this assertion.
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Figure 1: Numeric simulations of system (5.1) with a1 = 2 and the initial conditions
(x(0), y(0)) = (0.4, 2), (1, 0.3), (1, 0.02), (1, 0.3) and (1, 1.2), respectively.

Figure 2: Numeric simulations of system (5.1) with a1 = 1
2 and the initial conditions

(x(0), y(0)) = (0.4, 2), (1, 0.3), (1, 0.02), (1, 0.3),(1, 1.2) and (0.1, 2), respectively.

Example 5.2.

dx(t)

dt
= x(t)

(
− 2 + cos(t)− x(t) +

(3 +
1

t2 + 1
)y(t)

x(t) + y(t)

)
, (5.2)

dy(t)

dt
= y(t)

(
5 + cos(t)− (3 +

1

2
sin(t)

)
y(t)).

Corresponding to system (4.1), one has

a1(t) = 2− cos(t), c1(t) = 3 +
1

t2 + 1
,
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a2(t) = 5 + cos(t), b2(t) = 3 +
1

2
sin(t).

Obviously, cL1 > aM1 , hence, the conditions of Theorem 4.1 hold, it follows from Theorem 4.1 that
system (5.2) is permanent. Numeric simulations (Figs. 3 and 4) also support this assertion.

Figure 3: Dynamics behavior of the first species in system (5.2) with the initial
conditions (x(0), y(0)) = (0.1, 1), (2, 2), (3, 3), (2.5, 2.5), and (0.5, 0.5), respectively.

Figure 4: Dynamics behavior of the second species in system (5.2) with the initial
conditions (x(0), y(0)) = (0.1, 1), (2, 2), (3, 3), (2.5, 2.5), and (0.5, 0.5), respectively.

6. Conclusion

We propose a two-species commensal symbiosis model with ratio-dependent functional response
and one party can not survive independently. We show that for the autonomous case, if a1 > c1,
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that is, the intrinsic death rate of the first species is larger than the commensalism effect between
the species, then the first species will be driven to extinction, and if a1 < c1, that is, the cooperative
effect between two species is large than the intrinsic death rate of the first species, then two species
could be coexist in a stable state.

For the nonautonomous case, we show that under the condition aM1 < cL1 , two species can be
persistent. However, we are not able to show that this condition enough to guarantee the global
stability of the system, indeed, we need some extra conditions (condition (4.5)) to ensure the global
stability property of the system.

We mention here that a suitable system should incorporate some past state of the species, and
this leads to a system with time delay, we will leave this for future investigation.
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