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Abstract
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1. Introduction

The classical of interval valued fuzzy sets was conceptualized by Zadeh in 1975 [20]. This concept
is not just used in mathematics and logic but also in medical science [3], image processing [8] and deci-
sion making method [21] etc. Biswas [2] used the ideal of interval valued fuzzy sets to interval valued
subgroups in In 1994. In 2006, Narayanan and Manikantan [15] developed theory of an interval valued
fuzzy set to interval valued fuzzy subsemigroups and types interval valued fuzzy ideals in semigroups.
In 2012, Kim et al. [9] defined interval valued fuzzy quasi-ideals in semigroup and they studied of its
properties. In 2013 Singaram and Kandasamy [16] characterized regular and intra-regular semigroup in
terms of interval valued fuzzy ideals.

In 1961, Lajos [12] studied the concepts of (m,n)-ideals in semigroups which generalized ideals of
semigroups. The research of (m,n)-ideals of semigroups has interested many such as Akram et al. [1],
Tilidetzke [17], Yaqoob and Chinram [18], and many others. In 2019 Ahsan et al. [13] extended the ideals
of (m,n)-ideals in semigroups to fuzzy sets in semigroup and they characterize the regular semigroup
by using fuzzy (m,n)-ideals. In 2021, Gaketem [6] studied concept of interval valued fuzzy almost
(m,n)-ideals in semigroups. Later, Gaketem [5] studied concept of interval valued fuzzy almost (m,n)-
bi-ideals in semigroups. In 2022, Nakkhasen [14] gave concept picture fuzzy (m,n)-ideals of semigroups
and investigated some basic properties of picture fuzzy (m,n)-ideals of semigroups. Later, Gaketem [7]
discussed concept of interval valued fuzzy almost (m,n)-quasi-ideal in semigroups. Recently, Khamrot
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and Gaketem [10] defined spherical interval valued fuzzy ideals and find necessary and sufficient of kinds
spherical interval valued fuzzy ideals.

In this section, we give the concepts of interval valued fuzzy (m,n)-ideals in semigroups and we
investigate the properties of interval valued fuzzy (m,n)-ideals. Furthermore, we characterize the regular
semigroup by using interval valued fuzzy (m,n)-ideals.

2. Preliminaries

In this topic, concepts of basic definitions are given.
A non-empty subset L of a semigroup E is called a subsemigroup of E if L2 ⊆ L. A non-empty subset

L of a semigroup E is called a left (right) ideal of E if EL ⊆ L (LE ⊆ L). An ideal L of E is a non-empty
subset which is both a left ideal and a right ideal of E. An ideal L of a semigroup E and m,n are positive
integers. We called (m,n)-ideal of a semigroup E if LmELn ⊆ L, a non-empty subset L of a semigroup E.
We denote

[L](m,n) =
m+n⋃
r=1

Lr ∩ LmELn is principal (m,n)-ideal,

[L](m, 0) =
m⋃
r=1

Lr ∩ LmE is principal (m, 0)-ideal,

[L](0,n) =
n⋃

r=1

Lr ∩ ELn is the principal (0,n)-ideal,

i.e., the smallest (m,n)-ideal, the smallest (m, 0)-ideal, and the smallest (0,n)-ideal of E containing L,
respectively.

Lemma 2.1 ([11]). Let E be a semigroup and m,n positive integers, and [π](m,n) the principal (m,n)-ideal
generated by the element π. Then

(1) ([π](m,0))
mE = πmE;

(2) E([π](0,n))
n = Eπn;

(3) ([π](m,0))
mE([π](0,n))

n = πmEπn.

For any ηi ∈ [0, 1], where i ∈ J, define ∨
i∈J

i := sup
i∈J

{ηi} and ∧
i∈J
ηi := inf

i∈J
{ηi}. We see that for any

η1,η2 ∈ [0, 1], we have η1 ∨ η2 = max{η1,η2} and η1 ∧ η2 = min{η1,η2}.

Definition 2.2 ([19]). A fuzzy subset (fuzzy set) σ of a non-empty set T is a function from T into the closed
interval [0, 1], i.e., σ : T → [0, 1].

Definition 2.3. [13] A fuzzy subset σ of a semigroup E is said to be a fuzzy subsemigroup of E if σ(uv) >
σ(u)∧ σ(v) for all u, v ∈ E.

Definition 2.4 ([13]). A fuzzy subset σ of a semigroup E is said to be a fuzzy left (right) ideal of E if
σ(uv) > σ(v) (σ(uv) > σ(u)) for all u, v ∈ E. An IVF subset σ of a semigroup E is called a fuzzy ideal of E
if it is both a fuzzy left ideal and a fuzzy right ideal of E.

Definition 2.5 ([13]). A fuzzy subsemigorup σ of a semigroup E is said to be a fuzzy (m,n)-ideal of E if
σ(u1u2 · · ·umzv1v2 · · · vn) > σ(u1)∧ σ(u2) · · ·∧ σ(um)∧ σ(v1)∧ σ(v2) · · ·σ(vn) for all u1,u2, . . . ,um, v1,
v2, . . . , vn, z ∈ E and m,n are positive integers.

The set of all closed subintervals of [0, 1] is denoted by C, that is,

C = {η = [η−,η+] | 0 6 η− 6 η+ 6 1}.

We note that [η,η] = {η} for all η ∈ [0, 1]. For η = 0 or 1 we shall denote [0, 0] by 0 and [1, 1] by 1. Let
η = [η−,η+] and ϑ = [ϑ−, ϑ+] in C. Define the operations “�”, “=”, “f”, and “g” as follows:
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(1) η � ϑ if and only if η− 6 ϑ− and η+ 6 ϑ+;
(2) η = ϑ if and only if η− = ϑ− and η+ = ϑ+;
(3) ηf ϑ = [(η− ∧ ϑ−), (η+ ∧ ϑ+)];
(4) ηg ϑ = [(η− ∨ ϑ−), (η+ ∨ ϑ+)].

If η � ϑ, we write ϑ � η.

Proposition 2.6 ([4]). For any η, ϑ,ω ∈ C, the following properties are true:

(1) ηf η = η and ηg η = η;
(2) ηf ϑ = ϑf η and ηg ϑ = ϑg η;
(3) (ηf ϑ)fω = ηf (ϑfω) and (ηg ϑ)gω = ηg (ϑgω);
(4) (ηf ϑ)gω = (ηgω)f (ϑgω) and (ηg ϑ)fω = (ηfω)g (ϑfω);
(5) if η � ϑ, then ηfω � ϑfω and ηgω � ϑgω.

Definition 2.7 ([20]). An interval valued fuzzy subset (shortly, IVF subset) of a non-empty set T is a
function σ : T → C.

For two IVF subsets σ and τ of a non-empty set T , define

(1) σ v g⇔ σ(u) � τ(u) for all u ∈ T ;
(2) σ = τ⇔ σ v τ and τ v σ;
(3) (σu τ)(u) = σ(u)f τ(u) for all u ∈ T .

For two IVF subsets σ and τ of a semigroup E, define the product σ ◦ τ as follows: for all u ∈ E,

(σ ◦ τ)(u) =

 g
(x,y)∈Fu

{σ(x)f τ(y)}, if Fu 6= ∅,

0, if Fu = ∅,

where Fu := {(x,y) ∈ E× E | u = xy}.

Definition 2.8 ([15]). An IVF subset σ of a semigroup E is said to be an IVF subsemigroup of E if σ(uv) �
σ(u)f σ(v) for all u, v ∈ E.

Definition 2.9 ([15]). An IVF subset σ of a semigroup E is said to be an IVF left (right) ideal of E if
σ(uv) � σ(v) (σ(uv) � σ(u)) for all u, v ∈ E. An IVF subset σ of a semigroup E is called an IVF ideal of E
if it is both an IVF left ideal and an IVF right ideal of E.

Definition 2.10 ([15]). Let L be a subset of a semigroup E. An interval valued characteristic function χL
of L is defined to be a function χL : E→ C by

χL(u) =

{
1, if u ∈ L,
0, if u /∈ L,

for all u ∈ E. In case if L = E (resp. L = ∅), then χL = E (resp. χL = ∅). Where E is an IVF subset of E
mapping every element of E to 1.

Definition 2.11 ([15]). An IVF subsemigroup σ of a semigroup E is said to be an IVF bi-ideal of E if
σ(uvw) � σ(u)f σ(w) for all u, v,w ∈ E.

Lemma 2.12 ([15]). Let I and J be a non-empty subset of a semigroup E. Then the following statements hold:

(1) (χI)f (χJ) = (χI∩J);
(2) (χI) ◦ (χJ) = (χIJ);
(3) if I ⊆ J, then χI v χJ.
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3. Interval valued fuzzy (m,n)-ideal in semigroups

In this section, we will study concepts of IVF (m,n)- ideal in a semigroup and we study properties of
those.

Definition 3.1. An IVF subsemigorup σ of a semigroup E is said to be an IVF (m,n)-ideal of E if
σ(u1u2 · · ·umzv1v2 · · · vn) � σ(u1)f σ(u2) · · ·f σ(um)f σ(v1)f σ(v2) · · ·σ(vn) for all u1,u2, . . . ,um, z, v1,
v2, . . . , vn ∈ E and m,n are positive integers.

Theorem 3.2. Let {σi | i ∈ J} be a family of IVF (m,n)-ideals of a semigroup E. Then f
i∈J
σi is an IVF (m,n)-ideal

of E.

Proof. Let u, v ∈ E. Then,

f
i∈J
σi(uv) � f

i∈J
{σi(u)f σi(v)} = f

i∈J
σi(u)f f

i∈J
σi(v).

Thus, f
i∈J
σi is an IVF subsemigroup of E. Let u1,u2, . . . ,um, z, v1, v2, . . . , vn ∈ E. Then,

f
i∈J
σi(u1u2 · · ·umzv1v2 · · · vn) � f

i∈J
{σ(u1)f σ(u2) · · ·f σ(um)f σ(v1)f σ(v2) · · ·σ(vn)}

= f
i∈J
σ(u1)f f

i∈J
σ(u2) · · ·f f

i∈J
σ(um)f f

i∈J
σ(v1)f f

i∈J
σ(v2) · · · f

i∈J
σ(vn).

Thus, f
i∈J
σi is an IVF (m,n)-ideal of E.

Theorem 3.3. Let L is an ideal of a semigroup E and m,n are positive integers. Then L is an (m,n)-ideal of E if
and only if the interval valued characteristic function χL is an IVF (m,n)-ideal of E.

Proof. Suppose that L is an (m,n)-ideal of E and let u1,u2, . . . ,um, z, v1, v2, . . . , vn ∈ E. Then we have
following cases.

Case 1. If ui /∈ L for some i ∈ {1, 2, . . . ,m}, then χL(ui) = 0 for some i ∈ {1, 2, . . . ,m}. Thus, χL(u1u2
· · · cmzv1, v2 · · · vn) � χL(u1)f χL(u2)f · · ·f χL(um)f · · ·f χL(v1)f χL(v2)f · · ·f χL(vn).
Case 2. If vj /∈ L for some j ∈ {1, 2, . . . ,n}, then χL(vj) = 0 for some j ∈ {1, 2, . . . ,n}. Thus, χL(u1u2
· · ·umzv1, v2 · · · vn) � χL(u1)f χI(u2)f · · ·f χL(um)f · · ·f χL(v1)f χI(v2)f · · ·f χL(vn).
Case 3. If ui, vj ∈ L for each i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,n}, then u1u2 · · ·umzv1v2 · · · vn ∈ LmELn ⊆
L. Thus χL(ui) = 1 = χI(uj) for each i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,n}. Hence, χK(u1u2 · · ·umzv1v2 · · ·
vn) = 1 � χL(u1)f χI(u2)f · · ·f χL(um)f · · ·f χL(v1)f χI(v2)f · · ·f χL(vn).

Therefore, χL is an IVF (m,n)-ideal of E. Conversely, suppose that χL is an IVF (m,n)-ideal of E. Let
u1,u2, . . . ,um, z, v1, v2, . . . , vn ∈ L and z ∈ E. Then, χL(u1u2 · · ·umzv1v2 · · · vn) � χL(u1)f χL(u2)f · · ·f
χL(um)f · · ·f χL(v1)f χL(v2)f · · ·f χL(vn) = 1. It follows that χL(u1u2 · · ·umzv1v2 · · · vn) = 1. Hence,
u1u2 · · ·umzv1v2 · · · vn ∈ L. This implies that, LmELn ⊆ L. Therefore, L is an (m,n)-ideal of E.

Theorem 3.4. Let σ an IVF subsemigroup of E and m,n positive integers. Then, σ is an IVF (m,n)-ideal of E if
and only if σm ◦ E ◦ σn v σ, where E is an IVF subset of E mapping every element of E to 1.

Proof. Suppose that σ is an IVF (m,n)-ideal of E and u ∈ E. If Fu = ∅, then it is easy to verify that
(σm ◦E ◦σn)(u) � σ(u). If Fu 6= ∅, then (σm ◦E)(u) 6= 0 and σn(y) 6= 0. Thus there exist x,y ∈ E such that
u = xy, (σm ◦ E)(x) 6= 0, and σn(y) 6= 0. Since (σm ◦ E)(x) 6= 0, there exist x1,y1 ∈ E such that x = x1y1,
σm(x1) 6= 0 and E(y1) 6= 0. By induction, it is easy to prove that there exist x2,y2, . . . , xm,ym ∈ E such that
for any i ∈ {2, . . . ,m} so xi−1 = xiyi, σm−i+1(xi) 6= 0 and σ(yi) 6= 0. Similarly, for case σn(y) 6= 0 there
exist x ′2,y ′2, . . . , x ′n−1,y ′n−1 ∈ E such that , x ′j−1 = x ′jy

′
j, for all j ∈ {2, . . . ,n− 1}, σn−j(x ′j) 6= 0 and σ(y ′j) 6= 0.

Thus,

(σm ◦ E ◦ σn)(u) = g
(x,y)∈Fu

(σm ◦ E)(x)f σn(y)
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= g
(x,y)∈Fu

( g
(x1,y1)∈Fx

σm(x1)f E(y1)) g
(x ′1,y ′1)∈Fy

σn−1(x ′1)f σ(y
′
1)

= g
(x,y)∈Fu

g
(x1,y1)∈Fx

g
(x ′1,y ′1)∈Fy

(σm(x1)f E(y1)f σ
n−1(x ′1)f σ(y

′
1))

= g
(x,y)∈Fu

g
(x1,y1)∈Fx

g
(x ′1,y ′1)∈Fy

(σm(x1)f σ
n−1(x ′1)f σ(y

′
1))

= g
(x,y)∈Fu

g
(x1,y1)∈Fx

g
(x ′1,y ′1)∈Fy

( g
(x ′2,y ′2)∈Fy1

σm−1(x2)f σ
(y2)

g
(x ′2,y ′2)∈Fx ′1

σn−2(x ′2)f σ(y
′
2)f σ(y

′
1))

= g
(x,y)∈Fu

g
(x1,y1)∈Fx

g
(x ′1,y ′1)∈Fy

g
(x ′2,y ′2)∈Fy1

g
(x ′2,y ′2)∈Fx ′1

(σ(xm)f σ(ym)f σ(ym−1)

f · · ·f σ(y2)f σ(x
′
n−1)f σ(y

′
n−1)f σ(y

′
n−2)f · · ·f σ(y ′1))

= g
(x,y)∈Fu

g
(x1,y1)∈Fx

g
(x ′1,y ′1)∈Fy

g
(x ′2,y ′2)∈Fy1

g
(x ′2,y ′2)∈Fx ′1

· · · g
(xm,ym)∈Fxm−1

g
(x ′n−1,y ′n−1)∈Fx ′

n−2

(σ(xm)f σ(ym)f σ(ym−1)f · · ·f σ(x ′n−1)

f σ(y ′n−1)f σ(y
′
n−2)f · · ·σ(y ′1)) = g

(x,y)∈Fu

σ(xy) = σ(u).

Conversely, suppose that σm ◦ E ◦ σn v σ. For any u1,u2, . . . ,um, z, v1, v2, . . . , vn ∈ E, let u = u1u2
· · ·umzv1v2 · · · vn. Then

σ(u1u2 · · ·umzv1v2 · · · vn) = σ(u) � (σm ◦ Eσn)(u)
= g

(p,q)∈Fu

(σm ◦ E)(p)f σn(q)

� g
(p,q)∈Fu

(σm ◦ E)(u1u2 · · ·umz)f σn(v1v2 · · · vn)

� g
(u1u2···umz)∈Fuv

σm(u)f σm(v)f ( g
(v1v2···vn)∈Fu ′v ′

σn−1(u ′)f σ(v ′)))

� {σm(u1u2 · · ·um)f E(z)}f {σn−1(v1v2 · · · vn−1)f σ(vn)}

� σm(u1u2 · · ·um)f σn−1(v1v2 · · · vn−1)f σ(vn)

...
� σ(u1)f σ(u2)f · · ·f σ(um)f σ(v1)f σ(v2)f · · ·f σ(vn).

Hence, σ is an IVF (m,n)-ideal of E.

Definition 3.5. Let E be a semigroup and m,n be positive integers. Then E is called (m,n)-regular if for
each u ∈ E there exists z ∈ E such that ω = ωmzωn equivalently for each subset L of E if L ⊆ LmELn or
for each element u of E, ω ∈ ωmEωn.

Lemma 3.6. Let E be an (m,n)-regular of semigroup and m,n be positive integers. Then every IVF (m,n)-ideal
of E is an IVF bi-ideal of E.

Proof. Suppose that σ is an IVF (m,n)-ideal of E and i, j,k ∈ E. By assumption there exist x,y ∈ E such
that ijk = imxjkmyjn. Thus σ(ijk) = σ(imxjkmyjn) = σ(im(xjkmy)jn) � σ(im)f σ(jn) � σ(i)f σ(j).
Hence, σ is an IVF bi-ideal of E.

Theorem 3.7. Let σ be an IVF subsets of a semigroup E. Then σ(u) � σm(um) for any positive integer m and
u ∈ E.
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Proof. Let u ∈ E and m be positive integer. Then um = uum−1. Thus

σm(um) = g
(p,q)∈Fum

σ(p)f σm−1(q)

� σ(u)f σm−1(um−1)

= σ(u)f g
(p ′,q ′)∈F

um−1

σ(p ′)f σm−2(q ′)

� σ(u)f σ(u)f σm−1(um−1)

...
� σ(u)f σ(u)f · · ·f σ(u) = σ(u).

Theorem 3.8. Let E be a semigroup and m,n be positive integers. Then E is (m,n)-regular if and only if σ v
σm ◦ E ◦ σn for any positive integer m and u ∈ E.

Proof. Let E be (m,n)-regular and u ∈ E. Then u = umpun for some p ∈ E. Thus

(σm ◦ E ◦ σn)(u) = g
(i,j)∈Fu

(σm ◦ E)(i)f σn(j)

� (σm ◦ E)(ump)f σn(un)
= g

(k,l)∈Fump

(σm(k)f E(l))f σn(un)

� σm(um)f E(p)f σn(un)

= σm(um)f σn(un) � σ(u)f σ(u) = σ(u).

Hence, σ v σm ◦ E ◦ σn. Conversely, suppose that u ∈ E. Since χK is an IVF subset of E, by assumption
and Lemma 2.12 we have σu v σmu ◦ E ◦ σnu = σumEun . Thus, u ∈ umEun. Hence, E is (m,n)-regular.

Theorem 3.9 ([11]). Let E be a semigroup. Then E is (m,n)-regular if and only if for all L ∈ L(m,n) (the set of all
(m,n)-ideals of E), L = LmELn.

Theorem 3.10. Let E be a semigroup and m,n positive integers. Then E is (m,n)-regular if and only if σ =
σm ◦ E ◦ σn for each IVF (m,n)-ideal σ of E.

Proof. Let E be an (m,n)-regular semigroup and σ be an IVF (m,n)-ideal of E. Then, by Theorems 3.4
and 3.8, σ = σm ◦ E ◦ σn. Conversely, suppose that σ = σm ◦ E ◦ σn for each IVF (m,n)-ideal σ of E and
let u ∈ E. Then, [u](m,n) is an (m,n)-ideal of E, by Theorem 3.3, �[u](m,n) is an IVF (m,n)-ideal of E.
Thus, by hypothesis, we have

χ[u](m,n) = χ
m
[u](m,n) ◦ E ◦ χ

n
[u](m,n) = χ([u](m,n))

mE([u](m,n))
n .

So, [u](m,n) = ([u](m,n))
mE([u](m,n))

n. By Lemma 2.1, [u](m,n) = u
mEun. Thus, u ∈ umEun. Hence, E is

(m,n)-regular.

Theorem 3.11. Let E be a semigroup and m,n be positive integers with m > 2 or n > 2. Then E is (m,n)-regular
if and only if L = L2 for each (m,n)-ideal L of E.

Proof. Let E be (m,n)-regular semigroup and L be (m,n)-ideal of E. Then, by Theorem 3.9, L = LmELn.
Thus, L = LmELn = LmE(LmELn)n = LmE(LmELn)(LmELn) · · · (LmELn) ⊆ (LmELn)(LmELn) = LL.
Inverse inclusion is obvious because L is an (m,n)-ideal of E. Hence, L = L2. Conversely, suppose that
L = L2 for each (m,n)-ideal L of E and u ∈ E. Since [u](m,n) is an (m,n)-ideal of E we have

[u](m,n) = [u](m,n)[u](m,n)



T. Gaketem, P. Khamrot, J. Math. Computer Sci., 34 (2024), 116–127 122

= [u](m,n)([u](m,n)[u](m,n))

...

= ([u](m,n))
m+n+1

= ([u](m,n))
m[u](m,n)([u](m,n))

n

⊆ ([u](m,n))
mE([u](m,n))

n = umEun.

Since u ∈ [u]m,n, we have u ∈ umEun. Hence, E is (m,n)-regular.

Theorem 3.12. Let σ be an IVF (m,n)-ideal of E and m,n positive integers with m > 2 or n > 2. Then E is
(m,n)-regular if and only if σ = σ ◦ σ.

Proof. Let E be an (m,n)-regular semigroup, σ be IVF (m,n)-ideal of E and n > 2. Then by Theorem 3.10,
σ = σm ◦ E ◦ σn. Thus,

σ = σm ◦ E ◦ σn

= σm ◦ E ◦ (σm ◦ E ◦ σn)n

= σm ◦ E ◦ σm ◦ E ◦ σn ◦ σm ◦ E ◦ σn ◦ (σm ◦ E ◦ σn)n−3 ◦ σm ◦ E ◦ σn

= σm ◦ (E ◦ σm ◦ E) ◦ σn ◦ σm ◦ (E ◦ σn ◦ (σm ◦ E ◦ σn)n−3 ◦ σm ◦ E) ◦ σn

v σm ◦ E ◦ σm ◦ σm ◦ E ◦ σn = σ ◦ σ.

Thus, σ v σ ◦ σ. Inverse inclusion is obvious since σ is an IVF (m,n)-ideal of E. Hence, σ = σ ◦ σ.
Conversely, suppose that σ = σ ◦ σand let L be an (m,n)-ideal of E and u ∈ L. Then by hypothesis
χL(u) = (χL ◦ χL)(u) = χ2

L(u). Since χL(u) = 1 and χ2
L(u) = 1 we have u ∈ L2. Thus, L ⊆ L2, inverse

inclusion is obvious since L is an (m,n)-ideal of E. Thus, L = L2. Hence by Theorem 3.11, E is (m,n)-
regular. Similarly, Theorem 3.12 can be proved for the case m > 2.

Lemma 3.13. Let σ is an IVF (m,n)-ideal of a semigroup E and τ is an IVF subsemigroup of E, such that
σm ◦ E ◦ σn v τ v σ. Then τ is an IVF (m,n)-ideal of E for any positive integers m,n.

Proof. By assumption, τ is an IVF subsemigroup of E. Then, by Theorem 3.4, τm ◦ E ◦ τn v τ. Thus
τm ◦ E ◦ τn(u) v σm ◦ E ◦ σn(u) v τ(u). Hence, τ is an IVF (m,n)-ideal of E.

Lemma 3.14. Let σ be an IVF (m,n)-ideal and τ be an IVF subset of a semigroup E and m,n be positive integers.
If σ ◦ τ v τ or τ ◦ σ v σ, then the following statements hold:

(1) σ ◦ τ is an IVF (m,n)-ideal of E;
(2) τ ◦ σ is an IVF (m,n)-ideal of E.

Proof. Suppose that σ ◦ τ v τ or τ ◦ σ v σ.

(1) By assumption we have (σ ◦ τ) ◦ (σ ◦ τ) v σ ◦ (σ ◦ τ) = σ ◦ σ ◦ τ v σ ◦ τ. Thus σ ◦ τ is an IVF subsemi-
group of E. So, we have

(σ ◦ τ)m ◦ E ◦ (σ ◦ τ)n = (σ ◦ τ)m ◦ E ◦ (σ ◦ τ)n−1 ◦ (σ ◦ τ)
v σm ◦ E ◦ σn−1 ◦ (σ ◦ τ) = σm ◦ E ◦ σn ◦ τ v σ ◦ τ.

Thus, σ ◦ τ is an IVF (m,n)-ideal of E.

(2) Similar to (1) we can show that τ ◦ σ is an IVF (m,n)-ideal of E.
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4. (m, 0)-regular and (0,n)-regulars

In this section, we defined (m, 0)-regular and (0,n)-regulars in semigroup and integrated properties
of its.

Definition 4.1. An IVF subsemigroup of a semigroup E is said to be an IVF (m, 0)-ideal of E if σ(u1u2
· · ·umz) � σ(u1)fσ(u2) · · ·fσ(um) for all u1,u2, . . . ,um, z ∈ E. And we said to be an IVF (0,n)-ideal of E
if σ(zv1v2 · · · vn) � σ(v1)f σ(v2) · · ·σ(vn) for all u1,u2, . . . ,um, z, v1, v2, . . . , vn ∈ E and m,n are positive
integers.

Theorem 4.2. Let E be a semigroup and m,n be positive integers. Then L is an (m, 0)-ideal ((0,n)-ideal) of E if
and only if the interval valued characteristic function χL is an IVF an (m, 0)-ideal ((0,n)-ideal) of E.

Proof. Suppose that L is an (m, 0)-ideal of E and let u1,u2, . . . ,um, z ∈ E. Then we have following cases.

Case 1. If ui /∈ L for some i ∈ {1, 2, . . . ,m}, then χL(ui) = 0 for some i ∈ {1, 2, . . . ,m}. Thus χL(u1u2
· · ·umz) � χL(u1)f χL(u2)f · · ·f χL(um).

Case 2. If ui /∈ L for each i ∈ {1, 2, . . . ,m}, then χL(ui) = 0 for each i ∈ {1, 2, . . . ,m}. Thus χL(u1u2 · · ·umz)
� χL(u1)f χL(u2)f · · ·f χL(um).

Therefore, χL is an IVF (m, 0)-ideal of E. Conversely, suppose that χL is an IVF (m, 0)-ideal of E. Then
χL(u1u2 · · ·umz) = 1 � χL(u1) f χL(u2) f · · · f χL(um). Thus, u1u2 · · ·umz ∈ I. Hence, LmELn ⊆ L.
Therefore, L is an (m, 0)-ideal of E.

Theorem 4.3. Let σ an IVF subsemigroup of E and m,n positive integers. Then, σ is an IVF (m, 0)-ideal ((0,n)-
ideal) of E if and only if σm ◦ E v σ (E ◦ σn v σ).

Proof. Straightforward.

Lemma 4.4. Let E be a semigroup and m,n be positive integers. Then every IVF right (left) ideal of E is an IVF
(m, 0)-ideal (IVF (0,n)-ideal) of E.

Proof. Let σ be an IVF right ideal and u1,u2, . . . ,um, z ∈ E. Then

σ(u1u2 · · ·umz) � σ(u1u2 · · ·um) � σ(u1)f σ(u2) · · ·f σ(um).

Thus, σ is an IVF (m, 0)-ideal of E.

Definition 4.5. Let E be a semigroup andm,n be positive integers. Then E is said to be (m, 0)-regular((0,n)-
regular) if for each u ∈ E there exists x ∈ E such that u = umx (u = yun).

Theorem 4.6. Let E be a semigroup and m,n be positive integers. If E is (m, 0)-regular ((0, n)-regular), then IVF
(m, 0)-ideals ((0, n)-ideals) and IVF right (left) ideals coincide.

Proof. Let E be an (m, 0)-regular, σ be an IVF (m, 0)-ideal of E, and u, v ∈ E. Then there exists x ∈ E such
that uv = umxv. Thus,

σ(uv) = σ(umxv) = σ(um(xv)) � σ(um) � σ(u).

Hence, σ is an IVF right ideal of E.

Definition 4.7. An IVF subset σ of a semigroup E is called idempotent if σ ◦ σ = σ.

Theorem 4.8. Let E be an (m,n)-regular semigroup. Then the IVF (m, 0)-ideals ((0,n)-ideals) of E are idempotent.

Proof. Suppose that σ is an (m, 0)-ideal of E. Then, σm ◦ E v σ. By assumption and Theorem 3.8, we have

σ v σm ◦ E ◦ σn = σm ◦ E ◦ σn−1 ◦ σ v σm ◦ E ◦ σn−1 ◦ σm ◦ E ◦ σn

v σm ◦ E ◦ E ◦ σm ◦ E ◦ E v σm ◦ E ◦ σm ◦ E v σ ◦ σ.

Thus, σ v σ ◦ σ. Clearly σ ◦ σ v σ. Hence, σ ◦ σ = σ. Therefore, σ is an idempotent.
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Theorem 4.9. Let E be a semigroup and m,n be positive integers. Then E is (m, 0)-regular ((0,n)-regular) if and
only if σ v σm ◦ E (σ v E ◦ σn) for each IVF subset σ of E.

Proof. Let E be an (m, 0)-regular semigroup and u ∈ E. Then, there exists x ∈ E such that u = umx. Thus,

(σm ◦ E)(u) = g
(p,q)∈Fu

σm(p)f E(q) = g
(p,q)∈Fumx

σm(p)f E(q)

� σm(um)f E(x) = σm(um)f 1 = σm(um) � σ(u).

Hence, σ v σm ◦ E. Conversely, suppose that u ∈ E. Since χ is the interval valued characteristic function
of E. By hypothesis and Theorem 2.12, we have that χu v χmu ◦ E = χumE. Thus, u ∈ umE. Hence, E is
(m, 0)-regular.

Theorem 4.10 ([11]). Let E be a semigroup, R(m,0) be the set of all (m, 0)-ideals of E, and L(0,n) be the set of all
(0,n)-ideals of E. Then E is (m, 0)-regular ((0,n)-regular) if and only if R = Rm ◦ E (L = E ◦ Ln), ∀R ∈ R(m,0)
(∀L ∈ L(m,0)), where m,n are positive integer.

Theorem 4.11. Let E be a semigroup and m,n be positive integers. Then E is (m, 0)-regular ((0,n)-regular) if and
only if σ = σm ◦ E (σ = E ◦ σn) for each IVF (m, 0)-ideal ((0,n)-ideal) σ of E.

Proof. Suppose that E is an (m, 0)-regular semigroup and σ is an IVF (m, 0)-ideal of E. Then, by Theorems
4.9 and 4.3, we have σ v σm ◦ E and σm ◦ E v σ. Thus, σ = σm ◦ E.

Conversely, suppose that σ = σm ◦E and σ is an IVF (m, 0)-ideal of E. Let R be (m, 0)-ideal of E. Then,
R2 ⊆ R and RmE ⊆ R. By Lemma 2.12 (3), χmR ◦ E v χR. Thus χR is an IVF subsemigroup of E. By Lemma
2.12 (2) we have χmR ◦ E = χRmE v χR and by Theorem 4.3, χR is an IVF (m, 0)-ideal of E. By assumption,
χmR ◦ E = χRmE = χR. Thus, RmE = R. Hence by Theorem 4.10, E is (m, 0)-regular.

Theorem 4.12 ([13]). Let E be a semigroup. Then, E is (m,n)-regular if and only if R ∩ L = RmLn for every
(m, 0)-ideal R of E and for every (0,n)-ideal L of E.

Theorem 4.13. Let σ be an IVF (m, 0)-ideal and τ be an IVF (0,n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-regular of E if and only if σf τ = σm ◦ τn.

Proof. Suppose that E is an (m,n)-regular semigroup of E. By Theorem 3.8, σf τ v (σf τ)m ◦E ◦ (σf τ)n.
Since σf τ v σ and σf τ v τ, we have

(σf τ)m ◦ E ◦ (σf τ)n v σm ◦ E ◦ τn.

By Theorem 4.3, σm ◦ E ◦ τn = σm ◦ τ and by Lemma 4.8, we get τ = τn. Thus, σf τ v σm ◦ τn. Since σ
and τ are IVF (m, 0)-ideal and IVF (0,n)-ideal of E, we have σf τ = σm ◦ τn.

Conversely, suppose that σf τ = σm ◦ τn and R,L be an (m, 0)-ideal and a (0,n)-ideal of E, respec-
tively. By Lemma 4.2, χR and χL are IVF (m, 0)-ideal and IVF (0,n)-ideal of E. By hypothesis we have
χR∩L = χR f χL = χmR ◦ χnL = χRmLn . Thus, R∩ L = RmLn. Hence by Theorem 4.12, E is (m,n)-regular.

The following result is an immediate consequence of Lemma 4.8 and Theorem 4.13.

Corollary 4.14. Let σ be an IVF (m, 0)-ideal and τ be an IVF (0,n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-regular of E if and only if σf τ = σ ◦ τ.

Lemma 4.15 ([11]). Let R(m,0) and L(0,n) be the set of all (m, 0)-ideal and (0,n)-ideal of a semigroup E, re-
spectively, and m,n be positive integers. Then E is (m,n)-regular if and only if R ∩ L = RmL ∩ RLn for each
R ∈ R(m,0) and L ∈ L(0,n).

Theorem 4.16. Let σ be an IVF (m, 0)-ideal and g be an IVF (0,n)-ideal of a semigroup E and m,n be positive
integers. Then E is (m,n)-regular of E if and only if σf τ = σm ◦ τf σ ◦ τn.
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Proof. Suppoe that E is an (m,n)-regular semigroup of E. Then,

σg τ v (σf τ)m ◦ E ◦ (σf τ)n v σm ◦ E ◦ τn v σm ◦ τ.

Thus, σf τ v σm ◦ τ. Similarly σf τ v σ ◦ τn. Thus, σf τ v σm ◦ τf σ ◦ τn. By assumption, σf τ =
σm ◦ τf σ ◦ τn.

Conversely, suppose that σ f τ = σm ◦ g f σ ◦ τn and let R,L be an (m, 0)-ideal and a (0,n)-ideal
of E, respectively. Then by Lemma 4.2, χR and χL are IVF (m, 0)-ideal and IVF (0,n)-ideal of E. By
hypothesis we have χR∩L = χR f χL = χmR f χnL = χRmLn . Thus, R∩ L = RmLn. Hence by Lemma 4.15, E
is (m,n)-regular.

Lemma 4.17. Let σ be an IVF (m, 0)-ideal (fuzzy (0,n)-ideal) of a semigroup E and m,n be positive integers.
Then σg σm ◦ E ( σg E ◦ σn).

Proof. The proof is obvious.

Lemma 4.18. Let E is (m,n)-regular of a semigroup E and m,n be positive integers. Then for each IVF (m,n)-
ideal σ of E, there exist an IVF (m, 0)-ideal τ and an IVF (0,n)-ideal σ of E such that σ = τ ◦ σ.

Proof. Suppose that σ is an IVF (m,n)-ideal of E. Then, σm ◦ E ◦ σn v σ. Since E is (m,n)-regular we
have σ v σm ◦ E ◦ σn. Thus, σ = σmE ◦ ◦σn. Let τ = σg σm ◦ E and σ = σg E ◦ σn. Then by Lemma
4.17, τ and h are IVF (m, 0)-ideal and IVF (0,n)-ideal of E, respectively. Since E is (m,n)-regular we have
τ = σg σm ◦ E = σm ◦ E,h = σg E ◦ σn = E ◦ σn and E v E

m
EE

n
= E

m+n+1 v E
2 v E. This implies that

E = E
2
. Thus, τ ◦ σ = σm ◦ E ◦ E ◦ σn = σm ◦ E2 ◦ σn = σ.

Lemma 4.19. Let E is (m,n)-regular of a semigroup E and m,n be positive integers. Then σ ◦ g is an IVF
(m,n)-ideal of E, for each σ and τ are IVF (m,n)-ideal and IVF subset of E, respectively.

Proof. Suppose that σ and τ are IVF (m,n)-ideal and IVF subset of E. Then,

(σ ◦ τ)m ◦ E ◦ (σ ◦ τ)n = (σ ◦ τ) ◦ (σ ◦ τ) ◦ · · · ◦ (σ ◦ τ)︸ ︷︷ ︸
m-times

◦E ◦ (σ ◦ τ) ◦ (σ ◦ τ) ◦ · · · ◦ (σ ◦ τ)︸ ︷︷ ︸
n-times

= (σ ◦ τ) ◦ (σ ◦ τ) ◦ (σ ◦ τ) ◦ · · · ◦ (σ ◦ τ)︸ ︷︷ ︸
m−1-times

◦E ◦ (σ ◦ τ) ◦ · · · ◦ (σ ◦ τ)︸ ︷︷ ︸
n−−1-times

◦(σ ◦ τ)

v (σ ◦ τ) ◦ E ◦ E ◦ (σ ◦ τ) v σ ◦ E ◦ τ v σm ◦ E ◦ τ v σ ◦ E ◦ τ.

Thus, σ ◦ τ is an IVF (m,n)-ideal of E.

The following result is an immediate consequence of Lemma 4.18 and 4.19.

Theorem 4.20. Let E be a semigroup and m,n be positive integers. Then E is (m,n)-regular if and onlf if for each
IVF (m,n)-ideal σ of E, there exist an IVF (m, 0)-ideal τ and an IVF (0,n)-ideal σ of E such that σ = τ ◦ σ.

Theorem 4.21. Let f be an IVF (m, 0)-ideal and g be an IVF (0,n)-ideal of a semigroup E such that σ ◦ τ = τ ◦ σ.
Then the product σ ◦ τ is an IVF (m,n)-ideal of E.

Proof. By assumption, we have that

(σ ◦ τ) ◦ (σ ◦ τ) = (σ ◦ σ) ◦ (τ ◦ τ) v σ ◦ τ.

Thus, σ ◦ τ is an IVF subsemigroup of E. Also, we have

(σ ◦ τ)m ◦ E ◦ (σ ◦ τ)n = σm ◦ τm ◦ (E ◦ τn)σn v σm ◦ τn ◦ τ ◦ σn = σm+n ◦ τm+1 v σ ◦ τ.

Hence, σ ◦ τ is an IVF (m,n)-ideal of E.
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Definition 4.22. An IVF (m,n)-ideal σ of a semigroup E is said to be minimal if for each IVF (m,n)-ideal
σ ′ of E, σ ′ v σ implies σ ′ = σ.

Theorem 4.23. Let E be an (m,n)-regular semigroup andm,n be positive integers. Then an IVF subset σ of E is a
minimal IVF (m,n)-ideal of E if and only if there exist a minimal IVF (m, 0)-ideal τ and a minimal IVF (0,n)-ideal
h of E such that σ = g ◦ h.

Proof. Suppose that σ is a minimal IVF (m,n)-ideal of E. By Lemma 4.18, σ = (σg σm ◦ E) ◦ (σg E ◦ σn).
Next to show that σgσm ◦E is a minimal IVF (m, 0)-ideal of E. Suppose that σ ′ is an IVF (m, 0)-ideal of E
such that σ ′ v (σgσm ◦E). By assumption and by Corollary 4.14, (σgσmgE)f (σgE ◦σn) = (σgσm ◦
E)◦ (σgE◦σn). Similarly σ ′ ◦ (σgE◦σn) = σ ′f (σgE◦σn) v (σgσm ◦E)f (σgE◦σn) = σ. By Lemma
4.19, σ ′ ◦ (σg E ◦ σn) is an IVF (m,n)-ideal of S. Since σ ′ ◦ (σg E ◦ σn) v σ we have σ ′ ◦ (σg E ◦ σn) = σ.
Thus, (σg σm ◦ E)f (σg E ◦ σn) = σ ′ f (σg E ◦ σn). Since σ v (σg σm ◦ E)f (σf E ◦ σn), we have
σ v σ ′. Thus, σg σm ◦ E v σ ′. Hence, σ ′ = σ. Therefore, σg σm ◦ E is a minimal IVF (m, 0)-ideal of E.
Similarly, we can prove that σg E ◦ σn is a minimal IVF (0,n)-ideal of E.

Conversely, suppose that σ = τ ◦ h for some minimal IVF (m, 0)-ideal τ and minimal IVF (0,n)-ideal
σ of E. By Theorem 4.20, σ is an IVF (m,n)-ideal of E. Let Ω be IVF (m,n)-ideal of E such that Ω v σ.
Then, Ωm ◦ E v σm ◦ E v (τ ◦ σ)m ◦ E = ((τ ◦ σ) ◦ (τ ◦ σ) ◦ · · · ◦ (σ ◦ σ) ◦ E) v (τ ◦ σ) ◦ (τ ◦ h) ◦ · · · ◦ (g ◦
σ) ◦ E v τ ◦ E v (gm ◦ E ◦ τn) ◦ E v τm ◦ E v τ. Since Ωm ◦ E is an IVF (m, 0)-ideal of E and τ is a
minimal IVF (m, 0)-ideal of E, we have Ωm ◦ E = τ. Similarly, we can prove that E ◦Ωn

= σ. Thus,
σ = τ ◦ σ = (Ω

m ◦ E) ◦ (E ◦Ωn
) = Ω

m ◦ E ◦ E ◦Ωn v Ω
m ◦ E ◦Ωn v Ω. Hence, σ is a minimal IVF

(m,n)-ideal of E.

Corollary 4.24. Let E be an (m,n)-regular semigroup and m,n be positive integers. Then E has at least one
minimal IVF (m,n)-ideal if and only if E has at least one minimal IVF (m, 0)-ideal and at least one minimal IVF
(0,n)-ideal.

5. Conclusion

In this paper, we give the concept of interval valued fuzzy (m,n)-ideals and study the properties of
interval valued fuzzy (m,n)-ideals in semigroups. In the future we study neurotrophic (m,n)-ideals in
semigroup or algebraic.
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