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Abstract

Sufficient conditions are obtained for the global attractivity of the positive equilibrium and bound-
ary equilibria of the following two-species competitive system with nonlinear inter-inhibition terms

dy1(t)

dt
= y1(t)

[
r1 − a1y1 −

b1y2
1 + y2

]
,

dy2(t)

dt
= y2(t)

[
r2 − a2y2 −

b2y1
1 + y1

]
,

where ri, ai, bi, i = 1, 2 are all positive constants. Our result shows that conditions which ensure the
permanence of the system are almost enough to ensure the global stability of the system. The results
not only improve but also complement the main results of Wang et al. [Q. L. Wang, Z. J. Liu, Z. X.
Li, R. A. Cheke, Int. J. Biomath., 7 (2014), 18 pages]. c©2016 All rights reserved.
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1. Introduction

The aim of this paper is to investigate the global dynamic behaviors of the following two-species
competitive system with nonlinear inter-inhibition terms
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dy1(t)

dt
= y1(t)

[
r1 − a1y1 −

b1y2
1 + y2

]
,

dy2(t)

dt
= y2(t)

[
r2 − a2y2 −

b2y1
1 + y1

]
,

(1.1)

where ri, ai, bi, i = 1, 2 are all positive constants.
Recently, Wang et al. [23] studied the dynamic behaviors of the following two-species competitive

system with nonlinear inter-inhibition terms

dy1(t)

dt
= y1(t)

[
r1(t)− a1(t)y1 −

b1(t)y2
1 + y2

]
,

dy2(t)

dt
= y2(t)

[
r2(t)− a2(t)y2 −

b2(t)y1
1 + y1

]
,

(1.2)

where yi (i = 1, 2) are the population densities of two competing species at time t; ri(t) (i = 1, 2) are
the intrinsic growth rates of species i; ai (i = 1, 2) are the rates of intraspecific competition of the
first and second species, respectively; and bi(t) (i = 1, 2) are the rates of intraspecific competition of
the first and second species, respectively. For more background of system (1.1), we refer the reader
to [11, 19, 21–23, 28] and the references cited therein. For an almost periodic function f(t), set
fL = inf

t∈R
f(t), fU = sup

t∈R
f(t). Under the assumption ri(t), ai(t) and bi(t), i = 1, 2 are all positive

almost periodic functions defined on R+ = [0,+∞). The authors investigated the existence and
global asymptotic stability of positive almost periodic solutions of the system (1.2), they obtained
the following results:

Theorem 1.1. Any positive solution (y1(t), y2(t)) of system (1.2) satisfies

lim sup
t→+∞

yi(t) ≤Mi =
rUi
aLi

, i = 1, 2.

Theorem 1.2. If the following assumptions

rL1 > (bU1 − rL1 )M2, rL2 > (bU2 − rL2 )M1 (1.3)

are satisfied, then any positive solution (y1(t), y2(t)) of system (1.2) satisfies

lim inf
t→+∞

yi(t) ≥ mi =
rLi + (rLi − bUi )Mj

aUi (1 + Mj)
, i, j = 1, 2; i 6= j. (1.4)

Theorem 1.3. If the almost periodic parameters ri(t), ai(t), bi(t) (i = 1, 2) of system (1.2) satisfies
(1.3) and

aL1 −
bU2

(1 + m1)2
> 0, aL2 −

bU1
(1 + m2)2

> 0, (1.5)

then system (1.2) has a globally asymptotically stable positive almost periodic solution.

It brings to our attention that the authors had investigated the stability property of the system
(1.2) by constructing some suitable Lyapunov function, generally speaking, the conditions obtained by
using Lyapunov function are very complicated, the additional condition, to some extent, is necessary.
But for the system itself, this condition may not be necessary. Also, the authors in [23] did not
investigated the extinction property of the system (1.2), which is one of the most important topics in
the study of population dynamics (see [2–5, 7, 8, 12, 13, 18, 20] and the references therein). Above
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analysis motivated us to revisit the autonomous case of system(1.2), i.e., system (1.1).
From the point of view of biology, in the sequel, we shall consider (1.1) together with the initial

conditions

yi(0) > 0, i = 1, 2. (1.6)

Obviously, system(1.1) has a unique solution (y1(t), y2(t)) satisfying the initial condition (1.6). We
easily prove yi(t) > 0 for all i = 1, 2 in maximal interval of existence of the solution.

The aim of this paper is, by further developing the analysis technique of [1, 6, 9, 10, 14–17, 24–
27, 29] and using the differential inequality theory, to investigate the global dynamic behaviors of
the system (1.1). More precisely, we will prove the following results.

Theorem 1.4. Assume that the following inequalities

r1(a2 + r2) > b1r2, r2(a1 + r1) > b2r1 (1.7)

hold, and assume further that one of the following conditions holds,

(A)

a2 − b2 + r2 6= 0; (1.8)

(B)

a2 − b2 + r2 = 0, a1r2 − a2r1 > 0, (1.9)

then system (1.1) admits a unique positive equilibrium (y∗1, y
∗
2), which is globally attractive, that is,

for any positive solution (y1(t), y2(t)) of system (1.1) with the initial condition (1.6), one has

lim
t→+∞

yi(t) = y∗i , i = 1, 2.

Remark 1.5. For system (1.1), the first inequality rL1 > (bU1 −rL1 )M2 in (1.3) is equivalent to r1 > (b1−
r1)

r2
a2

, or r1(a2+r2) > b1r2. Similarly, the second inequality in (1.3) is equivalent to r2(a1+r1) > b2r1.
Therefore, Theorem 1.4 shows that for the autonomous case of system (1.2), the conditions which
ensure the permanence of the system are almost enough to ensure the global stability of the system,
only the degenerate case a2 − b2 + r2 = 0 needs further consideration.

As a direct corollary of Theorem 1.4, we have,

Corollary 1.6. Assume that the following inequalities

r1 > b1, r2 > b2

hold, then system (1.1) admits a unique positive equilibrium (y∗1, y
∗
2), which is globally attractive, that

is, for any positive solution (y1(t), y2(t)) of system (1.1) with the initial condition (1.6), one has:

lim
t→+∞

yi(t) = y∗i , i = 1, 2.

Theorem 1.7. Assume that the following inequalities

r1(a2 + r2) > b1r2, r2 −
b2m1

1 + m1

< 0 (1.10)

hold, where
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m1 =
r1 − b1M2

1+M2

a1
, M2 =

r2
a2

,

then
lim

t→+∞
y1(t) =

r1
a1

, lim
t→+∞

y2(t) = 0.

Remark 1.8. Condition (1.10) is equivalent to

r1(a2 + r2) > b1r2,

(a1 − b1 + r1)r
2
2 + (a1a2 + a2r1 + b1b2 − b2r1)r2 − a2b2r1 < 0.

(1.11)

One could easily see that if r1 is large enough and r2 is small enough, then (1.11) always holds, and
the second species will be driven to extinction. That is, for system (1.1), the intrinsic growth rate
plays important role on the persistent and extinction property of the species. Large intrinsic growth
rate will improve the chance of the survival of the species.

Theorem 1.9. Assume that the following inequalities

r1 −
b1m2

1 + m2

< 0, r2(a1 + r1) > b2r1 (1.12)

hold, where

m2 =
r2 − b2M1

1+M1

a2
, M1 =

r1
a1

,

then
lim

t→+∞
y1(t) = 0, lim

t→+∞
y2(t) =

r2
a2

.

Remark 1.10. Condition (1.12) is equivalents to

(a2 − b2 + r2)r
2
1 + (a1a2 + a1r2 + b1b2 − b1r2)r1 − a1b2r2 < 0,

r2(a1+r1) > b2r1.
(1.13)

One can easily see that if r2 is large enough and r1 is small enough, then (1.13) always holds, and
the first species will be driven to extinction.

The rest of the paper is arranged as follows: We will introduce some useful lemmas in the next
section, and then prove the main results in Section 3. Some numeric simulations are carried out in
Section 4, and we end this paper by a brief discussion.

2. Lemmas

Now let us state several lemmas which will be useful in the proving of main results.

Lemma 2.1. In addition to (1.7), further assume that (1.8) or (1.9) holds, then system (1.1) admits
a unique positive equilibrium (y∗1, y

∗
2).

Proof. The positive equilibrium of system (1.1) satisfies the following equation

r1 − a1y1 −
b1y2

1 + y2
= 0,

r2 − a2y2 −
b2y1

1 + y1
= 0.

(2.1)
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Since we focus on the positive solution of the system (1.1), it implies that we only need to consider
the case y1 > 0, y2 > 0. Hence, to ensure the first equality holds, y1 should be lied in the interval
(0, r1

a1
). Similarly, to ensure the second equality holds, y2 should be lied in the interval (0, r2

a2
). In th

following we will investigate the positive equilibrium of system (1.1) on the rectangle (0, r1
a1

)× (0, r2
a2

).
From the second equation of system (2.1) one can obtain

y2 = −b2y1 − r2y1 − r2
a2(1 + y1)

. (2.2)

Substituting (2.2) into the first equation of (2.1) leads to

A1y
2
1 + A2y1 + A3 = 0,

where

A1 = a1a2 − a1b2 + a1r2,

A2 = a1a2 + a1r2 − a2r1 − b1b2 + b1r2 + b2r1 − r1r2,

A3 = −a2r1 + b1r2 − r1r2.

Now let us consider the function

F (y1) = A1y
2
1 + A2y1 + A3.

Since
F (0) = A3 < 0,

and

F

(
r1
a1

)
=

b1(a1r2 − b2r1 + r1r2)

a1
> 0,

which means that F (y1) = 0 has at least one solution on the interval (0, r1
a1

).
Now let us show that under the assumption of the lemma, F (y1) = 0 has at most one positive

solution on the interval (0, r1
a1

).

(1) Assume that a2− b2 + r2 > 0, in this case, F (+∞) = F (−∞) = +∞, since F (0) < 0, it follows
that F (y1) has at least one solution on the interval (−∞, 0) and (0,+∞), respectively. Since
F (y1) = 0 has at most two solutions, it follows that F (y1) = 0 has at most one solution on the
interval (0, r1

a1
);

(2) Assume that a2− b2 +r2 < 0, in this case, F (+∞) = −∞, since F (0) < 0, F ( r1
a1

) > 0, it follows
that F (y1) has at least one solution on the interval (0, r1

a1
) and ( r1

a1
,+∞), respectively. Since

F (y1) = 0 has at most two solutions, it follows that F (y1) = 0 has at most one solution on the
interval (0, r1

a1
);

(3) Assume that a2 − b2 + r2 = 0, in this case, F (0) < 0, also, from (1.9) one has F ( r1
a1

) =
a1b1r2−a2b1r1 > 0, since F (y1) is the linear function of y1, it immediately follows that F (y1) = 0
has only one solution on the interval (0, r1

a1
).

Above analysis shows that under the assumption of Lemma 2.1, F (y1) = 0 has at most one
positive solution on the interval (0, r1

a1
). Therefore, F (y1) = 0 has a unique positive solution on the

interval (0, r1
a1

). Set this solution as y∗1. Also, from (2.2) we have

y
′

2(y1) = − b2
a2(1 + x)2

< 0.
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Since y2(0) = r2
a2

and y2(
r1
a1

) =
a1r2 − b2r1 + r1r2

a2(a1 + r1)
> 0, it follows that y2(y

∗
1) > 0. Set y2(y

∗
1) = y∗2.

Then system (1.1) admits a unique positive equilibrium (y∗1, y
∗
2). This ends the proof of Lemma

2.1.

As a direct corollary of Lemma 2.2 of [1] by Chen, we have,

Lemma 2.2. If a > 0, b > 0 and ẋ ≥ x(b− ax), when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.

3. Proof of the main results

Now we are in the position to prove the main results of this paper.

Proof of Theorem 1.4. It follows from (1.7) that there exists an ε > 0 small enough such that

r1 >
b1(

r2
a2

+ ε)

1 + ( r2
a2

+ ε)
+ a1ε, r2 >

b2(
r1
a1

+ ε)

1 + ( r1
a1

+ ε)
+ a2ε. (3.1)

Let (y1(t), y2(t)) be any positive solution of system (1.1) with initial condition (1.6). From system
(1.1) it follows that

dyi(t)

dt
≤ yi(t)

[
ri − aiyi

]
. (3.2)

Thus, as a direct corollary of Lemma 2.2, according to (3.1), one has

lim sup
t→+∞

yi(t) ≤
ri
ai
. (3.3)

Hence, for small enough ε > 0, it follows from (3.3) that there exists a T1 > 0 such that

yi(t) <
ri
ai

+ ε
def
= M

(1)
i , i = 1, 2. (3.4)

For t > T1, it follows from the first equation of system (1.1) that

dy1(t)

dt
≥ y1(t)

[
r1 − a1y1 −

b1M
(1)
2

1 + M
(1)
2

]
. (3.5)

Thus, as a direct corollary of Lemma 2.2, according to (3.5), one has

lim inf
t→+∞

y1(t) ≥
r1 −

b1M
(1)
2

1 + M
(1)
2

a1
. (3.6)
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Hence, for small enough ε > 0, satisfying (3.1), it follows from (3.1) and (3.6) that there exists a
T

′
2 > 0 such that

y1(t) >

r1 −
b1M

(1)
2

1 + M
(1)
2

a1
− ε

def
= m

(1)
1 for t > T

′

2. (3.7)

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a
T2 > T ′2 such that

y2(t) >

r2 −
b2M

(1)
1

1 + M
(1)
1

a2
− ε

def
= m

(1)
2 for t > T2.

For t > T2, it follows from the first equation of system (1.1) that

dy1(t)

dt
≤ y1(t)

[
r1 − a1y1 −

b1m
(1)
2

1 + m
(1)
2

]
. (3.8)

Thus, as a direct corollary of Lemma 2.2, according to (3.8), one has

lim sup
t→+∞

y1(t) ≤
r1 −

b1m
(1)
2

1 + m
(1)
2

a1
. (3.9)

Hence, for ε > 0 satisfying (3.1), it follows from (3.9) that there exists a T
′
3 > 0 such that

y1(t) <

r1 −
b1m

(1)
2

1 + m
(1)
2

a1
+

ε

2
def
= M

(2)
1 for t > T

′

3.

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a
T3 > T ′3 such that

y2(t) <

r2 −
b2m

(1)
1

1 + m
(1)
1

a2
+

ε

2
def
= M

(2)
2 for t > T3.

For t > T3, it follows from the first equation of system (1.1) that

dy1(t)

dt
≥ y1(t)

[
r1 − a1y1 −

b1M
(2)
2

1 + M
(2)
2

]
.

Thus, as a direct corollary of Lemma 2.2, according to (3.8), one has

lim inf
t→+∞

y1(t) ≥
r1 −

b1M
(2)
2

1 + M
(2)
2

a1
. (3.10)

Hence, for ε > 0 satisfying (3.1), it follows from (3.10) that there exists a T
′
4 > 0 such that

y1(t) >

r1 −
b1M

(2)
2

1 + M
(2)
2

a1
− ε

2
def
= m

(2)
1 for t > T

′

4.

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a
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T4 > T ′4 such that

y2(t) >

r2 −
b2M

(2)
1

1 + M
(2)
1

a2
− ε

2
def
= m

(2)
2 for t > T4.

One can easily see that

M
(2)
1 =

r1 −
b1m

(1)
2

1 + m
(1)
2

a1
+

ε

2
<

r1
a1

+ ε = M
(1)
1 ,

M
(2)
2 =

r2 −
b2m

(1)
1

1 + m
(1)
1

a2
+

ε

2
<

r2
a2

+ ε = M
(1)
2 ,

m
(2)
1 =

r1 −
b1M

(2)
2

1 + M
(2)
2

a1
− ε

2
>

r1 −
b1M

(1)
2

1 + M
(1)
2

a1
− ε = m

(1)
1 ,

m
(2)
2 =

r2 −
b2M

(2)
1

1 + M
(2)
1

a2
− ε

2
>

r2 −
b2M

(1)
1

1 + M
(1)
1

a2
− ε = m

(1)
2 .

(3.11)

Repeating the above procedure, we get four sequences M
(n)
i ,m

(n)
i , i = 1, 2, n = 1, 2, · · · , such that for

n ≥ 2

M
(n)
1 =

r1 −
b1m

(n−1)
2

1 + m
(n−1)
2

a1
+

ε

n
, M

(n)
2 =

r2 −
b2m

(n−1)
1

1 + m
(n−1)
1

a2
+

ε

n
,

m
(n)
1 =

r1 −
b1M

(n)
2

1 + M
(n)
2

a1
− ε

n
, m

(n)
2 =

r2 −
b2M

(n)
1

1 + M
(n)
1

a2
− ε

n
.

(3.12)

Obviously,
m

(n)
i < Ni(t) < M

(n)
i , for t ≥ T2n, i = 1, 2.

We claim that sequences M
(n)
i , i = 1, 2 are non-increasing, and sequences m

(n)
i , i = 1, 2 are non-

decreasing. To prove this claim, we will carry out by the induction. Firstly, from (3.11) we have

M
(2)
i < M

(1)
i , m

(2)
i > m

(1)
i , i = 1, 2.

Let us assume now that our claim is true for n, that is,

M
(n)
i < M

(n−1)
i , m

(n)
i > m

(n−1)
i , i = 1, 2.

Again from the strictly increasing of function of g(x) =
x

1 + x
, we immediately obtain

M
(n+1)
1 =

r1 −
b1m

(n)
2

1 + m
(n)
2

a1
+

ε

n + 1
<

r1 −
b1m

(n−1)
2

1 + m
(n−1)
2

a1
+

ε

n
= M

(n)
1 ,
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M
(n+1)
2 =

r2 −
b2m

(n)
1

1 + m
(n)
1

a2
+

ε

n + 1
<

r2 −
b2m

(n−1)
1

1 + m
(n−1)
1

a2
+

ε

n
= M

(n)
2 ,

m
(n+1)
1 =

r1 −
b1M

(n+1)
2

1 + M
(n+1)
2

a1
− ε

n + 1
>

r1 −
b1M

(n)
2

1 + M
(n)
2

a1
− ε

n
= m

(n)
1 ,

m
(n+1)
2 =

r2 −
b2M

(n+1)
1

1 + M
(n+1)
1

a2
− ε

n + 1
>

r2 −
b2M

(n)
1

1 + M
(n)
1

a2
− ε

n
= m

(n)
2 .

Therefore,

lim
t→+∞

M
(n)
i = yi, lim

t→+∞
m

(n)
i = y

i
, i = 1, 2.

Letting n→ +∞ in (3.12), we obtain

a1y1 = r1 −
b1y2

1 + y
2

, a2y2 = r2 −
b2y1

1 + y1
,

a1y1 = r1 −
b1y2

1 + y2
, a2y2 = r2 −

b2y1
1 + y

1

.

(3.13)

Equation (3.13) shows that (y1, y2) and (y
1
, y2) are solutions of (2.1). By Lemma 2.1, equation (2.1)

has a unique positive solution E∗(y∗1, y
∗
2). Hence, we conclude that

yi = y
i

= N∗i , i = 1, 2,

that is,
lim

t→+∞
yi(t) = y∗i i = 1, 2.

Thus, the unique interior equilibrium E∗(y∗1, y
∗
2) is globally attractive. This completes the proof of

Theorem 1.4.

Proof of Theorem 1.7. Condition

r1(a2 + r2) > b1r2, r2 −
b2m1

1 + m1

< 0

implies that there exists a small enough ε such that

r1 >
b1(

r2
a2

+ ε)

1 + ( r2
a2

+ ε)
+ a1ε, r2 −

b2m
ε
1

1 + mε
1

< 0

holds, where

mε
1 =

r1 − b1Mε
2

1+Mε
2

a1
, M ε

2 =
r2
a2

+ ε.

Similar to the analysis of (3.2)-(3.7), there exists a T > 0 such that

yi(t) <
ri
ai

+ ε = M ε
i , i = 1, 2
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and

y1(t) >

r1 −
b1M

ε
2

1 + M ε
2

a1
− ε

def
= mε

1. (3.14)

From the second equation of system (1.1) and (3.14), we have

dy2(t)

dt
< y2(t)

[
r2 −

b2m
ε
1

1 + mε
1

]
.

Hence,

y2(t) = y2(T ) exp{
∫ t

T

[
r2 −

b2m
ε
1

1 + mε
1

]
dt} → 0 as t→ +∞. (3.15)

For small enough ε1 > 0, it follows from (3.15) that there exists a T1 > T such that

0 < y2(t) < ε1 for all t ≥ T1. (3.16)

It follows from (3.16) and the first equation of (1.1) that

dy1(t)

dt
> y1(t)

[
r1 − a1y1 −

b1ε1
1 + ε1

]
. (3.17)

Applying Lemma 2.2 to (3.17), it follows that

lim
t→+∞

y1(t) ≥
r1 −

b1ε1
1 + ε1
a1

.

Setting ε→ 0 leads to

lim
t→+∞

y1(t) ≥
r1
a1

.

This together with (3.3) shows that

lim
t→+∞

y1(t) =
r1
a1

.

This completes the proof of Theorem 1.7.

Proof of Theorem 1.9. Since the proof of Theorem 1.9 is similar to that of the proof of Theorem 1.7,
we omit the detail here.

4. Numeric simulations

Now let us consider the following examples.

Example 4.1.

dy1(t)

dt
= y1(t)

[
3− y1 −

3y2
1 + y2

]
,

dy2(t)

dt
= y2(t)

[
3− y2 −

3y1
1 + y1

]
.

(4.1)
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Corresponding to system (1.1), one has

r1 = r2 = b1 = b2 = 3, a1 = a2 = 1,

and so,

r1(a2 + r2) = 12 > 9 = b1r2, r2(a1 + r1) = 12 > 9 = b2r1, (4.2)

and

a2 − b2 + r2 = 1 6= 0. (4.3)

Equations (4.2) and (4.3) show that all the conditions of Theorem 1.4 hold, and it follows from
Theorem 1.4 that system (4.1) admits a unique positive equilibrium which is globally attractive.
Fig. 1 also supports these findings. However, by simple computation, one can easily obtain that

M1 = M2 = 3

and

m1 = m2 = 3− 3× 3

1 + 3
=

3

4
,

and so,

a1 −
b2

(1 + m1)2
= 1− 3

(1 + 3
4
)2

= − 1

49
< 0, a2 −

b1
(1 + m2)2

= − 1

49
< 0.

Which means that Theorem C of [23] could not be applied to system (4.1), and one can only obtain
the persistent property of system (4.1) from [23]. Obviously, we improve the main results of [23] by
deleting unnecessary conditions.

Figure 1: Dynamic behavior of system (4.1) with the initial condition (y1(0), y2(0)) = (0.4, 0.2), (1, 3), (3, 2.9), (3, 0.2),
(3, 2) and (0.1, 3), respectively.
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Example 4.2.

dy1(t)

dt
= y1(t)

[
3− y1 −

3y2
1 + y2

]
,

dy2(t)

dt
= y2(t)

[
3− y2 −

8y1
1 + y1

]
.

(4.4)

Corresponding to system (1.1), one has

r1 = r2 = b1 = 3, a1 = a2 = 1, b2 = 8

and so,

r1(a2 + r2) = 12 > 9 = b1r2, (4.5)

and

(a1 − b1 + r1)r
2
2 + (a1a2 + a2r1 + b1b2 − b2r1)r2 − a2b2r1 = −3 < 0. (4.6)

Equations (4.5) and (4.6) show that all the conditions of (1.11) hold, it follows from Theorem 1.7
that

lim
t→+∞

y1(t) = 3, lim
t→+∞

y2(t) = 0.

Fig. 2 also supports these findings.

Figure 2: Dynamic behavior of system (4.4) with the initial condition (y1(0), y2(0)) = (0.4, 0.2), (1, 3), (3, 2.9), (3, 0.2),
(3, 2) and (0.1, 3), respectively.

5. Discussion

In this paper, we revisit the dynamic behaviors of a two-species competitive system with nonlinear
inter-inhibition terms, which was proposed by Wang et al. [23]. By using the iterative method, we
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are able to obtain some more deep results. More precisely, we show that for the autonomous case of
system (1.2), conditions which ensure the permanence of the system are almost enough to ensure the
global stability of the system. We also investigate the extinction property of the system (1.1). Our
results indicate that if the growth rate of the species is small enough and the rate of the intraspecific
is large enough, then the species will be driven to extinction.

We mention here that a suitable population model should incorporate some past state of the
species, and this will lead to a system with delay. Whether the delay has positive or negative influence
on the dynamic behaviors of the system is still unknown, we leave this for future investigation.
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