J. Math. Computer Sci., 34 (2024), 191-204

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Check for updates

Journal Homepage: www.isr-publications.com/jmcs

New results on the oscillation of second-order damped neutral differential equations with several sub-linear neutral terms

A. A. El-Gaber^{a,*}, E. I. El-Saedy^a, M. M. A. El-Sheikh^a, S. A. A. El-Marouf^{a,b}

^aDepartment of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt. ^bDepartment of Mathematics, Faculty of Science, Taibah University, Saudi Arabia.

Abstract

In this paper, we establish some new sufficient conditions which guarantee the oscillatory behavior of solutions of a class of second-order damped neutral differential equations with sub-linear neutral terms. Our criteria improve and complement related results in the literature. Two examples are given to justify our main results.

Keywords: Oscillation, second order damped differential equations, neutral differential equations, sub-linear neutral terms. **2020 MSC:** 34K11, 34C10.

©2024 All rights reserved.

1. Introduction

This article is devoted to studying the oscillatory behavior of solutions of a class of second-order damped neutral differential equations of the type

$$\left(a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)' + h\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma} + f\left(t, y\left(\varphi\left(t\right)\right)\right) = 0, \ t \ge t_0 > 0, \tag{1.1}$$

where $\varpi(t) = y(t) + \sum_{i=1}^{m} c_i(t) y^{\alpha_i}(v_i(t))$, m > 0 is an integer. Throughout the paper, we use the following assumptions:

(A₁) $0 < \alpha_i \leq 1$ for i = 1, 2, ..., m, and γ are the ratios of odd positive integers;

- (A₂) $a, h, c_i : [t_0, \infty) \to \mathbb{R}^+$ are continuous functions and $\lim_{t \to \infty} c_i(t) = 0$ for i = 1, 2, ..., m;
- $\begin{array}{l} \textbf{(A_3)} \ \nu_i, \phi: [t_0, \infty) \rightarrow \mathbb{R} \text{ are continuous functions with } \nu_i \left(t \right) < t, \phi \left(t \right) \leqslant t, \phi' \left(t \right) > 0 \text{ and } \nu_i \left(t \right), \phi \left(t \right) \rightarrow \infty \text{ as } t \rightarrow \infty \text{ for } i = 1, 2, \ldots, m; \end{array}$
- (A₄) $f(t, y) \in C([t_0, \infty) \times \mathbb{R}, \mathbb{R})$, and there exists a function $g(t) \in C([t_0, \infty), (0, \infty))$ such that $f(t, y) / y^{\beta} \ge g(t)$ where β is a ratio of odd positive integers.

*Corresponding author

doi: 10.22436/jmcs.034.02.08

Received: 2023-09-17 Revised: 2023-11-27 Accepted: 2024-01-29

Email address: amina.aboalnour@science.menofia.edu.eg (A. A. El-Gaber)

We will be concerned in this work with nontrivial solutions satisfying $\sup \{y(t) : t \ge T \ge t_y\} > 0$. We mean by an oscillatory solution that nontrivial one which has an infinite number of zeros in the half-line $[t_0, \infty)$. Meanwhile we say that equation (1.1) is oscillatory if all its solutions are oscillatory.

In dynamical models, delay and oscillation effects are often formulated by means of external sources and/or nonlinear diffusion, perturbing the natural evolution of related systems; see, e.g., [23, 24, 33]. Recently, there has been considerable interest in the study of the oscillation of second-order damped equations because of their numerous applications in the fields of science, engineering, and technology, etc (see [1, 6, 8, 9, 14–16, 31, 35–37]), and it has been studied extensively, see for instance [25, 28, 30] and the references cited therein. To the best of our knowledge, we note that most of the results obtained in the literature have been centered around the special un-damped case of Eq. (1.1), i.e., when h(t) = 0 (see [2, 3, 5, 7, 11, 13, 18, 21, 22, 26, 27, 29, 32, 34, 38, 40–42]). Moreover, there are relatively few results dealing with the oscillation of second order differential equations with sub-linear neutral terms (see [2, 4, 10–12]). Here, we mention some recent works which were concerned with some special cases of (1.1), and motivated this work.

Grammatikopoulos et al. [18] deduced that all solutions of the equation

$$(y(t) + b(t)y(t - \tau))'' + g(t)y(t - \nu) = 0$$

are oscillatory if

$$\int_{t_{0}}^{\infty}g\left(s\right)\left(1-b\left(s-\nu\right)\right)ds=\infty.$$

In [17], Grace and Lalli were able to improve and extend the results of [18] to the more general equation

$$(a(t)(y(t) + b(t)y(t - \nu))')' + g(t)f(y(t - \nu)) = 0,$$
(1.2)

with

$$\frac{f(y)}{y} \geqslant k > 0 \text{ and } \int_{t_0}^{\infty} \frac{ds}{a(s)} = \infty$$

They proved that Eq. (1.2) is oscillatory if for some continuously differentiable function U(t), one has

$$\int_{t_0}^{\infty} \left(U(s) g(s) (1 - b(s - \nu)) - \frac{(U'(s))^2 a(s - \nu)}{4kU(s)} \right) ds = \infty$$

Agarwal et al. [3] and Baculíková et al. [5] discussed the second order nonlinear neutral differential equation

$$\left(a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)' + g\left(t\right)y^{\beta}\left(\varphi\left(t\right)\right) = 0, \tag{1.3}$$

where $\varpi(t) = y(t) + b(t)y(\nu(t))$ with $0 \le b(t) \le b_0 < \infty$ and γ, β are the ratios of two positive odd integers. Recently, Baculíková [4] and Džurina et al. [12] discussed the second order nonlinear differential equation (1.3) with $\gamma = 1$, and several sub-linear neutral terms, i.e., $\varpi(t) = y(t) + \sum_{i=1}^{m} c_i(t) y^{\alpha_i}(\nu_i(t)), m > 0$ is an integer, $0 < \alpha_i \le 1$ for i = 1, 2, ..., m and β are the ratios of odd positive integers, where the conditions (A₂) and (A₃) hold. Liu et al. [34] and Wu et al. [42] considered the generalized Emden-Fowler equation with neutral type delay of the form

$$\left(a\left(t\right)\left|\varpi'\left(t\right)\right|^{\gamma-1}\varpi'\left(t\right)\right)'+g\left(t\right)\left|y\left(\phi\left(t\right)\right)\right|^{\beta-1}y\left(\phi\left(t\right)\right)=0,$$

where $\varpi(t) = y(t) + b(t)y(\nu(t))$, $a'(t) \ge 0$, $\varphi'(t) > 0$ and $0 \le b(t) < 1$, $g(t) \ge 0$ in the two cases

$$\int_{t_0}^{\infty} \frac{\mathrm{d}t}{a^{\frac{1}{\gamma}}(t)} = \infty \tag{1.4}$$

and

$$\int_{t_0}^{\infty} \frac{\mathrm{d}t}{\mathrm{d}^{\frac{1}{\gamma}}(t)} < \infty.$$
(1.5)

The authors in [42] were able to discuss all the possible cases $\gamma > \beta$, $\gamma = \beta$, and $\gamma < \beta$, while those in [34] were concerned only with the case $\gamma \ge \beta > 0$. Meanwhile, Sallam et al. [38] and Wang et al. [40] studied the nonlinear second order neutral delay differential equation

$$\left(a\left(t\right)\left|\varpi'\left(t\right)\right|^{\gamma-1}\varpi'\left(t\right)\right)' + f\left(t, y\left(\varphi\left(t\right)\right)\right) = 0.$$
(1.6)

In [38], the authors studied Eq. (1.6) when $\varpi(t) = y(t) \pm b(t) y(\nu(t))$, $a(t) > 0, 0 \le b(t) \le 1, \gamma$ is a positive constant and the condition (A₄) is satisfied in all the three possible cases $\gamma > \beta, \gamma = \beta, \gamma < \beta$ and in the two cases (1.4) and (1.5), while the authors in [40] studied Eq. (1.6) when $\varpi(t) = y(t) + b(t) y(\nu(t))$ with γ is a positive constant and only with the condition (1.4) in the two cases $0 \le b(t) < 1$ and -1 < b(t) < 0, but they considered the condition (A₄) with β as a positive constant satisfying $1 < \beta \le \gamma$. On the other hand Eq. (1.1) can be considered as a natural generalization of the second order differential equation

$$(a(t)y'(t))' + h(t)y'(t) + g(t)f(y(t)) = 0,$$

which was studied by Agarwal et al. [1] and Rogovchenko et al. [35–37], under the conditions $a \in C^1([t_0,\infty),\mathbb{R})$, $h,g \in C(\mathbb{R},\mathbb{R})$, yf(y) > 0, and $f'(y) \ge k > 0$. Also Eq. (1.1) can be considered as a natural generalization of the second order differential equation studied by Fu et al. [15] of the form

$$\left(a\left(t\right)y'\left(t\right)\right)'+h\left(t\right)y'\left(t\right)+g\left(t\right)f\left(y\left(\nu\left(t\right)\right)\right)=0.$$

Meanwhile, Jadlovská [16] studied Eq. (1.1) with $f(t, y(\varphi(t))) = g(t) f(y(\varphi(t)))$, where $\varpi(t) = y(t) + b(t) y(\nu(t))$, $\gamma \ge 1$, is a quotient of positive odd integers, $0 \le b(t) \le 1$, a(t), $h(t) : [t_0, \infty) \to \mathbb{R}^+$ are continuous functions. They assumed that $f \in C(\mathbb{R}, \mathbb{R})$, with yf(y) > 0 and $\frac{f(y)}{y^{\beta}} \ge k > 0$ with $y \ne 0$, k is a constant and β is a ratio of odd positive integers. The aim of this paper is to complement and extend some of the results given in [12, 16, 34, 38, 40, 42], by using some elementary inequalities and Riccati substitution. In this paper, we cover all possible cases $\gamma > \beta$, $\gamma = \beta$, and $\gamma < \beta$. So we think that our results are of high generality.

2. Preliminaries

We consider the notation

$$\mathsf{E}(\mathsf{t}) = \exp\left(-\int_{\mathsf{t}_0}^{\mathsf{t}} \frac{\mathsf{h}(\mathsf{s})}{\mathsf{a}(\mathsf{s})} \mathsf{d}\mathsf{s}\right), \Pi(\mathsf{t}) = \int_{\mathsf{t}_1}^{\mathsf{t}} \left(\frac{\mathsf{E}(\mathsf{s})}{\mathsf{a}(\mathsf{s})}\right)^{\frac{1}{\gamma}} \mathsf{d}\mathsf{s}, \mathsf{t}_1 \ge \mathsf{t}_0 > 0.$$
(2.1)

We suppose that there exists a positive, continuous function $\rho : [t_0, \infty) \to \mathbb{R}^+$ decreasing to zero, and

$$\Psi(t) = 1 - \sum_{i=1}^{m} \alpha_i c_i(t) - \frac{1}{\rho(t)} \sum_{i=1}^{m} (1 - \alpha_i) c_i(t), \qquad (2.2)$$

such that $\Psi(\phi(t)) > 0$,

$$\Im(t) = \frac{\beta \varphi'(t) \left(\xi(\varphi(t))\right)^{\beta-1}}{M^{1-\frac{\beta}{\gamma}} a^{\frac{1}{\gamma}}(\varphi(t)) \chi(t)}, \quad \xi(t) = \int_{t_1}^t a^{-\frac{1}{\gamma}}(s) \, ds,$$
(2.3)

and

$$\Omega(t) = \frac{\chi'(t)}{\chi(t)} - \frac{h(t)}{a(t)},$$
(2.4)

where the parameter $\chi(t) \in C^{1}([t_{0}, \infty), \mathbb{R})$ will be determined later.

Lemma 2.1 ([20]). If r is nonnegative, then

$$\mathbf{r}^{\alpha} \leqslant \alpha \mathbf{r} + (1 - \alpha) \text{ for } 0 < \alpha \leqslant 1.$$
(2.5)

Lemma 2.2. Assume that

$$\int_{t_0}^{\infty} \left(\frac{\mathsf{E}(s)}{\mathfrak{a}(s)}\right)^{\frac{1}{\gamma}} \mathrm{d}s = \infty$$
(2.6)

holds, where E(t) is defined by (2.1). If there exists a positive solution y(t) of Eq. (1.1), then there exists $T \in [t_0, \infty)$, large enough, such that

- (i) $\varpi(t) > 0, \varpi'(t) > 0, and (\alpha(t)(\varpi'(t))^{\gamma})' < 0;$
- (ii) $\frac{\varpi(t)}{\Pi(t)}$ is decreasing.

Proof. Since y(t) is a positive solution of Eq. (1.1) on $[t_0, \infty)$, then by the assumption (A₃) there exists $t_1 \ge t_0$ such that $y(v_i(t)) > 0$ and $y(\phi(t)) > 0$ on $[t_1, \infty)$. Then $\varpi(t) \ge y(t) > 0$, for $t \ge t_1$. Thus in view of (1.1), we have

$$\left(\mathfrak{a}\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)'+\mathfrak{h}\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}=-f\left(t,y\left(\phi\left(t\right)\right)\right)\leqslant-g\left(t\right)y^{\beta}\left(\phi\left(t\right)\right)<0.$$

Therefore,

$$\left(\frac{a\left(t\right)}{E\left(t\right)}\left(\varpi'\left(t\right)\right)^{\gamma}\right)' = -\frac{f\left(t, y\left(\phi\left(t\right)\right)\right)}{E\left(t\right)} < 0.$$

Thus $\frac{a(t)}{E(t)} (\varpi'(t))^{\gamma}$ is decreasing. Now, to show that $\varpi'(t) > 0$ on $[t_1, \infty)$, suppose the contrary that there exists $t_2 \in [t_1, \infty)$ such that $\varpi'(t_2) < 0$. But since $\frac{a(t)}{E(t)} (\varpi'(t))^{\gamma}$ is decreasing, it follows for $t \ge t_2$, that

$$\frac{a\left(t\right)}{\mathsf{E}\left(t\right)}\left(\varpi'\left(t\right)\right)^{\gamma} < \frac{a\left(t_{2}\right)}{\mathsf{E}\left(t_{2}\right)}\left(\varpi'\left(t_{2}\right)\right)^{\gamma} = \mathfrak{l} < 0.$$

Thus it follows by integration from t_2 to t, that

$$\varpi\left(t\right) < \varpi\left(t_{2}\right) + l^{\frac{1}{\gamma}} \int_{t_{2}}^{t} \left(\frac{\mathsf{E}\left(s\right)}{a\left(s\right)}\right)^{\frac{1}{\gamma}} ds,$$

for $t \ge t_2$. This with (2.6), leads to $\lim_{t\to\infty} \varpi(t) = -\infty$, which contradicts the fact that $\varpi(t)$ is eventually positive. Therefore $\varpi'(t) > 0$. Moreover since from Eq. (1.1), we deduce that $(\alpha(t)(\varpi'(t))^{\gamma})' < 0$ and $\frac{\alpha(t)}{F(t)}(\varpi'(t))^{\gamma}$ is decreasing, then we have

$$\varpi\left(t\right) > \int_{t_{2}}^{t} \left(\frac{a\left(s\right)}{E\left(s\right)} \left(\varpi'\left(s\right)\right)^{\gamma} \frac{E\left(s\right)}{a\left(s\right)}\right)^{\frac{1}{\gamma}} ds > \left(\frac{a\left(t\right)}{E\left(t\right)} \left(\varpi'\left(t\right)\right)^{\gamma}\right)^{\frac{1}{\gamma}} \Pi\left(t\right),$$

which yields

$$\left(\frac{\varpi\left(t\right)}{\Pi\left(t\right)}\right)'<0.$$

Thus $\frac{\varpi(t)}{\Pi(t)}$ is decreasing for $t \ge t_2$.

3. Main results

Theorem 3.1. Let (A₁)-(A₄), and (2.6) hold. Furthermore suppose that $1 < \beta \leq \gamma$. If one has

$$\int_{t_0}^{\infty} \left[\chi\left(t\right) g\left(t\right) \Psi^{\beta}\left(\phi\left(t\right)\right) - \frac{\left(\Omega\left(t\right)\right)^2}{4\Im\left(t\right)} \right] dt = \infty,$$
(3.1)

for any function $\chi(t) \in C^1([t_0, \infty), (0, \infty))$, where $\Psi(t)$, $\Im(t)$, and $\Omega(t)$ are as defined in (2.2), (2.3), and (2.4), respectively, then every solution of Eq. (1.1) oscillates.

Proof. Suppose the contrary that there exists a $t_1 \ge t_0$ such that y(t) > 0, $y(v_i(t)) > 0$, and $y(\phi(t)) > 0$ for $t \ge t_1$ and i = 1, 2, ..., m. Now since $\varpi(t)$ is increasing, then from the definition of $\varpi(t)$, and (2.5), we have

$$\begin{split} y\left(t\right) &= \varpi\left(t\right) - \sum_{i=1}^{m} c_{i}\left(t\right) y^{\alpha_{i}}\left(\nu_{i}\left(t\right)\right) \geqslant \varpi\left(t\right) - \sum_{i=1}^{m} c_{i}\left(t\right) \varpi^{\alpha_{i}}\left(\nu_{i}\left(t\right)\right) \\ &\geqslant \varpi\left(t\right) - \sum_{i=1}^{m} c_{i}\left(t\right) \left(\alpha_{i}\varpi\left(\nu_{i}\left(t\right)\right) + \left(1 - \alpha_{i}\right)\right) \\ &\geqslant \left(1 - \sum_{i=1}^{m} \alpha_{i}c_{i}\left(t\right)\right) \varpi\left(t\right) - \sum_{i=1}^{m} \left(1 - \alpha_{i}\right)c_{i}\left(t\right) \\ &= \varpi\left(t\right) \left(1 - \sum_{i=1}^{m} \alpha_{i}c_{i}\left(t\right) - \frac{1}{\varpi\left(t\right)}\sum_{i=1}^{m} \left(1 - \alpha_{i}\right)c_{i}\left(t\right)\right). \end{split}$$
(3.2)

But since $\varpi(t)$ is positive and increasing, while $\rho(t)$ is positive and decreasing to zero, there is a $t_2 \ge t_1$ such that

$$\varpi(t) \ge \rho(t) \text{ for } t \ge t_2. \tag{3.3}$$

Substituting (3.3) into (3.2), we obtain

$$y(t) \ge \varpi(t) \left(1 - \sum_{i=1}^{m} \alpha_{i} c_{i}(t) - \frac{1}{\rho(t)} \sum_{i=1}^{m} (1 - \alpha_{i}) c_{i}(t) \right) = \Psi(t) \varpi(t).$$

$$(3.4)$$

This with (1.1) yields

$$\left(a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)' + h\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma} + g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right)\varpi^{\beta}\left(\varphi\left(t\right)\right) \leqslant 0, \ t \ge t_{2},$$

$$(3.5)$$

or

$$\left(\frac{a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}}{E\left(t\right)}\right)' + \frac{g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right)\varpi^{\beta}\left(\varphi\left(t\right)\right)}{E\left(t\right)} \leqslant 0.$$
(3.6)

Define

$$\Theta(t) = \chi(t) \frac{\alpha(t) (\varpi'(t))^{\gamma}}{\varpi^{\beta}(\varphi(t))}, \quad t \ge t_{2}.$$
(3.7)

Then $\Theta(t) > 0$ for $t \ge t_2$, and

$$\Theta'(t) = \chi'(t) \frac{a(t)(\varpi'(t))^{\gamma}}{\varpi^{\beta}(\varphi(t))} + \chi(t) \frac{(a(t)(\varpi'(t))^{\gamma})'}{\varpi^{\beta}(\varphi(t))} - \frac{\beta\chi(t)a(t)(\varpi'(t))^{\gamma}}{\varpi^{2\beta}(\varphi(t))} \varpi^{\beta-1}(\varphi(t)) \varpi'(\varphi(t)) \varphi'(t).$$

$$(3.8)$$

Since $a(t)(\varpi'(t))^{\gamma}$ is positive and decreasing, then there may exist a positive constant M such that for some $t_2 \ge t_1$, we have

$$a(t)\left(\varpi'(t)\right)^{\gamma} \leqslant M, \ t \ge t_2. \tag{3.9}$$

Moreover, since $\phi\left(t\right)\leqslant t$, then

$$a(t)\left(\varpi'(t)\right)^{\gamma} \leqslant a(\varphi(t))\left(\varpi'(\varphi(t))\right)^{\gamma}, \qquad (3.10)$$

and

$$\varpi\left(t\right) = \varpi\left(t_{1}\right) + \int_{t_{1}}^{t} \frac{\left(a\left(s\right)\left(\varpi'\left(s\right)\right)^{\gamma}\right)^{\frac{1}{\gamma}}}{a^{\frac{1}{\gamma}}\left(s\right)} ds > a^{\frac{1}{\gamma}}\left(t\right)\varpi'\left(t\right)\int_{t_{1}}^{t} a^{-\frac{1}{\gamma}}\left(s\right) ds = \xi\left(t\right)a^{\frac{1}{\gamma}}\left(t\right)\varpi'\left(t\right).$$
(3.11)

By substituting (3.5) and (3.11) into (3.8), we get

$$\begin{split} \Theta'(t) &\leqslant \frac{\chi'(t)}{\chi(t)} \Theta(t) - \chi(t) \frac{h(t)(\varpi'(t))^{\gamma}}{\varpi^{\beta}(\varphi(t))} - \chi(t) g(t) \Psi^{\beta}(\varphi(t)) \\ &- \beta \varphi'(t) \chi(t) \frac{a(t)(\varpi'(t))^{\gamma}}{\varpi^{2\beta}(\varphi(t))} \varpi'(\varphi(t)) (\xi(\varphi(t)))^{\beta-1} a^{\frac{\beta-1}{\gamma}}(\varphi(t)) \left(\varpi'(\varphi(t))\right)^{\beta-1} \\ &\leqslant \left[\frac{\chi'(t)}{\chi(t)} - \frac{h(t)}{a(t)} \right] \Theta(t) - \chi(t) g(t) \Psi^{\beta}(\varphi(t)) \\ &- \beta \varphi'(t) \chi(t) (\xi(\varphi(t)))^{\beta-1} \frac{a(t)(\varpi'(t))^{\gamma}}{\varpi^{2\beta}(\varphi(t))} a^{\frac{\beta-1}{\gamma}}(\varphi(t)) \left(\varpi'(\varphi(t))\right)^{\beta}. \end{split}$$
(3.12)

It follows from (3.9), (3.10), and (3.12) that

$$\begin{split} \Theta'\left(t\right) &\leqslant -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \Omega\left(t\right)\Theta\left(t\right) - \frac{\beta\varphi'\left(t\right)\left(\xi\left(\phi\left(t\right)\right)\right)^{\beta-1}}{\left(a\left(\phi\left(t\right)\right)\right)^{\frac{1}{\gamma}}}\chi\left(t\right)\frac{a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}}{\varpi^{2\beta}\left(\phi\left(t\right)\right)}a^{\frac{\beta}{\gamma}}\left(t\right)\left(\varpi'\left(t\right)\right)^{\beta}} \\ &= -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \Omega\left(t\right)\Theta\left(t\right) - \frac{\beta\varphi'\left(t\right)\left(\xi\left(\phi\left(t\right)\right)\right)^{\beta-1}a^{\frac{\beta}{\gamma}}\left(t\right)}{\left(a\left(\phi\left(t\right)\right)\right)^{\frac{1}{\gamma}}\chi\left(t\right)a\left(t\right)}\Theta^{2}\left(t\right)\frac{1}{\left(\varpi'\left(t\right)\right)^{\gamma-\beta}} \\ &\leqslant -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \Omega\left(t\right)\Theta\left(t\right) - \frac{\beta\varphi'\left(t\right)\left(\xi\left(\phi\left(t\right)\right)\right)^{\beta-1}}{M^{1-\frac{\beta}{\gamma}}\left(a\left(\phi\left(t\right)\right)\right)^{\frac{1}{\gamma}}\chi\left(t\right)}\Theta^{2}\left(t\right) \\ &= -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \Omega\left(t\right)\Theta\left(t\right) - \Im\left(t\right)\Theta^{2}\left(t\right), \end{split}$$

where

$$\Im(t) = \frac{\beta \varphi'(t) \left(\xi(\varphi(t))\right)^{\beta-1}}{M^{1-\frac{\beta}{\gamma}} \left(a(\varphi(t))\right)^{\frac{1}{\gamma}} \chi(t)}.$$

By completing the squares, we obtain

$$\Theta'\left(t\right)\leqslant-\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right)+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}-\left[\sqrt{\Im\left(t\right)}\Theta\left(t\right)-\frac{\Omega\left(t\right)}{2\sqrt{\Im\left(t\right)}}\right]^{2}\leqslant-\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right)+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2}}{4\Im\left(t\right)}+\frac{\left(\Omega\left(t\right)\right)^{2$$

Integrating from t₂ to t, we get

$$0 < \Theta\left(t\right) \leqslant \Theta\left(t_{2}\right) - \int_{t_{2}}^{t} \left[\chi\left(s\right)g\left(s\right)\Psi^{\beta}\left(\phi\left(s\right)\right) - \frac{\left(\Omega\left(s\right)\right)^{2}}{4\Im\left(s\right)}\right] ds.$$

This is a contradiction with (3.1), and so the proof is completed.

196

Remark 3.2. Although Theorem 3.1 depends on the technique of Theorem 4 of [40], however the authors in [40] dealt with the undamped case.

Theorem 3.3. Assume that (A₁)-(A₄) and (2.6) hold. If for any function $\chi(t) \in C^1([t_0, \infty), (0, \infty))$, and a positive number M, we have

$$\int_{t_0}^{\infty} \left[\chi(t) g(t) \Psi^{\beta}(\varphi(t)) - \frac{M^{\frac{\gamma-\beta}{\gamma}} \chi(t) (\Omega(t))^2 a^{\frac{\beta}{\gamma}}(\varphi(t))}{4\beta \left(\frac{\varphi(t)}{2}\right)^{\beta-1} \varphi'(t)} \right] dt = \infty,$$
(3.13)

where $\Psi(t)$ is defined by (2.2), and $\Omega(t)$ is defined by (2.4), $\gamma \ge \beta > 1$, and $\mathfrak{a}'(t) > 0$, then Eq. (1.1) is oscillatory.

Proof. Suppose the contrary that there exists a $T_1 \ge t_0$ such that y(t) > 0, $y(v_i(t)) > 0$, and $y(\phi(t)) > 0$ for $t \ge T_1$ and i = 1, 2, ..., m. Now as in the proof of Theorem 3.1, we have the inequality (3.5), by which with the positivity of a'(t), we get by Lemma 2.2 (i) that

$$\left(\mathfrak{a}\left(t\right)\left(\boldsymbol{\varpi}'\left(t\right)\right)^{\gamma}\right)'<0,t\geqslant T_{1}.$$

This implies that there exists some $T_2 > T_1$ such that $\varpi''(t) < 0$, for $t \ge T_1$, i.e., $\varpi'(t)$ is eventually decreasing. Therefore from the mean value theorem, we have

$$\varpi(t) - \varpi(T_1) = (t - T_1) \, \varpi'(\zeta) > (t - T_1) \, \varpi'(t) \,, \quad \zeta \in (T_1, t) \,,$$

i.e.,

$$\varpi(t) > \frac{t}{2} \varpi'(t), \text{ for } t \ge T_2 > 2T_1.$$
(3.14)

Now define $\Theta(t)$ as in Theorem 3.1, then $\Theta(t) > 0$. Moreover from (3.5), (3.7), (3.10), and (3.14), we have

$$\begin{split} \Theta'(t) &= \frac{\chi'(t)}{\chi(t)} \Theta(t) + \chi(t) \frac{\left(a(t)\left(\varpi'(t)\right)^{\gamma}\right)'}{\varpi^{\beta}\left(\varphi(t)\right)} - \frac{\beta\chi(t)a(t)\left(\varpi'(t)\right)^{\gamma}}{\varpi^{2\beta}\left(\varphi(t)\right)} \varpi^{\beta-1}\left(\varphi(t)\right) \varpi'\left(\varphi(t)\right) \varphi'\left(t\right) \\ &\leq \left[\frac{\chi'(t)}{\chi(t)} - \frac{h(t)}{a(t)}\right] \Theta(t) - \chi(t)g(t)\Psi^{\beta}\left(\varphi(t)\right) \\ &- \chi(t) \frac{\beta a(t)\left(\varpi'(t)\right)^{\gamma+\beta}\left(\frac{\varphi(t)}{2}\right)^{\beta-1}\varphi'\left(t\right)}{\varpi^{2\beta}\left(\varphi(t)\right)} \left(\frac{a(t)}{a(\varphi(t))}\right)^{\frac{\beta}{\gamma}} \\ &\leq \Omega(t)\Theta(t) - \chi(t)g(t)\Psi^{\beta}\left(\varphi(t)\right) - \frac{\beta\left(\frac{\varphi(t)}{2}\right)^{\beta-1}\varphi'\left(t\right)}{\chi(t)a^{\frac{\gamma-\beta}{\gamma}}\left(t\right)a^{\frac{\beta}{\gamma}}\left(\varphi(t)\right)} \Theta^{2}(t)\frac{1}{\left(\varpi'(t)\right)^{\gamma-\beta}}. \end{split}$$
(3.15)

Now, from the fact that $a(t)(\varpi'(t))^{\gamma}$ is positive and decreasing, there exists a $T_4 > T_3$ sufficiently large such that $a(t)(\varpi'(t))^{\gamma} \leq M, t \geq T_4$, where M is defined in (3.9), and therefore

$$\left(\varpi'\left(t\right)\right)^{\gamma-\beta} \leqslant \left(\frac{M}{a\left(t\right)}\right)^{\frac{\gamma-\beta}{\gamma}}, \ t \geqslant T_{4}.$$
 (3.16)

Combining (3.15) and (3.16), we get

$$\Theta'\left(t\right) \leqslant \Omega\left(t\right) \Theta\left(t\right) - \chi\left(t\right) g\left(t\right) \Psi^{\beta}\left(\phi\left(t\right)\right) - \frac{\beta\left(\frac{\phi\left(t\right)}{2}\right)^{\beta-1} \phi'\left(t\right)}{\chi\left(t\right) a^{\frac{\beta}{\gamma}}\left(\phi\left(t\right)\right) M^{\frac{\gamma-\beta}{\gamma}}} \Theta^{2}\left(t\right).$$

By completing the squares, we get

$$\Theta'\left(t\right)\leqslant-\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right)+\frac{M^{\frac{\gamma-\beta}{\gamma}}\chi\left(t\right)\mathfrak{a}^{\frac{\beta}{\gamma}}\left(\phi\left(t\right)\right)\left(\Omega\left(t\right)\right)^{2}}{4\beta\left(\frac{\phi\left(t\right)}{2}\right)^{\beta-1}\phi'\left(t\right)}.$$

Integrating from T₄ to t, we have

$$\Theta(t) \leqslant \Theta(T_4) - \int_{T_4}^t \left[\chi(s) g(s) \Psi^{\beta}(\phi(s)) - \frac{M^{\frac{\gamma-\beta}{\gamma}} \chi(s) a^{\frac{\beta}{\gamma}}(\phi(s)) (\Omega(s))^2}{4\beta \left(\frac{\phi(s)}{2}\right)^{\beta-1} \phi'(s)} \right] ds.$$
(3.17)

Let $t \to \infty$ in (3.17), and using (3.13), then $\Theta(t)$ will be eventually negative, which is a contradiction, and so the proof is completed.

Remark 3.4. In the special case $f(t, y(\phi(t))) = g(t) |y(\phi(t))|^{\beta-1} y(\phi(t))$ and h(t) = 0, Theorem 3.3 improves and extends Theorem 2.1 of [34].

Theorem 3.5. Suppose that (A_1) - (A_4) and (2.6) hold. Furthermore suppose that $\alpha'(t) > 0$. If there exists a function $\chi(t) \in C^1([t_0, \infty), (0, \infty))$ such that

$$\int_{t_0}^{\infty} \left[\chi\left(t\right) g\left(t\right) \Psi^{\beta}\left(\varphi\left(t\right)\right) - \frac{\left(\chi'\left(t\right) a\left(t\right) - \chi\left(t\right) h\left(t\right)\right)^{\lambda+1} a\left(\lambda\left(t\right)\right)}{\left(\lambda+1\right)^{\lambda+1} \left(q\chi\left(t\right) \varphi'\left(t\right)\right)^{\lambda} \left(a\left(t\right)\right)^{\lambda+1}} \right] dt = \infty,$$
(3.18)

where $\Psi(t)$ is defined by (2.2),

$$\lambda = \min\{\gamma, \beta\}, \quad \lambda(t) = \begin{cases} \varphi(t), & \beta \ge \gamma, \\ t, & \gamma > \beta, \end{cases} \quad and \quad q = \begin{cases} 1, & \gamma = \beta, \\ 0 < q \le 1, & \gamma \neq \beta, \end{cases}$$

then Eq. (1.1) is oscillatory.

Proof. Suppose for the contrary that Eq. (1.1) has a non-oscillatory solution y(t) > 0, for sufficiently large t. The case of y(t) < 0 can be similarly treated. Now in view of (A₃), there may exist $t_1 \ge t_0$ such that y(t) > 0, $y(v_i(t)) > 0$, and $y(\phi(t)) > 0$ for $t \ge t_1$ and i = 1, 2, ..., m. It is not difficult to see that y(t) > 0 for $t \ge t_1$, but since from Lemma 2.2 (i), and the definition of $\varpi(t)$, we get (3.4), from which and (1.1), we arrive at (3.5). Now since $\phi(t) \le t$, we have (3.10). Put

$$\Upsilon\left(t\right) = \frac{\alpha\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}}{\varpi^{\beta}\left(\phi\left(t\right)\right)}, \ t \geqslant T$$

Then $\Upsilon(t) > 0$, and

$$\Upsilon'(t) = \frac{\left(a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)'}{\varpi^{\beta}\left(\varphi\left(t\right)\right)} - \frac{\beta\varphi'\left(t\right)\varpi'\left(\varphi\left(t\right)\right)a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}}{\varpi^{\beta+1}\left(\varphi\left(t\right)\right)} \\ \leqslant -g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right) - \frac{h\left(t\right)}{a\left(t\right)}\Upsilon\left(t\right) - \frac{\beta\varphi'\left(t\right)\varpi'\left(\varphi\left(t\right)\right)a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}}{\varpi^{\beta+1}\left(\varphi\left(t\right)\right)}.$$
(3.19)

Now, we consider the possible cases for (3.19).

Case 1: $\gamma = \beta$. From (3.10), it is clear that

$$\Upsilon'(t) \leqslant -g(t) \Psi^{\beta}(\varphi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\gamma \varphi'(t)}{(a(\varphi(t)))^{\frac{1}{\gamma}}} \Upsilon^{\frac{\gamma+1}{\gamma}}(t), \quad t \ge T.$$
(3.20)

Case 2: $\gamma < \beta$. Since $\varpi(t)$ is increasing on $[T, \infty)$, then there may exist a constant $q_1 > 0$ such that

$$\begin{split} \Upsilon'(t) &\leqslant -g(t) \Psi^{\beta}(\varphi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\beta \varphi'(t)}{(a(\varphi(t)))^{\frac{1}{\gamma}}} \left[\varpi(\varphi(t)) \right]^{\frac{\beta-\gamma}{\gamma}} \Upsilon^{\frac{\gamma+1}{\gamma}}(t) \\ &\leqslant -g(t) \Psi^{\beta}(\varphi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\gamma \varphi'(t) q_{1}}{(a(\varphi(t)))^{\frac{1}{\gamma}}} \Upsilon^{\frac{\gamma+1}{\gamma}}(t) \,. \end{split}$$
(3.21)

Case 3: $\gamma > \beta$. From the fact that $(\alpha(t) (\varpi'(t))^{\gamma})' < 0$, and $\alpha'(t) > 0$, we get $\varpi''(t) < 0$, and so $\varpi'(t)$ is decreasing. Thus, there exists a positive constant q_2 , such that

$$\begin{split} \Upsilon'(t) &\leqslant -g(t) \Psi^{\beta}(\phi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\beta \phi'(t)}{(a(t))^{\frac{1}{\beta}}} \left[\varpi'(t) \right]^{\frac{\beta-\gamma}{\beta}} \Upsilon^{\frac{\beta+1}{\beta}}(t) \\ &\leqslant -g(t) \Psi^{\beta}(\phi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\beta \phi'(t) q_2}{(a(t))^{\frac{1}{\beta}}} \Upsilon^{\frac{\beta+1}{\beta}}(t) \,. \end{split}$$
(3.22)

Now from (3.20), (3.21), and (3.22) it follows that for any $\gamma > 0$, and $\beta > 0$,

$$\Upsilon'(t) \leqslant -g(t) \Psi^{\beta}(\varphi(t)) - \frac{h(t)}{a(t)} \Upsilon(t) - \frac{\lambda q \varphi'(t)}{(a(\lambda(t)))^{\frac{1}{\lambda}}} \Upsilon^{\frac{\lambda+1}{\lambda}}(t), \quad t \ge T.$$
(3.23)

Multiplying (3.23) by χ (t) and integrating it from T to t, we obtain

$$\int_{T}^{t} \chi(s) g(s) \Psi^{\beta}(\varphi(s)) ds \leq \chi(T) \Upsilon(T) + \int_{T}^{t} \left[\left(\chi'(s) - \frac{\chi(s) h(s)}{a(s)} \right) \Upsilon(s) - \frac{\lambda q \chi(s) \varphi'(s)}{(a(\lambda(s)))^{\frac{1}{\lambda}}} \Upsilon^{\frac{\lambda+1}{\lambda}}(s) \right] ds.$$
(3.24)

Applying the following inequality of [39],

$$D\Upsilon - F\Upsilon^{\frac{\lambda+1}{\lambda}} \leqslant \frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}} D^{\lambda+1} F^{-\lambda},$$
(3.25)

with F > 0 and $\lambda > 0$, then (3.24) will take the form

$$\int_{\mathsf{T}}^{\mathsf{t}} \left[\chi\left(s\right) g\left(s\right) \Psi^{\beta}\left(\phi\left(s\right)\right) - \frac{\left(\chi'\left(s\right) \mathfrak{a}\left(s\right) - \chi\left(s\right) \mathfrak{h}\left(s\right)\right)^{\lambda+1} \mathfrak{a}\left(\lambda\left(s\right)\right)}{\left(\lambda+1\right)^{\lambda+1} \left(q\chi\left(s\right) \phi'\left(s\right)\right)^{\lambda} \left(\mathfrak{a}\left(s\right)\right)^{\lambda+1}} \right] \, \mathrm{d}s \leqslant \chi\left(\mathsf{T}\right) \Upsilon\left(\mathsf{T}\right).$$

Letting $t \to \infty$ in the above inequality, we get a contradiction with (3.18).

Remark 3.6. The above theorem includes Theorem 1 of [42] in the case $f(t, y(\phi(t))) = g(t) |y(\phi(t))|^{\beta-1} y(\phi(t))$, and h(t) = 0.

Theorem 3.7. Let the conditions (A₁)-(A₄) and (2.6) hold. Furthermore assume that there exists a positive continuously differentiable function χ (t) such that, for all sufficiently large t₁ \ge t₀

$$\begin{split} &\limsup_{t \to \infty} \{\chi(t) E(t) \int_{t}^{\infty} \frac{g(s) \Psi^{\beta}(\phi(s))}{E(s)} ds \\ &+ \int_{t_{1}}^{t} \left[g(s) \chi(s) \Psi^{\beta}(\phi(s)) - \frac{\gamma^{\gamma}}{(\gamma+1)^{\gamma+1}} \frac{\chi(s) a(\phi(s)) (\Omega(s))^{\gamma+1}}{(\beta \phi'(s) \psi(s))^{\gamma}} \right] ds \} = \infty, \end{split}$$
(3.26)

where

$$\psi\left(t\right) = \begin{cases} d_{1}, & d_{1} \text{ is some positive constant if } \beta > \gamma, \\ 1, & \text{if } \beta = \gamma, \\ d_{2}\left(\int_{t_{0}}^{t} \alpha^{\frac{1}{\gamma}}\left(s\right) ds\right), & d_{2} \text{ is some positive constant if } \beta < \gamma, \end{cases}$$

and $\gamma \ge 1$. Then, Eq. (1.1) is oscillatory, where E(t), $\Psi(t)$, and $\Omega(t)$ be as in (2.1), (2.2), and (2.4).

Proof. Suppose to the contrary that y(t) is a non-oscillatory solution of Eq. (1.1). We may assume that there exists a $t_1 \ge t_0$ such that y(t) > 0, $y(v_i(t)) > 0$, and $y(\phi(t)) > 0$ for $t \ge t_1$ and i = 1, 2, ..., m. It is not difficult to see that $\varpi(t) > 0$ for $t \ge t_1$. But since from Lemma 2.2 (i) with the definition of $\varpi(t)$, we get (3.4). Moreover by substituting (3.4) into (1.1), we arrive at (3.5), and using the assumption (A₄), we get (3.6). Integrating inequality (3.6) from t to ∞ and using the fact that $\varpi(t)$ is increasing, we have

$$\frac{a\left(t\right)}{E\left(t\right)}\left(\varpi'\left(t\right)\right)^{\gamma} \geqslant \int_{t}^{\infty} \frac{g\left(s\right)\Psi^{\beta}\left(\phi\left(s\right)\right)\varpi^{\beta}\left(\phi\left(s\right)\right)}{E\left(s\right)} ds \geqslant \varpi^{\beta}\left(\phi\left(t\right)\right) \int_{t}^{\infty} \frac{g\left(s\right)\Psi^{\beta}\left(\phi\left(s\right)\right)}{E\left(s\right)} ds.$$

Defining $\Theta(t)$ as in Theorem 3.1, we get

$$\Theta(t) = \chi(t) \frac{a(t)(\varpi'(t))^{\gamma}}{\varpi^{\beta}(\varphi(t))} \ge \chi(t) E(t) \int_{t}^{\infty} \frac{g(s) \Psi^{\beta}(\varphi(s))}{E(s)} ds.$$
(3.27)

This with (3.5) leads to

$$\begin{split} \Theta'(t) &= \left(a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right)'\frac{\chi\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)} + \left(\frac{\chi\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)}\right)'a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\right) \\ &\leq \frac{-\chi\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)}\left(h\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma} + g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right)\varpi^{\beta}\left(\varphi\left(t\right)\right)\right) \\ &+ a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\left(\frac{\chi'\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)} - \frac{\beta\chi\left(t\right)\varpi^{\beta-1}\left(\varphi\left(t\right)\right)\varpi'\left(\varphi\left(t\right)\right)\varphi'\left(t\right)}{\varpi^{2\beta}\left(\varphi\left(t\right)\right)}\right) \\ &\leq \frac{-\chi\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)}\left(h\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma} + g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right)\varpi^{\beta}\left(\varphi\left(t\right)\right)\right) \\ &+ a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\left(\frac{\chi'\left(t\right)}{\varpi^{\beta}\left(\varphi\left(t\right)\right)} - \frac{\beta\chi\left(t\right)\varpi'\left(\varphi\left(t\right)\right)\varphi'\left(t\right)}{\varpi^{\beta+1}\left(\varphi\left(t\right)\right)}\right) \\ &\leq -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\varphi\left(t\right)\right) - \frac{h\left(t\right)}{a\left(t\right)}\Theta\left(t\right) + \frac{\chi'\left(t\right)}{\chi\left(t\right)}\Theta\left(t\right) - \beta\chi\left(t\right)\frac{a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}\varpi'\left(\varphi\left(t\right)\right)\varphi'\left(t\right)}{\varpi^{\beta+1}\left(\varphi\left(t\right)\right)}. \end{split}$$

$$(3.28)$$

Moreover, since $a\left(t\right)\left(\varpi'\left(t\right)\right)^{\gamma}$ is decreasing, we have

$$\frac{\varpi'\left(\phi\left(t\right)\right)}{\varpi'\left(t\right)} > \left(\frac{a\left(t\right)}{a\left(\phi\left(t\right)\right)}\right)^{\frac{1}{\gamma}}.$$

Thus the inequality (3.28) becomes

$$\Theta'\left(t\right)\leqslant-\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right)+\Omega\left(t\right)\Theta\left(t\right)-\frac{\beta\chi\left(t\right)\phi'\left(t\right)}{a^{\frac{1}{\gamma}}\left(\phi\left(t\right)\right)}\left(\frac{\Theta\left(t\right)}{\chi\left(t\right)}\right)^{\frac{\gamma+1}{\gamma}}\varpi^{\frac{\beta-\gamma}{\gamma}}\left(\phi\left(t\right)\right).$$

Now we have the three possible cases.

Case I: $\beta > \gamma$. In this case, since $\varpi'(t) > 0$ for $t \ge t_0$, then there may exist $t_1 \ge t_0$ such that $\varpi(\phi(t)) \ge d$ for $t \ge t_1$. Then it follows that

$$\varpi^{\frac{\beta-\gamma}{\gamma}}\left(\phi\left(t\right)\right) \geqslant d^{\frac{\beta-\gamma}{\gamma}} = d_{1}.$$

Case II: $\beta = \gamma$. In this case, we see that $\varpi^{\frac{\beta-\gamma}{\gamma}}(\varphi(t)) = 1$. Case III: $\beta < \gamma$. Since $\alpha(t)(\varpi'(t))^{\gamma}$ is decreasing, there may exist a constant M such that

$$a\left(t
ight) \left(arpi^{\prime}\left(t
ight)
ight) ^{\gamma}\leqslant M$$

for $t \ge t_0$. By integrating from t_0 to t, we get

$$\varpi(t) \leqslant \varpi(t_0) + \int_{t_0}^t \left(\frac{M}{\alpha(s)}\right)^{\frac{1}{\gamma}} ds$$

Hence, there may exist $t_1 \ge t_0$ and a constant M_1 depending on M such that

$$\varpi\left(t
ight)\leqslant M_{1}\int_{t_{0}}^{t}a^{-rac{1}{\gamma}}\left(s
ight)ds \ \ \mbox{for} \ \ t\geqslant t_{1},$$

and thus

$$\varpi^{\frac{\beta-\gamma}{\gamma}}\left(\phi\left(t\right)\right) \geqslant M_{1}^{\frac{\beta-\gamma}{\gamma}}\left(\int_{t_{0}}^{t} a^{-\frac{1}{\gamma}}\left(s\right) ds\right)^{\frac{\beta-\gamma}{\gamma}} = d_{2}\left(\int_{t_{0}}^{t} a^{-\frac{1}{\gamma}}\left(s\right) ds\right)^{\frac{\beta-\gamma}{\gamma}},$$

for some positive constant d_2 .

Using the conclusions of these three cases and the definition of $\psi(t)$, we get

$$\Theta'\left(t\right) \leqslant -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \Omega\left(t\right)\Theta\left(t\right) - \frac{\beta\phi'\left(t\right)\psi\left(t\right)}{\left(\chi\left(t\right)a\left(\phi\left(t\right)\right)\right)^{\frac{1}{\gamma}}}\Theta^{\frac{\gamma+1}{\gamma}}\left(t\right)$$

for $t \ge t_1 > t_0$. Now setting

$$D = \Omega(t), \quad F = \frac{\beta \varphi'(t) \psi(t)}{(\chi(t) a(\varphi(t)))^{\frac{1}{\gamma}}},$$

and using the inequality (3.25), we obtain

$$\Theta'\left(t\right) \leqslant -\chi\left(t\right)g\left(t\right)\Psi^{\beta}\left(\phi\left(t\right)\right) + \frac{\gamma^{\gamma}}{\left(\gamma+1\right)^{\gamma+1}}\frac{\chi\left(t\right)a\left(\phi\left(t\right)\right)\left(\Omega\left(t\right)\right)^{\gamma+1}}{\left(\beta\phi'\left(t\right)\psi\left(t\right)\right)^{\gamma}}$$

Integrating from t_1 to t, we have

$$\Theta\left(t\right) \leqslant \Theta\left(t_{1}\right) - \int_{t_{1}}^{t} \left[\chi\left(s\right)g\left(s\right)\Psi^{\beta}\left(\phi\left(s\right)\right) - \frac{\gamma^{\gamma}}{\left(\gamma+1\right)^{\gamma+1}}\frac{\chi\left(s\right)a\left(\phi\left(s\right)\right)\left(\Omega\left(s\right)\right)^{\gamma+1}}{\left(\beta\phi'\left(s\right)\psi\left(s\right)\right)^{\gamma}}\right] ds$$

Taking into account (3.27), we get

$$\begin{split} \Theta\left(t_{1}\right) &\geqslant \chi\left(t\right) \mathsf{E}\left(t\right) \int_{t}^{\infty} \frac{g\left(s\right) \Psi^{\beta}\left(\varphi\left(s\right)\right)}{\mathsf{E}\left(s\right)} ds \\ &+ \int_{t_{1}}^{t} \left[\chi\left(s\right) g\left(s\right) \Psi^{\beta}\left(\varphi\left(s\right)\right) - \frac{\gamma^{\gamma}}{\left(\gamma+1\right)^{\gamma+1}} \frac{\chi\left(s\right) a\left(\varphi\left(s\right)\right) \left(\Omega\left(s\right)\right)^{\gamma+1}}{\left(\beta \varphi'\left(s\right) \psi\left(s\right)\right)^{\gamma}}\right] ds. \end{split}$$

Taking lim sup on both sides of the above inequality as $t \to \infty$, we obtain a contradiction with the condition (3.26). This completes the proof.

Remark 3.8. Theorem 3.7 improves and extends Theorem 1 of [16].

Theorem 3.9. Let the conditions (A₁)-(A₄) hold. Suppose further that (2.6) holds and $\gamma = \beta$. If there exists a positive function $\chi(t) \in C^1([t_0, \infty), \mathbb{R})$ such that

$$\limsup_{t\to\infty}\int_{t_{0}}^{t}\left[\chi\left(s\right)g\left(s\right)\Psi^{\beta}\left(\phi\left(s\right)\right)-\frac{a\left(\phi\left(s\right)\right)\left(\Omega\left(s\right)\right)^{\beta+1}\chi\left(s\right)}{\left(\beta+1\right)^{\beta+1}\left(\phi'\left(s\right)\right)^{\beta}}\right]ds=\infty,$$

where $\Psi(t)$ is defined by (2.2), and $\Omega(t)$ is defined by (2.4), then every solution of Eq. (1.1) is oscillatory. *Proof.* The proof follows the lines of the proof of Theorem 3.5. And so it is omitted.

4. Examples

Example 4.1. Consider the differential equation

$$\left(t \left[\left(y \left(t \right) + \frac{1}{t} y^{\frac{3}{5}} \left(\frac{t}{5} \right) + \frac{1}{t^2} y^{\frac{1}{7}} \left(\frac{t}{7} \right) \right)' \right]^5 \right)' + \left[\left(y \left(t \right) + \frac{1}{t} y^{\frac{3}{5}} \left(\frac{t}{5} \right) + \frac{1}{t^2} y^{\frac{1}{7}} \left(\frac{t}{7} \right) \right)' \right]^5 + \frac{\vartheta}{t^3} y^3 \left(t \right) = 0, \quad t \ge 3.$$

$$(4.1)$$

Here $a(t) = t, a'(t) = 1 > 0, h(t) = 1, c_1(t) = \frac{1}{t}, c_2(t) = \frac{1}{t^2}$. Thus clearly $\lim_{t \to \infty} c_i(t) = 0$. Moreover $v_1(t) = \frac{t}{5}, v_2(t) = \frac{t}{7}, \alpha_1 = \frac{3}{5}, \alpha_2 = \frac{1}{7}$, and $f(t, y(\varphi(t))) = \frac{\vartheta}{t^3}y^3(t)$, i.e., $g(t) = \frac{\vartheta}{t^3}, \vartheta > 0, \varphi(t) = t, \beta = 3, \gamma = 5$. It is not difficult to see that $E(t) = \frac{3}{t}$, and so (2.6) is satisfied. Choosing $\rho(t) = \frac{1}{t}$, then $\rho(t) \to 0$ as $t \to \infty$ and

$$\Psi(t) = 1 - \frac{3}{5t} - \frac{1}{7t^2} - t\left(\frac{2}{5t} + \frac{6}{7t^2}\right) = \frac{3}{5} - \frac{51}{35t} - \frac{1}{7t^2} = \frac{21t^2 - 51t - 5}{35t^2} > 0, \ t \ge 3.$$

Choosing $\chi(t) = t^2$, we have $\Omega(t) = \frac{\chi'(t)}{\chi(t)} - \frac{h(t)}{a(t)} = \frac{1}{t}$ and

$$\int_{t_0}^{\infty} \left[\chi\left(t\right) g\left(t\right) \Psi^{\beta} \varphi\left(t\right) - \frac{M^{\frac{\gamma-\beta}{\gamma}} \chi\left(t\right) (\Omega\left(t\right))^2 a^{\frac{\beta}{\gamma}} \varphi\left(t\right)}{4\beta \left(\frac{\varphi\left(t\right)}{2}\right)^{\beta-1} \varphi'\left(t\right)} \right] dt = \int_{3}^{\infty} \left(\frac{\vartheta}{t} \left[\frac{3}{5} - \frac{51}{35t} - \frac{1}{7t^2}\right]^3 - \frac{M^{\frac{2}{5}}}{3t^{\frac{7}{5}}}\right) dt = \infty.$$

So by Theorem 3.3, every solution of Eq. (4.1) is oscillatory.

Example 4.2. Consider the differential equation

$$\begin{pmatrix} \frac{1}{t^2} \left(y(t) + \frac{1}{t} y^{\frac{1}{3}} \left(\frac{t}{3} \right) + \frac{1}{t^2} y^{\frac{3}{5}} \left(\frac{t}{5} \right) \right)' \end{pmatrix}' + \frac{1}{t^3} \left(y(t) + \frac{1}{t} y^{\frac{1}{3}} \left(\frac{t}{3} \right) + \frac{1}{t^2} y^{\frac{3}{5}} \left(\frac{t}{5} \right) \right)' + \frac{\vartheta}{t^3} y(t) = 0, \quad t \ge 3.$$

$$(4.2)$$

Here $a(t) = \frac{1}{t^2}$, $h(t) = \frac{1}{t^3}$, $\beta = 1$, $c_1(t) = \frac{1}{t}$, $c_2(t) = \frac{1}{t^2}$. Thus clearly $\lim_{t \to \infty} c_1(t) = 0$. Moreover $v_1(t) = \frac{t}{3}$, $v_2(t) = \frac{t}{5}$, $\alpha_1(t) = \frac{1}{3}$, $\alpha_2 = \frac{3}{5}$, and $f(t, y(\phi(t))) = \frac{\vartheta}{t^3}y(t)$, i.e., $g(t) = \frac{\vartheta}{t^3}$, $\vartheta > 0$, $\phi(t) = t$. It is not difficult to see that $E(t) = \frac{3}{t}$, and so (2.6) is satisfied. Letting $\rho(t) = \frac{1}{t}$, then $\rho(t) \to 0$ as $t \to \infty$ and

$$\Psi(t) = 1 - \frac{1}{3t} - \frac{3}{5t^2} - t\left[\frac{2}{3t} + \frac{2}{5t^2}\right] = \frac{1}{3} - \frac{11}{15t} - \frac{3}{5t^2} = \frac{5t^2 - 11t - 9}{15t^2} > 0 \quad \text{for} \quad t \ge 3.$$

Choosing $\chi(t) = t^2$, we see that

$$\Omega\left(t\right)=\frac{1}{t},$$

and

$$\begin{split} \limsup_{t \to \infty} \int_{t_0}^t \left[\chi\left(s\right) g\left(s\right) \Psi^{\beta}\left(\varphi\left(s\right)\right) - \frac{\alpha\left(\varphi\left(s\right)\right) \left(\Omega\left(s\right)\right)^{\beta+1} \chi\left(s\right)}{\left(\beta+1\right)^{\beta+1} \left(\varphi'\left(s\right)\right)^{\beta}} \right] ds \\ = \limsup_{t \to \infty} \int_3^t \left[\frac{\vartheta}{3s} - \frac{11\vartheta}{15s^2} - \frac{3\vartheta}{5s^3} - \frac{1}{4s^2} \right] ds = \infty. \end{split}$$

Then by Theorem 3.9 every solution of Eq. (4.2) is oscillatory.

Acknowledgments

The authors of the paper are grateful to the editorial board and reviewers for the careful reading and helpful suggestions which led to an improvement of our original manuscript.

References

- R. P. Agarwal, M. Bohner, T. Li, Oscillatory behavior of second-order half-linear damped dynamic equations, Appl. Math. Comput., 254 (2015), 408–418. 1, 1
- [2] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1–6. 1
- [3] R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. 1, 1
- [4] B. Baculíková, Oscillatory criteria for second order differential equations with several sublinear neutral terms, Opuscula Math., 39 (2019), 753–763. 1, 1
- [5] B. Baculíková, J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. 1, 1
- [6] X. Beqiri, E. Koci, Oscillation criteria for second order nonlinear differential equations, British J. Sci., 6 (2012), 73–80. 1
- [7] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72–76. 1
- [8] M. Bohner, T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452.
 1
- [9] D. Çakmak, Oscillation for second order nonlinear differential equations with damping, Dynam. Systems Appl., 17 (2008), 139–147. 1
- [10] C. Dharuman, N. Prabaharan, E. Thandapani, E. Tunç, Modified oscillation results for second-order nonlinear differential equations with sublinear neutral terms, Appl. Math. E-Notes, 22 (2022), 299–309. 1
- [11] J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., **293** (2020), 910–992. 1
- [12] J. Džurina, E. Thandapani, B. Baculíková, C. Dharuman, N. Prabaharan, Oscillation of second order Nonlinear Differential Equations with several sub-linear neutral terms, Nonlinear Dyn. Syst. Theory, 19 (2019), 124–132. 1, 1, 1
- [13] M. M. A. El-Sheikh, Oscillation and nonoscillation criteria for second order nonlinear differential equations. I, J. Math. Anal. Appl., 179 (1993), 14–27. 1
- [14] M. M. A. El-Sheikh, R. A. Sallam, D. I. Elimy, Oscillation criteria for second order nonlinear equations with damping, Adv. Differ. Equ. Control Process., 8 (2011), 127–142. 1
- [15] X. Fu, T. Li, Ch. Zhang, Oscillation of second-order damped differential equations, Adv. Difference Equ., 2013 (2013), 11 pages. 1
- [16] S. R. Grace, I. Jadlovská, Oscillation criteria for second-order neutral damped differential equations with delay arguments In: Dynamical Systems—Analytical and Computational Techniques, INTECH, chap. 2, (2017), 31–53. 1, 1, 3.8
- [17] S. R. Grace, B. S. Lalli, Oscillation of nonlinear second order neutral differential equations, Rad. Mat., 3 (1987), 77–84. 1
- [18] M. K. Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillation of second order neutral delay differential equations, Rad. Mat., 1 (1985), 267–274. 1, 1
- [19] J. Hale, Functional differential equations, Springer, Berlin-New York, (1971).
- [20] J. Hale, Theory of functional differential equations, Springer-Verlag, New York-Heidelberg, (1977). 2.1
- [21] I. Jadlovská, Oscillation criteria of Kenser-type for second-order half-linear advanced differential equations, Appl. Math. Lett. **106** (2020), 1–8. 1
- [22] I. Jodlovská, *New criteria for sharp oscillation of second-order neutral delay differential equations*, Mathematics, 9 (2021), 1–23. 1
- [23] T. Li, S. Frassu, G. Viglialora, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages. 1
- [24] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
- [25] T. Li, Y. V. Rogovchenko, Asymptotic behavior of an odd-order delay differential equation, Bound. Value Probl., 2014 (2014), 10 pages. 1
- [26] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162.
 1
- [27] T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. 1
- [28] T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. 1
- [29] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. 1

- [30] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., **105** (2020), 7 pages. 1
- [31] T. Li, Y. V. Rogovchenko, S. Tang, Oscillation of second-order nonlinear differential equations with damping, Math. Slovaca, 64 (2014), 1227–1236. 1
- [32] T. Li, Y. V. Rogovchenko, C. Zhang, Oscillation of second-order neutral differential equations, Funkcial. Ekvac., 56 (2013), 111–120. 1
- [33] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, **34** (2021), 315–336. 1
- [34] H. Liu, F. Meng, P. Liu, Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation, Appl. Math. Comput., 219 (2012), 2739–2748. 1, 1, 1, 1, 3.4
- [35] Y. V. Rogovchenko, Oscillation theorems for second-order equations with damping, Nonlinear Anal., 41 (2000), 1005– 1028. 1, 1
- [36] Y. V. Rogovchenko, F. Tuncay, Interval oscillation criteria for second order nonlinear differential equations with damping, Dynam. Systems Appl., **16** (2007), 337–344.
- [37] Y. V. Rogovchenko, F. Tuncay, Oscillation criteria for second-order nonlinear differential equations with damping, Nonlinear Anal., 69 (2008), 208–221. 1, 1
- [38] R. A. Sallam, M. M. A. El-Sheikh, E. I. El-Saedy, On the oscillation of second order nonlinear neutral delay differential equations, Math. Slovaca, 71 (2021), 859–870. 1, 1, 1, 1
- [39] A. A. Soliman, R. A. Sallam, A. M. Hassan, Oscillation criteria of second order nonlinear neutral differential equations, Int. J. Appl. Math. Res., 1 (2012), 314–322. 3
- [40] R. Wang, Q. Li, Oscillation and asymptotic properties of a class of second-order Emden-Fowler neutral differential equations, SpringerPlus, 5 (2016), 1–15. 1, 1, 1, 1, 3.2
- [41] Y. Wu, Y. Yu, J. Xiao, Oscillation of second order nonlinear neutral differential equations, Mathematics, 10 (2022), 1–12.
- [42] Y. Wu, Y. Yu, J. Zhang, J. Xiao, Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type, J. Inequal. Appl., 2016 (2016), 11 pages. 1, 1, 1, 1, 3.6