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Abstract

In this paper, we give the concepts of interval valued fuzzy (m,n)-ideals in semigroups and investigate the properties of
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1. Introduction

The classical of interval valued fuzzy sets was conceptualized by Zadeh in 1975 [20]. This concept
is not just used in mathematics and logic but also in medical science [3], image processing [8] and deci-
sion making method [21] etc. Biswas [2] used the ideal of interval valued fuzzy sets to interval valued
subgroups in In 1994. In 2006, Narayanan and Manikantan [15] developed theory of an interval valued
fuzzy set to interval valued fuzzy subsemigroups and types interval valued fuzzy ideals in semigroups.
In 2012, Kim et al. [9] defined interval valued fuzzy quasi-ideals in semigroup and they studied of its
properties. In 2013 Singaram and Kandasamy [16] characterized regular and intra-regular semigroup in
terms of interval valued fuzzy ideals.

In 1961, Lajos [12] studied the concepts of (m,n)-ideals in semigroups which generalized ideals of
semigroups. The research of (m,n)-ideals of semigroups has interested many such as Akram et al. [1],
Tilidetzke [17], Yaqoob and Chinram [18], and many others. In 2019 Ahsan et al. [13] extended the ideals
of (m,n)-ideals in semigroups to fuzzy sets in semigroup and they characterize the regular semigroup
by using fuzzy (m,n)-ideals. In 2021, Gaketem [6] studied concept of interval valued fuzzy almost
(m, n)-ideals in semigroups. Later, Gaketem [5] studied concept of interval valued fuzzy almost (m,n)-
bi-ideals in semigroups. In 2022, Nakkhasen [14] gave concept picture fuzzy (m, n)-ideals of semigroups
and investigated some basic properties of picture fuzzy (m,n)-ideals of semigroups. Later, Gaketem [7]
discussed concept of interval valued fuzzy almost (m, n)-quasi-ideal in semigroups. Recently, Khamrot
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and Gaketem [10] defined spherical interval valued fuzzy ideals and find necessary and sufficient of kinds
spherical interval valued fuzzy ideals.

In this section, we give the concepts of interval valued fuzzy (m,n)-ideals in semigroups and we
investigate the properties of interval valued fuzzy (m, n)-ideals. Furthermore, we characterize the regular
semigroup by using interval valued fuzzy (m,n)-ideals.

2. Preliminaries

In this topic, concepts of basic definitions are given.

A non-empty subset L of a semigroup E is called a subsemigroup of E if [> C L. A non-empty subset
L of a semigroup E is called a left (right) ideal of E if EL C L (LE C L). An ideal L of E is a non-empty
subset which is both a left ideal and a right ideal of E. An ideal L of a semigroup E and m,n are positive
integers. We called (m, n)-ideal of a semigroup E if L™EL™ C L, a non-empty subset L of a semigroup E.
We denote

m+n
[LI(m,n) = U L"NL™EL™ is principal (m,n)-ideal,

r=1

m
[L](m,0) = U L"NL™E is principal (m,0)-ideal,

r=1

n
[L](0O,n) = U L" NEL™ is the principal (0, n)-ideal,
r=1
i.e., the smallest (m,n)-ideal, the smallest (m,0)-ideal, and the smallest (0,1 )-ideal of E containing L,
respectively.

Lemma 2.1 ([11]). Let E be a semigroup and m,n positive integers, and (7], ) the principal (m,n)-ideal
generated by the element Tt. Then
(1) ([7d(m,0)™E =n™E;
() E(lmdon))™ = En™;
3) ([7(m,0)) ™E([d (o)) = T EA™.
For any n; € [0,1], where i € J, define V j; := sup{ni} and /A n; = inf{ni}. We see that for any
ied ieg ied ied
n1, M2 € [0,1], we have 11 V', = max{ny, nz} and ny Anz = min{ny, na}.
Definition 2.2 ([19]). A fuzzy subset (fuzzy set) o of a non-empty set T is a function from T into the closed
interval [0,1],ie, o: T — [0,1].

Definition 2.3. [13] A fuzzy subset o of a semigroup E is said to be a fuzzy subsemigroup of E if o(uv) >
o(u) Ao(v) forall u,v € E.

Definition 2.4 ([13]). A fuzzy subset o of a semigroup E is said to be a fuzzy left (right) ideal of E if
o(uv) = o(v) (o(uv) > o(u)) for all u,v € E. An IVF subset o of a semigroup E is called a fuzzy ideal of E
if it is both a fuzzy left ideal and a fuzzy right ideal of E.

Definition 2.5 ([13]). A fuzzy subsemigorup o of a semigroup E is said to be a fuzzy (m,n)-ideal of E if
o(uwuy - Umzviva - -+ v ) = o(u) Ao(ug) - Ao(um) Ao(vi) Ao(va)---o(vy) for all uy,uy, ..., Um, Vi,
V2,...,vn,z € E and m, n are positive integers.

The set of all closed subintervals of [0, 1] is denoted by C, that is,
C=m=Mm" m10<n <n" <1}

We note that ,n] = {n} for all n € [0,1]. Forn = 0 or 1 we shall denote [0,0] by 0 and [1,1] by 1. Let
A=M",n"land 9 = [0, 9"] in €. Define the operations “<”, “=",“A”, and “Y” as follows:
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(1) § < difand only if n~ <9~ and n* < 9F;
2) =9 ifand only ifn~ =9~ andnt =9;
BG)AAd=[M"Ad), mTAT);
@ AYd=[(n" Vo), Mmt Vo).

If 1 > 9, we write & < 7.

Proposition 2.6 ([4]). For any 7, D, W € C, the following properties are true:

() nAn=nandnYn="1n;

2 AV =0 ANandnYd=9 Y7

(3) MAD A D=aAL@AD®) and HYI) Y D© Y w);
4) A
)

0|

=nY
AADN YD =\YD) AP YD) and GYN LAW=MAD) Y D AL®);

A=Y thenq i@ <9 AwandqYyw <d Y .

Definition 2.7 ([20]). An interval valued fuzzy subset (shortly, IVF subset) of a non-empty set T is a
functiono: T — C.

For two IVF subsets ¢ and T of a non-empty set T, define
g< o(u) <7T(u) forallueT,;

T oLCTand T G

T)(u) =0o(u) AT(u) forallu e T.

For two IVF subsets ¢ and T of a semigroup E, define the product ¢ o T as follows: for all u € E,

(xy)EFL

Y {o(x) AT(y)}, if Fu #0,
(GoT)(u) = {
0, lf Fu - @/

where Fy, :={(x,y) € E x E|u=xy}.

Definition 2.8 ([15]). An IVF subset G of a semigroup E is said to be an IVF subsemigroup of E if 6(uv) >
o(u) Ao(v) for all u,v € E.

Definition 2.9 ([15]). An IVF subset ¢ of a semigroup E is said to be an IVF left (right) ideal of E if
o(uv) = o(v) (o(uv) = o(u)) for all u,v € E. An IVF subset ¢ of a semigroup E is called an IVF ideal of E
if it is both an IVF left ideal and an IVF right ideal of E.

Definition 2.10 ([15]). Let L be a subset of a semigroup E. An interval valued characteristic function x|
of L is defined to be a function X : E — C by

() = 1, ifuel,
XXW=NG, ifuel,

forallu € E. Incaseif L =E (resp. L = 0), then X; = & (resp. X = (). Where € is an IVF subset of E
mapping every element of E to 1.

Definition 2.11 ([15]). An IVF subsemigroup ¢ of a semigroup E is said to be an IVF bi-ideal of E if
o(uww) = 5(u) A o(w) for all u,v,w € E.

Lemma 2.12 ([15]). Let 1 and ] be a non-empty subset of a semigroup E. Then the following statements hold:

D) o) A X5) = Kiny)s
2) (X1)o(x5) = X1y)s
(3) lfI - I/ then )7(1 C Y]
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3. Interval valued fuzzy (m,n)-ideal in semigroups

In this section, we will study concepts of IVF (m, n)- ideal in a semigroup and we study properties of
those.

Definition 3.1. An IVF subsemigorup o of a semigroup E is said to be an IVF (m,n)-ideal of E if
o(uwuy - Umzviva - -+ v ) = o(u) Ao(up) - - A0(Um) A G(v1) AT(v2)---0(vn) forall ug, us, ..., um,z, vy,
V2,...,vn € E and m, n are positive integers.

Theorem 3.2. Let {05 | i € J} be a family of IVF (m,n)-ideals of a semigroup E. Then iégai is an IVFEF (m,n)-ideal
of E.
Proof. Let u,v € E. Then,

iJekgﬁi(uv) = iéa{ﬁi(u) ATy (v)} = iégﬁi(u) A ié\fi(\))-

Thus, _Agﬁi is an IVF subsemigroup of E. Let uj,uy,..., Wm,z,v1,V2,...,vn € E. Then,
i€

iégﬁi(muz S UmZVIV2 - V) = iég{ﬁ(uﬂ AT(uz) - A O(um) A T(v1) A O(v2) -+ O(vn)}
= A0(w) A AT(up) -+ A AT(um) A AT(VI) A AT(va) -+ AT(Vvn).
i€d i€d i€d i€gd i€gd i€g

Thus, .Agﬁi is an IVF (m,n)-ideal of E. O
i€

Theorem 3.3. Let L is an ideal of a semigroup E and m,n are positive integers. Then L is an (m,n)-ideal of E if
and only if the interval valued characteristic function X is an IVF (m, n)-ideal of E.

Proof. Suppose that L is an (m,n)-ideal of E and let uj,up,...,um,z,v1,v2,...,vn € E. Then we have
following cases.

Casel. If u; ¢ L for some i € {1,2,...,m}, then X (ui) = 0 for some i € {1,2,...,m}. Thus, ¥ (\u,
ceemzvy, V2o vn) 2 X () AXp(u) A AX (wm) A AXE (Vi) AXE(v2) A AXE (V).

Case 2. If vj ¢ L for some j € {1,2,...,n}, then X (v;) = 0 for some j € {1,2,...,n}. Thus, X (ujus
“Umzvy, V2 vn) 2 X (w) AXp(uz) A AXE (wm) A AKX (Vi) AX(V2) A A X (V).

Case 3. If uy,v; € Lforeachic{1,2,...,m}andj € {1,2,...,n}, then wup - - - umpzvivy - - - v, € LMEL™ C
L. Thus X (u;) =1 = X;(u;) for eachi € {1,2,...,m}and j € {1,2,...,n}. Hence, Xx (wuz---umzvivy---
vn) =1 =X (u) AXp(ug) A AXE (wm) Ao AXL (V) AXp(v2) A=+ A XL (V).

Therefore, x| is an IVF (m, n)-ideal of E. Conversely, suppose that X; is an IVF (m,n)-ideal of E. Let
Uy, U, ..., Wm, z,V1,V2,...,vn € Land z € E. Then, x| (Wuy -+ - wumzvive - - - v ) = X (wg) AXp(up) A -+ A
XL (Wm) Ao AXL (V1) AXL(v2) A -+ A X (vn) = 1. It follows that X (wjup - - - wmzvive - - - v ) = 1. Hence,
WU - - - UmzviVo - - - v € L. This implies that, L™ EL™ C L. Therefore, L is an (m, n)-ideal of E. O

Theorem 3.4. Let G an IVF subsemigroup of £ and m, n positive integers. Then, G is an IVF (m,n)-ideal of E if
and only if ™ o € o 6™ T ©, where & is an IVF subset of € mapping every element of E to 1.

Proof. Suppose that G is an IVF (m,n)-ideal of E and u € E. If F,, = 0, then it is easy to verify that
(6™ o€od™)(u) < o(u). If Fy # 0, then (6™ o0 &)(u) # 0and 6™ (y) # 0. Thus there exist x,y € E such that
u=xy, (6™o&)(x) #0, and 6™ (y) # 0. Since (6™ o &)(x) # 0, there exist x;,y; € E such that x = x1y1,
™ (x1) #0and E(yy) #0O. By induction, it is easy to prove that there exist x2,Ys,...,Xm,Yym € E such that
forany i € {2,...,m} s0 xi_1 = x4yi, o™ F(x;) # 0 and o(y;) # 0. Similarly, for case ™ (y) # 0 there
exist x5, Y3, ..., X}, _1, Y51 € Esuchthat, x{ ; =xjyj, forallj€{2,...,n—1}, N (x]) # 0 and o(yj) # 0.
Thus,

(G™o€od™)(u)= Y (6Mo&)(x) AT (y)
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= ¥y ( Em(xl)xe(yl))( Y o Hx{) AT(y))

(x,y)€Fy (x1,Y1)€EFx X{/‘J{)GFy

= Y Y Y (0™ (x1) A E(y1) AT (x]) A T(Y]))
(%, y)EFu(x1,y1) EFx (x{,y1) EFy

= ¥ Y Y (@™(xq) ATV (x]) A T(y1))
(x;y)EFu(x1,y1)EFx(x],y1)€Fy ! U1

= Y Y Y (Y o™ l(x) A5lyy)

(xy )EFu(Xlryl)eFx(X{ﬂJ]/)er (Xéryé)erl

Y 5" 2(xg) A T(ys) AT(y1))
2)EF

—

(x5,

3=

!
*1

= Y Y Y Y Y (O(xm) A E(Um) A E(Um—l)

Ao A T(Y2) AT(xy 1) AG(Yyy 1) AT(yp o) A--- A T(yy))

= Y Y Y Y Y e Y
(X/y)eFu(Xllyl)eFx[X{/U{)er(Xézyé)erl(Xéryé)eFX{ (Xm/ym)GFxm71
R (O(xm) A T(Yym) L T(Ym—1) A -+ AT(x5,_1)

(anl’ynfl)el:xaiz

ATy 1) ATy ) A--Tlyp)) = Y Tlxy) =o(u).

(x,y)eFy

Conversely, suppose that o™ 0c&oo™ C G. For any uj,up,...,Um,z,V1,V2,...,vn € E, let u = wyup
-+ Um2ZV1Vs - - - V. Then

(WU - - UmzViVa - - -V ) = o(u) = (6™ o &™) (1)

(p q)eFu

= Y (@M o&)(wmug - umz) AT (vva - vn)
(p,g)eFy

= Y oM (u) A (V) A ( Y " (u) Ao(v))
uluZ"'umZ)eFuv (VlVZ"'vn)eFu’v/

(
=™ (Wl wim) A E(2)} AT H(Vviva - V1) A B(vn)}

=™ (WU - Um) AT H(viva v 1) A T(vn)

Y

o(u) AT(up) A+ - AT(Um) AT(V1) AT(V2) A+ AT(Vn).
Hence, G is an IVF (m,n)-ideal of E. O

Definition 3.5. Let E be a semigroup and m,n be positive integers. Then E is called (m,n)-regular if for
each u € E there exists z € E such that w = w™zw™ equivalently for each subset L of Eif L C L™EL™ or
for each element wof E, w € w™Ew™.

Lemma 3.6. Let E be an (m, n)-reqular of semigroup and m,n be positive integers. Then every IVF (m,n)-ideal
of E is an IVF bi-ideal of E.

Proof. Suppose that G is an IVF (m,n)-ideal of E and 1i,j, k € E. By assumption there exist x,y € E such
that ijk = i™xjk™yj™. Thus o(ijk) = o(i™xjk™yj™) = c(i™(xjk™y)i") = o(i™) L o(i™) = ©(i) A T(j).
Hence, T is an IVF bi-ideal of E. O

Theorem 3.7. Let G be an IVF subsets of a semigroup E. Then o(u) =< o™ (u™) for any positive integer m and
uckt
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Proof. Let u € E and m be positive integer. Then u™ = uu™"!. Thus
™= ¥ op)rc™(q)

,q ] EFum

= o(u) Ao um™

=W Yy op)rc™3(q")
(p",4")EF m1

= o(uw) Ao(uw) A™ Hu™ )

o™ (u

)

=o(u) AT(u) A AT(u) =0o(u).
[l
Theorem 3.8. Let E be a semigroup and m,n be positive integers. Then E is (m,n)-regular if and only if ¢ C
0™ o oo™ for any positive integer m and u € E.

Proof. Let E be (m, n)-regular and u € E. Then u = u™pu™ for some p € E. Thus

(0Molot™)(w = Y (cMo&)(i) AT ()

Hence,  C 0™ o € 0 6". Conversely, ~suppose that u € E. Since X is an IVF subset of E, by assumption
and Lemma 2.12 we have 6, C 0};' 0 £ 0 0}; = Oymgyn. Thus, u € u™Eu™. Hence, E is (m, n)-regular. [

Theorem 3.9 ([11]). Let E be a semigroup. Then E is (m, n)-regular if and only if for all L € L, ) (the set of all
(m,n)-ideals of E), L = L™EL™.

Theorem 3.10. Let E be a semigroup and m,n positive integers. Then E is (m,n)-regular if and only if ¢ =
o™ o & o™ for each IVF (m,n)-ideal G of E.

Proof. Let E be an (m, n)-regular semigroup and ¢ be an IVF (m,n)-ideal of E. Then, by Theorems 3.4
and 3.8, @ = 6™ o € 0 ©". Conversely, suppose that @ = ™ o € o 6" for each IVF (m,n)-ideal © of E and
let u € E. Then, [u](;;, ) is an (m,n)-ideal of E, by Theorem 3.3, =[;j(m n) is an IVF (m,n)-ideal of E.
Thus, by hypothesis, we have

Xul(mn) = XHLLMTTI,TI) o€ OXRL](m,n) = Y([u](m,n])mE([u](m/n))n'
So, W (mn) = (W (mn)) "E([UW] (n,n))"- By Lemma 2.1, [u] () = u™EU™. Thus, u € u™Eu™. Hence, E is
(m,n)-regular. O

Theorem 3.11. Let E be a semigroup and m, n be positive integers with m > 2 or n > 2. Then E is (m, n)-reqular
if and only if L = L2 for each (m,n)-ideal L of E.

Proof. Let E be (m,n)-regular semigroup and L be (m,n)-ideal of E. Then, by Theorem 3.9, L = L™EL™.
Thus, L = L™EL™ = L™E(L™EL™)® = L™E(L™EL™)(L™EL")--- (L™EL") C (L™EL™)(L™EL") = LL.
Inverse inclusion is obvious because L is an (m,n)-ideal of E. Hence, L = L2. Conversely, suppose that
L = L2 for each (m,n)-ideal L of E and u € E. Since [u] (mn) is an (m,n)-ideal of E we have

[u](m,n) = [u}(m,n)[u](m,n)
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= [U}(m,n)([u](m,n}[u](m,n))

n

I
=

](m,n) )m[u] (m,mn) ([‘LL] (m,n))
[u] (mm) )mE( [u] (mm) )n =umEu™.

N

Since u € [u]ym,n, we have u € u™Eu™. Hence, E is (m, n)-regular. O

Theorem 3.12. Let © be an IVF (m,n)-ideal of E and m,n positive integers with m > 2 or n > 2. Then E is
(m, n)-regular if and only if 6 = G o ©.

Proof. Let E be an (m, n)-regular semigroup, o be IVF (m, n)-ideal of E and n > 2. Then by Theorem 3.10,
G=0Mo&o0™". Thus,

o=0"0€0T
=0"ofo(6Molod™)"
=GM0Eo0G Moot 0T Moot o (GMood™) 200 o™
=0m0(Eo™o0&)ot" oMo (E0T 0 (GMoEoT ) 2o ™oE)oT"

Thus, © C Go0. Inverse inclusion is obvious since © is an IVF (m,n)-ideal of E. Hence, ¢ = Go®©.
Conversely, suppose that ¢ = 6o Gand let L be an (m,n)-ideal of E and u € L. Then by hypothesis
Xe(w) = (X oxXr)(w) = X3 (w). Since ¥ (u) = 1 and X3 (1) = 1 we have u € L2 Thus, L C [?, inverse
inclusion is obvious since L is an (m,n)-ideal of E. Thus, L = 2. Hence by Theorem 3.11, E is (m,n)-
regular. Similarly, Theorem 3.12 can be proved for the case m > 2. O

Lemma 3.13. Let 0 is an IVF (m,n)-ideal of a semigroup E and T is an IVF subsemigroup of E, such that
cM™Mo€oo™ ETL 0. Then Tisan IVF (m,n)-ideal of E for any positive integers m, n.

Proof. By assumption, T is an IVF subsemigroup of E. Then, by Theorem 3.4, T o € 0T C T. Thus
ThoEoTH(u) E oMo oo™ (u) C T(u). Hence, T is an IVF (m, n)-ideal of E. O

Lemma 3.14. Let G be an IVF (m,n)-ideal and T be an IVF subset of a semigroup E and m, n be positive integers.
If6oTC TorToo L G, then the following statements hold:

(1) ooTisan IVF (m,n)-ideal of E;

(2) Too isan IVF (m,n)-ideal of E.

Proof. Suppose that GoTC TorToo C ©.

(1) By assumption we have (6o7T)o(6oT) CEGo(060T) =06000T L 60T Thus 607 is an IVF subsemi-
group of E. So, we have

(GoT)™o€o(GoT) = (GoT)™olo(ToT)™ Lo

GoT)
Comood" 1o(GoT)=0m0E0T

Thus, Go7Tis an IVF (m, n)-ideal of E.

(2) Similar to (1) we can show that To G is an IVF (m, n)-ideal of E. O
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4. (m,0)-regular and (0, n)-regulars

In this section, we defined (m,0)-regular and (0, n)-regulars in semigroup and integrated properties
of its.

Definition 4.1. An IVF subsemigroup of a semigroup E is said to be an IVF (m,0)-ideal of E if 6(ujup
< Umz) = 0(u1) AG(up) - A G(um) for all ug, uy, ..., um,z € E. And we said to be an IVF (0, n)-ideal of E
if 6(zvivy - vn) = ©(v1) A G(v2) ---O(vy) for all ug,uy,..., um,z,v1,v,...,vn € E and m,n are positive
integers.

Theorem 4.2. Let E be a semigroup and m,n be positive integers. Then L is an (m, 0)-ideal ((0,n)-ideal) of E if
and only if the interval valued characteristic function Xy is an IVF an (m,0)-ideal ((0, n)-ideal) of E.

Proof. Suppose that L is an (m, 0)-ideal of E and let uy,uy, ..., um, z € E. Then we have following cases.
Case 1. If u; ¢ L for some i € {1,2,...,m}, then X (ui) = 0 for some i € {1,2,...,m}. Thus X (Wu
ceumz) =X (u) AX(u2) A AXL (um).
Case 2. Ifu; ¢ Lforeachic{1,2,...,m}, then¥X (ui) =0 for each i € {1,2,..., m}. Thus X (wiuy - - - umz)
=X (wr) AXp(ug) A - AXL (um).

Therefore, X1 is an IVF (m, 0)-ideal of E. Conversely, suppose that x| is an IVF (m, 0)-ideal of E. Then
Xp(wug - -umz) = 1 = Xp(w) AXL(up) A -+ AXp (Um). Thus, wyup ---umz € 1. Hence, L™EL™ C L.
Therefore, L is an (m,0)-ideal of E. O

Theorem 4.3. Let © an IVF subsemigroup of E and m, n positive integers. Then, G is an IVF (m,0)-ideal ((0,n)-
ideal) of E if and only if 6™ o EC ¢ (Eo0™ C 0).

Proof. Straightforward. O

Lemma 4.4. Let E be a semigroup and m,n be positive integers. Then every IVF right (left) ideal of € is an IVF
(m, 0)-ideal (IVF (0,n)-ideal) of E.

Proof. Let © be an IVF right ideal and uy,uy, ..., um,z € E. Then
o(uwuy - Umz) = O(wup - - Um) = 0(ug) A G(u2) -+ A 0(Um).
Thus, G is an IVF (m, 0)-ideal of E. O

Definition 4.5. Let E be a semigroup and m, n be positive integers. Then E is said to be (m, 0)-regular((0, n)-
regular) if for each u € E there exists x € E such that u = u™x (u=yu™).

Theorem 4.6. Let E be a semigroup and m,n be positive integers. If E is (m, 0)-reqular ((0, n)-regular), then IVF
(m, 0)-ideals ((0, n)-ideals) and IVF right (left) ideals coincide.

Proof. Let E be an (m, 0)-regular,  be an IVF (m, 0)-ideal of E, and u,v € E. Then there exists x € E such
that uv = u™xv. Thus,
o(uv) = o(u™xv) =o(u™(xv)) = o(u™) = o(u).

Hence, ¢ is an IVF right ideal of E. O

Definition 4.7. An IVF subset 0 of a semigroup E is called idempotent if 60 G = G.
Theorem 4.8. Let E be an (m, n)-regular semigroup. Then the IVF (m, 0)-ideals ((0, n)-ideals) of E are idempotent.
Proof. Suppose that © is an (m, 0)-ideal of E. Then, 6™ o ELCT By assumption and Theorem 3.8, we have

GLoMmolod =0M0E00

Thus, 6 C 600. Clearly 606 C 0. Hence, 60 ¢ = 0. Therefore, G is an idempotent. O
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Theorem 4.9. Let E be a semigroup and m,n be positive integers. Then E is (m,0)-regular ((0,n)-regular) if and
onlyif 6 C 6™ o€ (6 C Eoa™) for each IVF subset G of E.

Proof. Let E be an (m, 0)-regular semigroup and u € E. Then, there exists x € E such that u = u™x. Thus,

Gmo&)(uw)= Yy TMp)r&lg)= ¥ T™(p)A&(q)
(prq)eFu (prq)EFumx

o™ (U™ A E(X) =™ (u™) A1l =" (u™) = o(u).

Hence, ¢ C o™ o &. Conversely, suppose that u € E. Since ¥ is the interval valued characteristic function
of E. By hypothesis and Theorem 2.12, we have that x,, C X' © € = Xmg. Thus, u € u™E. Hence, E is
(m, 0)-regular. O

Theorem 4.10 ([11]). Let E be a semigroup, R o) be the set of all (m,0)-ideals of E, and L (g ) be the set of all
(0,n)-ideals of E. Then E is (m,0)-regular ((0,n)-regular) if and only if R = R™oE (L =Eo L"), VR € R(n 0)
(VL € £ (1m,0)), where m,n are positive integer.

Theorem 4.11. Let E be a semigroup and m, n be positive integers. Then E is (m, 0)-reqular ((0,n)-regular) if and
onlyif 6 =c" o0& (6 = Eoac™) for each IVF (m,0)-ideal ((0,n)-ideal)  of E.

Proof. Suppose that E is an (m, 0)-regular semigroup and G is an IVF (m, 0)-ideal of E. Then, by Theorems
49and 4.3, wehave 6 C Mo and 6™ o0& C 6. Thus, 5 =6™o E.

Conversely, suppose that @ = ™ o € and © is an IVF (m, 0)-ideal of E. Let R be (m, 0)-ideal of E. Then,
R? C Rand R™E C R. By Lemma 2.12 (3), X&' o € C Xg. Thus Xy is an IVF subsemigroup of E. By Lemma
2.12 (2) we have X}* 0 & = Xgmg C Xg and by Theorem 4.3, X is an IVF (m,0)-ideal of E. By assumption,
X2t o & =Xgmg = Xg- Thus, R™E = R. Hence by Theorem 4.10, E is (m, 0)-regular. O

Theorem 4.12 ([13]). Let E be a semigroup. Then, E is (m,n)-regular if and only if RNL = R™L™ for every
(m, 0)-ideal R of E and for every (0,n)-ideal L of E.

Theorem 4.13. Let G be an IVF (m,0)-ideal and T be an IVF (0,n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-reqular of E if and only if 6 AT =0 oT™.

Proof. Suppose that E is an (m, n)-regular semigroup of E. By Theorem 3.8, 5 ATC (G AT)™ o €0 (G AT)™
Since6 ATC odand ¢ AT C T, we have

(GAT) Moo (GAT)*"CoMoloT™.

By Theorem 4.3, c™ o EoT* =06Mo7Tand by Lemma 4.8, we get T =7". Thus, 6 AT C 0™ oT". Since ¢
and T are IVF (m,0)-ideal and IVF (0,n)-ideal of E, we have G AT =0T oT".

Conversely, suppose that 6 AT = 6™ oT" and R,L be an (m,0)-ideal and a (0, n)-ideal of E, respec-
tively. By Lemma 4.2, Xg and X are IVF (m,0)-ideal and IVF (0,n)-ideal of E. By hypothesis we have
XRAL = XR AXL =XR ©X[' = Xgmpn. Thus, RNL =R™L™. Hence by Theorem 4.12, E is (m, n)-regular.

O]

The following result is an immediate consequence of Lemma 4.8 and Theorem 4.13.

Corollary 4.14. Let G be an IVF (m,0)-ideal and T be an IVF (0, n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-reqular of E if and only if G AT =0oT.

Lemma 4.15 ([11]). Let R0y and Lo n) be the set of all (m,0)-ideal and (0,n)-ideal of a semigroup E, re-
spectively, and m,n be positive integers. Then E is (m,n)-regqular if and only if RN L = R™LNRL™ for each
R e R(m,O) and L € L(O,n)'

Theorem 4.16. Let G be an IVF (m,0)-ideal and g be an IVF (0,n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-reqular of E ifand only if G AT =" oT AGoT".
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Proof. Suppoe that E is an (m, n)-regular semigroup of E. Then,

GYTC (GAT) Moo (GAT)"CoMoloT" CoMmon.
Thus, 6 AT C 6™ o7T. Similarly 6 AT C GoT". Thus, 5 AT L 6™ oT A GoT". By assumption, G A T =
ocmhoTATCoT™.

Conversely, suppose that 6 AT = 6™ og A GoT" and let R,L be an (m,0)-ideal and a (0,n)-ideal
of E, respectively. Then by Lemma 4.2, Xz and X are IVF (m,0)-ideal and IVF (0,n)-ideal of E. By
hypothesis we have Xgr~1 = Xr AXL = XR A X[ = Xgmpn. Thus, RNL = R™L™. Hence by Lemma 4.15, E
is (m,n)-regular. O

Lemma 4.17. Let G be an IVF (m,0)-ideal (fuzzy (0,n)-ideal) of a semigroup E and m,n be positive integers.
Then GYG™ o0& (G Y EoT™).

Proof. The proof is obvious. O

Lemma 4.18. Let E is (m, n)-regular of a semigroup E and m,n be positive integers. Then for each IVF (m,n)-
ideal © of E, there exist an IVF (m,0)-ideal T and an IVF (0,n)-ideal © of E such that 6 =T o 0.

Proof. Suppose Ehat G is an IVF (m, nl—ideal of E. Then, ™o & E o' C o Sincei E is (m, n)-regular we
have 6 C 6™ o€ oo™ Thus, 0 = 0Mm€ooc™. LetT=0Y 0" o€ and ¢ = 0 Y Eo0". Then by Lemma
4.17, T and h are IVF (m,0)-ideal and IVF (0,n)-ideal of E, respectively. Since E is (m, n)-regular we have

YOTMoE =m0 h=0Y oo™ =Cootand ECEEE" =& " C € C €. This implies that
hus, ToG =0m0E0€od" =™ o0& 0T = 3. O

T=0
=g
L

—

emma 4.19. Let E is (m,n)-reqular of a semigroup E and m,n be positive integers. Then G o g is an IVF
(m, n)-ideal of €, for each © and T are IVF (m,n)-ideal and IVF subset of E, respectively.

Proof. Suppose that ¢ and T are IVF (m, n)-ideal and IVF subset of E. Then,

(GoT)m oo (GoT)* =(GoT)o(GoT)o---0(6oT)o€o(GoT)o(GoT)o---0(GoT)

m-times n-times

=(0oT)o(GoT)o(GoT)o---0(GoT)o€o(GoT)o---0(G0oT)o(ToT)

m—1-times n——1-times
C(GoT)oEoo(GoT) CGoloTLo™MoEoTL GoloT.
Thus, o 7Tis an IVF (m,n)-ideal of E. O
The following result is an immediate consequence of Lemma 4.18 and 4.19.

Theorem 4.20. Let E be a semigroup and m,n be positive integers. Then E is (m, n)-reqular if and onlf if for each
IVF (m,n)-ideal © of E, there exist an IVF (m,0)-ideal T and an IVF (0,n)-ideal G of E such that 6 =T o .

Theorem 4.21. Let f be an IVF (m, 0)-ideal and g be an IVF (0,n)-ideal of a semigroup E such that 60T =To0.
Then the product © o T is an IVF (m,n)-ideal of E.

Proof. By assumption, we have that
(GoT)o(0oT) =(000)o(ToT)CGoT.
Thus, 60T is an IVF subsemigroup of E. Also, we have

(GoT)moo(GoT)* =0 oo (EoT)o" C o™ o 0Too =™

Hence, 6 0T is an IVF (m, n)-ideal of E. O
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Definition 4.22. An IVF (m,n)-ideal ¢ of a semigroup E is said to be minimal if for each IVF (m, n)-ideal
¢’ of E, ' C G implies ¢/ =G.

Theorem 4.23. Let E be an (m, n)-regular semigroup and m, n be positive integers. Then an IVF subset ¢ of E is a
minimal IVF (m,n)-ideal of E if and only if there exist a minimal IVF (m, 0)-ideal T and a minimal IVF (0, n)-ideal
h of E such that G =goh.

Proof. Suppose that G is a minimal IVF (m,n)-ideal of E. By Lemma 4.18, ¢ = (G Y G™ o0 &) o (T Y EoT™).
Next to show that @ Y ™ o € is a minimal IVF (m, 0)-ideal of E. Suppose that ' is an IVF (m, 0)-ideal of E
such that 6/ C (o Y 0™ o ). By assumption and by Corollary 4.14, (G Y™ Y E) A (TY Eod™) = (T YT ™o
E)o (oY Eov™). Similarly 5’0o (G Y EoT™) =0 A (GYE0T™) L (GYT™0E) A (TY Eod™) =0T. By Lemma
419,6' o (G Y Eoo™)is an IVF (m,n)-ideal of S. Since ' o (G Y E0o™) C G we have 6’ o (G Y E0 ™) =G.
Thus, (Y™ o0&) A(GYEo0T™) =0 A(GYE0T"). Since 6 C (GYT™0&) A (T AEo0T"), we have
6 C 0. Thus, 5 Y™ o0& C 6. Hence, ' = G. Therefore, G Y 6™ o & is a minimal IVF (m,0)-ideal of E.
Similarly, we can prove that & Y € oo™ is a minimal IVF (0,n)-ideal of E.

Conversely, suppose that @ = T o h for some minimal IVF (m,0)-ideal T and minimal IVF (0, n)-ideal
o of E. By Theorem 4.20, G is an IVF (m,n)-ideal of E. Let Q be IVF (m,n)-ideal of E such that Q C .
Then, Q" 0 € C ™o & C (Too)™ o€ = ((ToG)o(ToG)o---0(600G)o&) C (Tod)o(Toh)o---0(go
G)oE CTol C (Moot )o& CT" 08 C 7. Since Q" o0& is an IVF (m,0)-ideal of E and T is a
minimal IVF (m,0)-ideal of E, we have Q™ o & = 7. Similarly, we can prove that € o Q" = G. Thus,
T=T00= (00800 )=0"0080Q C QO 0&0oQ" C Q. Hence, G is a minimal IVF
(m,n)-ideal of E. O

Corollary 4.24. Let E be an (m,n)-reqular semigroup and m,n be positive integers. Then E has at least one
minimal IVF (m,n)-ideal if and only if E has at least one minimal IVF (m,0)-ideal and at least one minimal IVF
(0, n)-ideal.

5. Conclusion

In this paper, we give the concept of interval valued fuzzy (m,n)-ideals and study the properties of
interval valued fuzzy (m,n)-ideals in semigroups. In the future we study neurotrophic (m,n)-ideals in
semigroup or algebraic.
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