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Abstract
Temporal topology studies chronological variation of the topology of an object (set). In this paper, we will present the basic

definitions related to temporal topology. In addition, the classical continuity and separations axioms known in general topology
will be generalized to temporal topological spaces. Also, we will show that the subcategory of temporal T0Q-spaces is reflective
in the category of temporal topological spaces. The necessary illustrative examples to elaborate on the obtained results and
relationships are provided.
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1. Introduction

The study of general topology as a branch of mathematics has been started since the 17th century. But
the use of the term ”topology” was used in 1874 by Johan Benedict Listing in the textbook ”Vorsludier zur
Topologie”. Subsequently, the study of topology as well as topological spaces has undergone considerable
advances and it generates a famous field of research until these days.

Euler, Lagrange, Cauchy, Bolzano, Riemann, Weirestrass, Poincaré, Frechet, Hausdorff, Kolmogorov,
Alexandroff, Tychonoff and many other well-known mathematicians have left their mark in the history of
topology. In [10], one can find many more details about the history of general topology.

General topology is interested in the geometric properties of an object (set) while neglecting the notion
of the distance between the points (elements) of this object (set). We know the famous example of the
cup which is continuously deformed into a torus while keeping the same topology of this object. This
explains well what the topology of a set is about. Therefore, the continuous deformations of an object
preserve the topology in the event of absence of uprooting or reattachment.

The idea for this paper comes from the observation in this last example. When building a cup, one
can start with a ball of clay which is provided, of course, with a different topology than the final result
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which is the cup. Also, during the construction the cup can suffer work accidents which can tear or pierce
it, that is to say, there is a change in the topology of this object over time. It can therefore be seen that the
topology of the object changes over time. This is from where the idea of studying topologies on a set over
time comes.

Studying the change of topology over time helps us to improve the application of topology theory in
physical phenomena encountered in nature which are of course (naturally) time-related. This topology
(which varies over time) on a non-empty set Xwill be represented by an application ϕ of R+ with value in
P (P(X)), which will be called a temporal topology on X and (X,ϕ) will be said as a temporal topological
space.

We draw the reader’s attention to topological frames had been applied by many authors to ad-
dress real-life problems. This matter can be noted in the published monographs, for more details, see
[2, 4, 13, 15, 18–20]. It is well-known that some authors proposed expanding topological spaces for dif-
ferent purposes, theoretical and applied. These extensions had been exploited to handle some practical
issues, for example, supra topology [7, 14], infra topology [8] and minimal structures [12], which enhances
studying these structures and looking at master properties. Through the theoretical context, it was pro-
posed novel criteria to produce separation axioms via topological spaces such as those defined in terms
of limit points [5] and maps [17].

The rest of the paper is organized as follows. In the second segment of this article, we will give the
basic definitions with some properties and characteristics. The third segment is interested in the axioms
of separations in temporal topological spaces. Finally, in the last segment, observing from the point of
view of category theory, we will present the collection of all temporal topological spaces, which satisfy
the T0 separation axioms as a reflective subcategory of the category of all temporal topological spaces. In
closing, we outline the main contributions and indicate some possible directions for future work.

2. Main concepts via temporal topologies

In this segment, we will introduce the basic definitions of the temporal topology as well as generaliza-
tions of certain notions and properties known in the general topology and that we will use it thereafter.

Definition 2.1. Let X be a nonempty set and ϕ a map from R+ into P (P(X)). Then, ϕ will be called a
temporal topology on X if we have ϕ(t) defines a topology on X for every t ∈ R+. That is, for every
t ∈ R+, we have:

• ∅,X ∈ ϕ(t);

• U,V ∈ ϕ(t) implies U∩ V ∈ ϕ(t);

• if (Ui)i∈I is an collection of elements of ϕ(t), then
⋃
i∈IUi ∈ ϕ(t).

In this case, (X,ϕ) is said to be a temporal topological space.

Example 2.2. Let X be a nonempty set and ϕ : R+ → P (P(X)) such that for every n ∈ N and every non
negative real number t we have:

ϕ(t) = {∅,X} if t ∈ [2n, 2n+ 1[, ϕ(t) = P(X) if t ∈ [2n− 1, 2n[.

Then, clearly (X,ϕ) is a temporal topological space.

Remark 2.3. A (classical) topological space (X, τ) could be seen as a (stationary) temporal topological space,
it is sufficient to take ϕ(t) = τ for every t ∈ R+.

Definition 2.4. Let (X,ϕ) be a temporal topological space and A be a subset of X. Then, A is said to be:

(i) a stationary open set, for short an s-open, if A ∈ ϕ(t) for all t ∈ R+;
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(ii) a quasi-open set, for short a q-open, if there exists t ∈ R+ satisfying A ∈ ϕ(t);
(iii) a stationary closed set, for short an s-closed, if its complement is s-open;
(iv) a quasi-closed set, for short a q-closed, if its complement is q-open.

Remark 2.5. Let (X,ϕ) be a temporal topological space. Then,

(i) it is clear that the collection of all s-open sets defines a topology on X;
(ii) in general, the collection of all q-open sets does not define a topology on X;

(iii) an s-open (resp. s-closed) is q-open (resp. q-closed);
(iv) a q-open (resp. q-closed) could be not s-open (resp. s-closed).

Notation 2.6. Let (X,ϕ) be a temporal topological space.

(i) SO(X,ϕ) (if not confusion, SO(X)) denotes the collection of all s-open sets.
(ii) QO(X,ϕ) (if not confusion, QO(X)) denotes the collection of all q-open sets.

(iii) SF(X,ϕ) (if not confusion, SF(X)) denotes the collection of all s-closed sets.
(iv) QF(X,ϕ) (if not confusion, QF(X)) denotes the collection of all q-closed sets.

Example 2.7. Let X = {a,b, c,d} and ϕ : R+ → P (P(X)) defined by

ϕ(0) = {∅,X, {a,b}}, ϕ(1) = {∅,X, {b, c}}, and ϕ(t) = {∅,X}, when t ∈ R+ \ {0, 1}.

Then, we have

• SO(X) = {∅,X};

• QO(X) = {∅,X, {a,b}, {b, c}};

• SF(X) = {∅,X};

• QF(X) = {∅,X, {c,d}, {a,d}}.

It is clear that QO(X) does not define a topology on X.

Remark that QO(X) produces a minimal structure on X, in general.

Definition 2.8. Let (X,ϕ) be a temporal topological space and A a subset of X. Then

(i) AS =
⋃
{G ∈ SO(X) : G ⊆ A};

(ii) AQ =
⋃
{G ∈ QO(X) : G ⊆ A};

(iii) ∀t ∈ R+, At =
⋃
{G ∈ ϕ(t) : G ⊆ A}.

Definition 2.9. Let (X,ϕ) be a temporal topological space and A a subset of X. Then

(i) AS =
⋂
{F ⊆ X : A ⊆ F ∈ SF(X)};

(ii) AQ =
⋂
{F ⊆ X : A ⊆ F ∈ QF(X)};

(iii) ∀t ∈ R+, At =
⋂
{F ⊆ X : A ⊆ F ∈ ϕ(t)}.

One can see that AS and A
S are respectively the interior and closure of A in a topological space

(X, SO(X)) and At and At are respectively the interior and closure of A in a topological space (X,ϕ(t)).
The following example points out how these operators are calculated.

Example 2.10. We take the same temporal topological space built in Example 2.7. If A = {a,b,d} and
B = {d}, then

(i) AS = ∅ and BS = X;
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(ii) AQ = {a,b} and BQ = B;

(iii) A0 = {a,b} and B0
= {c,d};

(iv) A1 = ∅ and B1
= {a,d}.

We can see that BQ is not q-closed.

Proposition 2.11. Let A be a subset of a temporal topological space (X,ϕ). Then,

(i) A is s-open iff A = AS;

(ii) A is s-closed iff A = A
S;

(iii) if A is q-open, then A = AQ;

(iv) if A is q-closed, then A = A
Q.

Proof. Straightforward.

The converse of (iii) and (iv) of Proposition 2.11 need not be true as illustrated by the next example.

Example 2.12. Let X = {a,b, c,d} and ϕ : R+ → P (P(X)) defined by

ϕ(0) = {∅,X, {a}}, ϕ(1) = {∅,X, {b}}, and ϕ(t) = {∅,X}, when t ∈ R+ \ {0, 1}.

By taking A = {a,b} and B = {c,d} as subsets of X, we find AQ = A and BQ = B. But A is neither q-open
nor B is q-closed.

Proposition 2.13. Let A be a subset of a temporal topological space (X,ϕ). Then, x ∈ AS (resp., x ∈ AQ) iff
A∩G 6= ∅ for every s-open (resp., q-open) set G containing x.

Proof.

Necessity: Let x ∈ AS and let G be an s-open set such that x ∈ G. Suppose that G ∩A = ∅. Accordingly,
we have A ⊆ Gc. This leads to that AS ⊆ GcS = Gc. But this contradicts that x ∈ AS. Hence, A∩G 6= ∅.

Sufficiency: Let the sufficient part be holds. Suppose, to the contrary, that x 6∈ AS. This means we can
find an s-closed set H containing A such that x 6∈ H. Accordingly, we have Hc as an s-open set containing
x and its intersection with A is the empty set. This is a contradiction. This finishes the proof that x ∈ AS.

The case between brackets can be proved in a similar way.

Definition 2.14. Let (X,ϕ), (Y,ψ) be two temporal topological spaces and f a map from X to Y. Then, f is
said to be s-continuous (resp. q-continuous) if the inverse image, by f, of every element of SO(Y) (resp.
QO(Y)) is an element of SO(X) (resp. QO(X)).

Remark 2.15. s-continuous does not imply q-continuous and q-continuous does not imply s-continuous.
That is, these types of continuity are independent of each other. The next examples are provided to clarify
this fact.

Example 2.16. Let X = {a,b, c} and ϕ : R+ → P (P(X)) be defined as given in Example 2.7. If we define
the map f from (X,ϕ) into itself by

f(a) = f(c) = a and f(b) = c,

then we get f is s-continuous but not q-continuous.
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Example 2.17. Let X = {a,b, c} and ψ : R+ → P (P(X)) defined by

ψ(0) = {∅,X, {b}, {a,b}}, ψ(1) = {∅,X, {b}, {b, c}}, and ψ(t) = {∅, {b},X}, and t ∈ R+ \ {0, 1}.

We define the map f from (X,ψ) into itself by

f(a) = f(b) = b and f(c) = c,

then we obtain f is q-continuous but not s-continuous.

The decomposition theorem for these continuity is given in the following.

Proposition 2.18. Let (X1,ϕ1), (X2,ϕ2), (X3,ϕ3) be three temporal topological spaces and f : (X1,ϕ1) −→
(X2,ϕ2), g : (X2,ϕ2) −→ (X3,ϕ3) two maps. Then, if f,g are s-continuous (resp. q-continuous), then g ◦ f is
also s-continuous (resp. q-continuous).

Proof. Obvious.

Lemma 2.19. Let A be a subset of a temporal topological space (X,ϕ). Then,

(i) AS = Ac
S and AS = AcS;

(ii) AQ = Ac
Q and AQ = AcQ.

Proof. The proof of AS = Ac
S is given as

AS = ∪{G ∈ SO(X) : G ⊆ A} = ∩{Gc ∈ SF(X) : Ac ⊆ Gc} = AcS.

The other cases are proved following similar technique.

Theorem 2.20. Let f : (X,ϕ1) −→ (Y,ϕ2) be a map such that A and B are subsets of X and Y, respectively. Then
the following properties are equivalent:

(i) f is s-continuous;
(ii) the inverse image of each element of SF(Y) is an element of SF(X);

(iii) f−1(B)
S
⊆ f−1(B

S
);

(iv) f(AS) ⊆ f(A)S; and
(v) f−1(BS) ⊆ f−1(B)

S
.

Proof.

(i)⇒(ii): Let B be an element of SF(Y). Then Bc is element of SO(Y). By hypothesis, f−1(Bc) = (f−1(B))c

is an element of SF(X), which automatically means that f−1(B) is element of SO(X).

(ii)⇒(iii): For any subset B of Y, we have that BS is an s-closed subset. Since f−1(B
S
) is an element of

SF(X), f−1(B)
S
⊆ f−1(B

S
)
S

= f−1(B
S
).

(iii)⇒(iv): Let A be a subset of X. Then AS ⊆ f−1(f(A)
S
⊆ f−1(f(A)

S
). Therefore, f(AS) ⊆ f(f−1(f(A)

S
) ⊆

f(A)
S

.

(iv)⇒(v): Let B be a subset of Y. By Lemma 2.19, we obtain that f(X− (f−1(B))
S
) = f(((f−1(B))c)

S
).

By (iv), f(((f−1(B))c)
S
) ⊆ f(f−1(B))c

S
= f(f−1(Bc))

S
⊆ Y −B

S
= Y − BS. Therefore X− (f−1(B))

S
⊆

f−1(Y −BS) = X− f−1(BS). Thus f−1(BS) ⊆ f−1(B)
S

.

(v)⇒(i): Take B as an s-open subset of Y. Then f−1(B) = f−1(BS) ⊆ f−1(B)
S

. Since f−1(B) is s-open,
f−1(B)

S
⊆ f−1(B). Therefore, f−1(B) is an s-open subset of X. Thus, f is s-continuous, as required.
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It is easy to show the next result, so we omit the proof.

Theorem 2.21. Let f : (X,ϕ1) −→ (Y,ϕ2) be a map such that A and B are subsets of X and Y, respectively. Then,
f is q-continuous iff the inverse image of each element of QF(Y) is an element of QF(X).

By the next example, we confirm that the following conditions do not guarantee q-continuity for a
map f : (X,ϕ1) −→ (Y,ϕ2), where A and B are subsets of X and Y, respectively.

(i) f−1(B)
Q
⊆ f−1(B

Q
);

(ii) f(AQ) ⊆ f(A)Q; and
(iii) f−1(BQ) ⊆ f−1(B)

Q
.

Example 2.22. Let X = {x,y, z}, Y = {a,b, c,d}. Let ϕ : R+ → P (P(X)) and ψ : R+ → P (P(Y)) be defined
by

ϕ(0) = {∅,X, {x}}, ϕ(1) = {∅,X, {y}}, and ϕ(t) = {∅,X}, when t ∈ R+ \ {0, 1},
ψ(0) = {∅, Y, {a}}, ψ(1) = {∅, Y, {c}}, ψ(2) = {∅, Y, {d}}, and ψ(t) = {∅, Y}, when t ∈ R+ \ {0, 1, 2}.

We define the map f from (X,ϕ) into (Y,ψ) by f(x) = a, f(y) = b, and f(z) = c, then we obtain f is

q-continuous. By taking B = {b} as a subset of Y, we find f−1(B)
Q

= f−1({b})
Q

= {y}
Q

= {y, z}, whereas
f−1(B

Q
) = f−1({b}) = {y}. Also, if we take B = {c}, we obtain f−1(BQ) = {z}, whereas f−1(B)

Q
= ∅.

3. Separation axioms in temporal topological spaces

In this part we are interested in the notion of separation axioms in temporal topological spaces. Sep-
aration axioms is a field of work for many mathematicians such as Hausdorff, Kolmogorov, Frechet,
Tychonoff, and many others.

Here, we will generalize the classical separation axioms T0, T1, T2 to temporal topological spaces and
we will study their properties and the relationships between them.

Definition 3.1. Let (X,ϕ) be a temporal topological space. Then, we say that (X,ϕ) is a

1. temporal T0S-space if ∀x 6= y ∈ X, ∃ O ∈ SO(X) such that |{x,y}∩O| = 1;
2. temporal T0Q-space if ∀x 6= y ∈ X, ∃ O ∈ QO(X) such that |{x,y}∩O| = 1;
3. temporal T0I-space if ∀t ∈ R+, (X,ϕ(t)) is a classical T0-space;
4. temporal T0P-space if ∃t ∈ R+, (X,ϕ(t)) is a classical T0-space.

As we have seen previously that a topological space (X, τ) can be considered as a temporal topological
space by taking ϕ(t) = τ for any non negative real number t, we can see that all the previous definitions
coincide with the definition of Kolmogorv spaces when we delete the factor time.

Proposition 3.2. The following implication holds: T0S =⇒ T0I =⇒ T0P =⇒ T0Q.

Proof. It is straightforward.

Example below shows that all implications in Proposition 3.2 are not equivalent.

Example 3.3.

1. Let X = {a,b, c} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = {∅,X, {a,b}, {c}}, ϕ(1) = {∅,X, {b, c}, {a}},
and ϕ(t) = {∅,X} if t /∈ {0, 1}. Then, (X,ϕ) is a temporal T0Q-space but it is not a temporal T0P-space.

2. Let X = {a,b, c} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = P(X), and ϕ(t) = {∅,X} if t 6= 0. Then,
(X,ϕ) is a temporal T0P-space but it is not a temporal T0I-space.
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3. Let X = {a,b, c} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = {∅,X, {a,b}, {a}}, ϕ(1) = {∅,X, {b, c}, {c}},
and ϕ(t) = P(X) if t /∈ {0, 1}. Then, (X,ϕ) is a temporal T0I-space but it is not a temporal T0S-space.

Proposition 3.4. Let (X,ϕ) be a temporal topological space. Then, the following assertions are equivalent:

1. (X,ϕ) is a temporal T0S-space;

2. if {x}
S
= {y}

S
, then x = y.

Proof.

1→ 2: Let x 6= y ∈ X. Then, there exists O ∈ SO(X) such that |{x,y}∩O| = 1. Without loss of generality,

take x ∈ O. This implies that x 6∈ {y}
S

. In contrast, y ∈ {y}
S

. This unmistakably leads to that {x}
S 6= {y}

S
.

Hence, {x}
S
= {y}

S
implies x = y.

2→ 1: Let x 6= y ∈ X. By hypothesis, {x}
S 6= {y}

S
. Then there is z ∈ X such that z ∈ {x}

S
and z 6∈ {y}

S
,

or z 6∈ {x}
S

and z ∈ {y}
S

. Say, z ∈ {x}
S

and z 6∈ {y}
S

. This implies that there is O ∈ SO(X) containing z
such that O ∩ {y} = ∅ and O ∩ {x} = {x}. Hence, |{x,y}∩O| = 1, which proves that (X,ϕ) is a temporal
T0S-space.

Following similar arguments displayed in the proof of Proposition 3.4, the next propositions are
proved.

Proposition 3.5. Let (X,ϕ) be a temporal topological space. Then, the following assertions are equivalent:

1. (X,ϕ) is a temporal T0Q-space;

2. if {x}
Q

= {y}
Q

, then x = y.

Proposition 3.6. Let (X,ϕ) be a temporal topological space. Then,

1. (X,ϕ) is a temporal T0P-space iff {x}
t
= {y}

t
implies x = y for some t ∈ R;

2. (X,ϕ) is a temporal T0I-space iff {x}
t
= {y}

t
implies x = y for every t ∈ R.

Definition 3.7. Let (X,ϕ) be a temporal topological space. Then, we say that (X,ϕ) is a

1. temporal T1S-space if ∀x 6= y ∈ X, ∃ O ∈ SO(X) such that {x,y}∩O = {x};
2. temporal T1Q-space if ∀x 6= y ∈ X, ∃ O ∈ QO(X) such that {x,y}∩O = {x};
3. temporal T1I-space if ∀t ∈ R+, (X,ϕ(t)) is a classical T1-space;
4. temporal T1P-space if ∃t ∈ R+, (X,ϕ(t)) is a classical T1-space.

Proposition 3.8. The following implication holds: T1S =⇒ T1I =⇒ T1P =⇒ T1Q.

Proof. It is straightforward.

Example below elucidates that all implications in Proposition 3.8 cannot be converse.

Example 3.9.

1. Let X = {a,b} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = {∅,X, {a}}, ϕ(1) = {∅,X, {b}}, and ϕ(t) =
{∅,X} if t /∈ {0, 1}. Then, (X,ϕ) is a temporal T1Q-space but it is not a temporal T1P-space.

2. Lat X = {a,b, c} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = P(X) and ϕ(t) = {∅,X} if t 6= 0. Then,
(X,ϕ) is a temporal T1P-space but it is not a temporal T1I-space.

3. Let X = N, τ = {∅, N, {0}, {1}} ∪ {A ∪ {0, 1} : A ⊆ N} and τco is the co-finite topology of N. We
take also ϕ : R+ −→ P (P(X)) defined by ϕ(0) = τ, ϕ(1) = τco, and ϕ(t) = P(X) if t /∈ {0, 1}. Since
SO(N) = {∅}∪ {A∪ {0, 1} such that Ac is finite}, we cannot separate 0 and 1 by s-open sets and then
(X,ϕ) is a temporal T1I-space but it is not a temporal T1S-space.
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Proposition 3.10. If X is finite, then we have equivalence between T1S and T1I.

Proof. Obviously we have T1S implies T1I. Conversely, since X is finite, (X,ϕ(t)) is a classical T1-space
implies that ϕ(t) is the discreet topology on X, which signify that SO(X) = P(X). Thus X is a temporal
T1S-space.

Proposition 3.11. Let (X,ϕ) be a temporal topological space. Then, we have

1. (X,ϕ) is a temporal T1P-space if and only if ∃t ∈ R+ such that {x}
t
= {x}, ∀x ∈ X;

2. (X,ϕ) is a temporal T1I-space if and only if {x}
t
= {x} ∀x ∈ X, ∀t ∈ R+;

3. (X,ϕ) is a temporal T1S-space if and only if {x}
S
= {x}, ∀x ∈ X;

4. (X,ϕ) is a temporal T1Q-space if and only if {x}
Q

= {x}, ∀x ∈ X.

Proof. The proof of the first three items could be deduced directly from the fact that a classical topological
space is a T1-space if and only if singletons are closed.

4. Suppose that (X,ϕ) is a temporal T1Q-space. Let x ∈ X and x 6= y ∈ X. Then, since (X,ϕ) is a temporal

T1Q-space, there existsO ∈ QO(X) such that y ∈ O and x ∈ Oc ∈ QF(X). So that, {x}
Q ⊆ Oc, which implies

that y /∈ {x}
Q

and we deduce that {x}
Q

= {x}. Conversely, {x}
Q

= {x} and y 6= x implies the existence of
O ∈ QO(X), which contains x and does not contain y. Thus, (X,ϕ) is a temporal T1Q-space.

Definition 3.12. Let (X,ϕ) be a temporal topological space. Then, we say that (X,ϕ) is a

1. temporal T2S-space if ∀x 6= y ∈ X, ∃ O1,O2 ∈ SO(X) such that O1 ∩O2 = ∅, x ∈ O1, and y ∈ O2;
2. temporal T2Q-space if ∀x 6= y ∈ X, ∃ O1,O2 ∈ QO(X) such that O1 ∩O2 = ∅, x ∈ O1, and y ∈ O2;
3. temporal T2I-space if ∀t ∈ R+, (X,ϕ(t)) is a classical T2-space;
4. temporal T2P-space if ∃t ∈ R+, (X,ϕ(t)) is a classical T2-space.

Proposition 3.13. The following implication holds: T2S =⇒ T2I =⇒ T2P =⇒ T2Q.

Proof. It is straightforward.

By the next example, it is illustrated that all implications in Proposition 3.13 cannot be reversed.

Example 3.14.

1. Let X = {a,b} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = {∅,X, {a}}, ϕ(1) = {∅,X, {b}}, and ϕ(t) =
{∅,X} if t /∈ {0, 1}. Then, (X,ϕ) is a temporal T2Q-space but it is not a temporal T2P-space.

2. Let X = {a,b, c} and ϕ : R+ −→ P (P(X)) defined by ϕ(0) = P(X), and ϕ(t) = {∅,X} if t 6= 0. Then,
(X,ϕ) is a temporal T2P-space but it is not a temporal T2I-space.

3. Let X = {(a,b) ∈ R : b > 0} and τ1, τ2 the two topologies defined on X by:

• τ1 is the subspace topology induced on X by the product topology τu × τu on R2, where τu
denotes the standard topology on R.

• τ2 is the topology X defined by its basis which contains all open discs contained in X and all
sets of the form Ua,r = B((a, 0), r)∩X \ {(x, 0) : x ∈]a− r,a+ r[\{a}} such that r ∈ R∗+.

We take also ϕ : R+ −→ P (P(X)) defined by ϕ(0) = τ1, ϕ(1) = τ2 and ϕ(t) = P(X) if t /∈ {0, 1}. In
this case, the nontrivial elements of SO(X) are all open discs contained in X then we can not separate
two distinct points of the form (y, 0) using s-open sets. So that (X,ϕ) is a temporal T2Q-space, a
temporal T2P-space and a temporal T2I-space but it is not a temporal T2S-space.

Definition 3.15. Let (X,ϕ) be a temporal topological space. A subset A of X is said to be an s-neighbo-
urhood (resp., a q-neighbourhood) of x ∈ X providing that there is an s-open (resp., a q-open) set G such
that x ∈ G ⊆ A.
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Proposition 3.16. Let (X,ϕ) be a temporal topological space. Then, we have

1. (X,ϕ) is a temporal T2P-space if and only if ∃t ∈ R+ such that {x} = ∩{H : H where H is a closed
neighbourhood in ϕ(t) of x}, ∀x ∈ X;

2. (X,ϕ) is a temporal T2I-space if and only if {x} = ∩{H : H where H is a closed neighbourhood of x}, ∀x ∈
X, ∀t ∈ R+;

3. (X,ϕ) is a temporal T2S-space if and only if {x} = ∩{H : H where H is an s-closed neighbourhood of x}, ∀x ∈
X;

4. (X,ϕ) is a temporal T2Q-space if and only if {x} = ∩{H : H where H is a q-closed neighbourhood of x}, ∀x ∈
X.

Proof. For the sake of abbreviating, we only prove (4).

⇒ Suppose that (X,ϕ) is a temporal T2Q-space. Let x ∈ X and x 6= y ∈ X. Then, since (X,ϕ) is a temporal
T2Q-space, there exists disjoint q-open sets O1 and O2 containing x and y, respectively. This implies that
x ∈ O1 ⊆ O1

Q ⊆ Oc2
Q

= Oc2 . That is, Oc2 is a closed q-neighbourhood of x. So that {x} = ∩{H : H where H
is a q-closed neighbourhood of x}, ∀x ∈ X.

⇐ Let x 6= y ∈ X. Then, by hypothesis, there is a q-closed neighbourhood H of x such that y 6∈ H. So,
there is a q-open set G such that x ∈ G ⊆ H. Now, remark that Hc and G are q-open sets containing y
and x, respectively. Hence, (X,ϕ) is a temporal T2Q-space.

Proposition 3.17. Let (X,ϕ) be a temporal topological space. Then, the following implications hold:

T2S =⇒ T2I =⇒ T2P =⇒ T2Qw� w� w� w�
T1S =⇒ T1I =⇒ T1P =⇒ T1Qw� w� w� w�
T0S =⇒ T0I =⇒ T0P =⇒ T0Q

Examples 3.3, 3.9, and 3.14 show that all horizontal implications are not equivalent. Also, vertical
implications are not equivalent from classical topology. It suffices to take the same classical counter-
examples such as the Seirpinski space, which is a Kolmogorov space and not a Frechet space and the
co-finite topology on infinite set, which gives a Frechet topological space which is not Hausdorff.

We close this section by the next result which points out that the previous temporal spaces are topo-
logical properties with respect to s-continuous and q-continuous maps.

Proposition 3.18. Let f : (X,ϕ) −→ (Y,ψ) be an injective s-continuous (resp., injective q-continuous) map. If
(Y,ψ) is temporal TjS (resp., temporal TjQ), then (X,ϕ) is temporal TjS (resp., temporal TjQ).

4. Temporal T0Q-spaces in the category of temporal topological spaces

On one hand, the collection of all temporal topological spaces forms the objects of a category denoted
by TTop in which q-continuous maps are the arrows. On the other hand, the collection of all T0Q-space
regarded as a full subcategory of TTop that we will denote it by TTop0Q. The goal of this segment is the
study of the reflectivity of TTop0Q in TTop.

By Maclane [16], to show that the full subcategory TTop0Q is reflective in the category TTop, it will be
sufficient to prove that for every object (X,ϕ) in TTop, there exists an object (T0Q(X), ϕ̃) in TTop0Q and
an arrow µX from (X,ϕ) to (T0Q(X), ϕ̃) in TTop such that for each object (Y,ψ) in TTop0Q and each arrow
f : (X,ϕ) −→ (Y,ψ) in TTop, there exists a unique arrow f̃ from (T0Q(X), ϕ̃) to (Y,ψ) in TTop0Q rended
commutative the following diagram:
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(X,ϕ)
`

µX //
(
T0Q(X), ϕ̃

)
f̃xxrrr

rrr
rrr

r

(Y,ψ)
##f

HHHHHHHHH

Let (X,ϕ) be a temporal topological space. We define on X the binary relation ∼ by

x ∼ y if and only if {x}
Q

= {y}
Q

.

It is clear that ∼ is an equivalence relation. We denote the quotient set by X/ ∼ and we denote the
canonical surjection from X to X/ ∼ (s.t. µX(x) = x̄ for every x ∈ X) by µX. We also define the map ϕ̃ by
ϕ̃(t) =

{
A ⊆ X/ ∼ | µ−1

X (A) ∈ ϕ(t)
}

for every non negative real number t.
It is obvious to see that (X/ ∼, ϕ̃) is a temporal topological space.

Proposition 4.1. µX is q-continuous and s-continuous.

Proof. It is sufficient to see that for each A ∈ ϕ̃(t), then, by definition of ϕ̃, we have µ−1
X (A) ∈ ϕ(t).

Lemma 4.2. If A ∈ OQ(X), then µX(A) ∈ OQ(X/ ∼).

Proof. It will be clear if we use the fact µ−1
X (µX(A)) = A.

Proposition 4.3. (X/ ∼, ϕ̃) is a temporal T0Q-space.

Proof. Let x 6= y ∈ X/ ∼ . Then, {x}
Q 6= {y}

Q
. So, there exists A ∈ OQ(X) such that A ∩ {x,y} ∈ {{x}, {y}}.

Now, using the preceding lemma, we can see that µX(A) ∈ OQ(X/ ∼) and µX(A)∩ {x,y} ∈ {{x}, {y}}, which
completes the proof.

Theorem 4.4. TTop0Q is reflective in TTop.

Proof. We have to prove that (X/ ∼, ϕ̃) is the reflection of (X,ϕ) in the subcategory TTop0Q. Using
Propositions 4.1 and 4.3, we see that (X/ ∼, ϕ̃) represents an object of TTop0Q and the map µX is an arrow
in TTop. Let (Y,ψ) be a temporal T0Q-space and f : (X,ϕ) −→ (Y,ψ) a q-continuous map. Then, we
have to find the unique map f̃ : (X/ ∼, ϕ̃) −→ (Y,ψ), which is q-continuous and rended commutative the
following diagram:

(X,ϕ)
`

µX // (X/ ∼, ϕ̃)

f̃yysss
sss

sss
s

(Y,ψ)
$$f

IIIIIIIII

The map f̃ must satisfies f̃(x̄) = f(x) for each x ∈ X, which implies directly the uniqueness (if there exists).
Now, we should prove that f̃ is well defined and q-continuous.

f̃ is well defined: By contradiction suppose that x̄ = ȳ ∈ X/ ∼ and f(x) 6= f(y). Since (Y,ψ) is a temporal
T0Q-space, then there existsO ∈ QO(Y) such that |O∩ {f(x), f(y)}| = 1. Using the fact that f is q-continuous,
we deduce that f−1(O) ∈ QO(X) and |f−1(O) ∩ {x,y}| = 1. So that {x} 6= {y}, which gives a contradiction
with x̄ = ȳ. Finally, x̄ = ȳ implies f(x) = f(y) and then f̃ is well defined.

f̃ is q-continuous: Let O ∈ QO(Y). We have µ−1
X

(
f̃−1(O)

)
= (f̃ ◦ µX)−1(O) = f−1(O). Since f is q-

continuous, then f−1(O) ∈ QO(X), which proves that f̃−1(O) ∈ QO(X/ ∼). Therefor f̃ is q-continuous.

Conclusion: (X/ ∼, ϕ̃) is the T0Q-reflection T0Q of (X,ϕ) and then TTop0Q is a reflective subcategory of
TTop.
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5. Conclusion and upcoming work

In the presented article we have introduced a new formulation to define a topology namely, “temporal
topology”. This formula produces topological structures that vary over time, which opens a door to
apply topologies in phenomena encountered in nature that are of course (naturally) time-related. As we
have suggested the set of time (domain) is the positive real numbers with zero; however, one can deal
with subsets of this domain by taking into account the topologies produced outside these subsets are
the discrete or indiscrete topologies. The choice of these topologies discrete or indiscrete is based on the
nature of phenomena (or problems) under study.

At first, we have exhibited the main notions of temporal topological spaces, for example, we have
presented four versions of interior and closure operators. Then, we have debated two types of continuity
and concluded some of their descriptions. After that, we have provided four versions for each classical
Ti-space when i = 0, 1, 2 and revealed the relationships between them with the aid of some illustrative
counterexamples. Ultimately, we have studied subcategory of temporal T0Q-spaces and proved that it is
reflective.

Last but not least, the new temporal topology deserves further and deeper investigation. Especially
interesting in this context there will be the analysis of the topological properties of those structures
or their generalizations. So we plan to familiarize other topological concepts such as regularity and
normality, covering properties, connectedness, etc. Moreover, we shall study the ideas displayed herein
in the structures of temporal infra-topological and temporal supra-topological spaces following approach
documented in [1, 3, 6, 9, 11].
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