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Abstract
We examine the behavior of the solutions for a fractional-order integro-differential equation (FIDE) system using an efficient

simulation presented in this paper. The FIDEs are treated by a presumably novel approximation method based on Changhee
polynomials of Appell type (ACPs). In this work, we use the method of spectral collocation (SCM), which is based on the
advantages of ACPs. Using this technique on the given model, it generates an algebraic equation system. Through the evaluation
of the residual error function (REF), we verify the efficiency of the approach that has been offered. To verify the effectiveness and
originality of the suggested algorithm, the results are compared with the precise solutions. Our results show that the method
employed provides a straightforward and efficient tool to simulate the solution for such models. The suggested method’s
primary benefits are that it only requires a few easy steps and doesn’t generate secular terms.
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1. Introduction

The FIDEs play an important role in different physical phenomena in science and engineering ([6, 9,
27]). In [25], Volterra integro-differential equations were solved numerically by using Genocchi polynomi-
als. Haar collocation scheme is devoted to obtaining the solution for linear IDEs with fractional order [8].
The system of FIDEs was solved numerically by using different techniques ([12, 13]). Shah et al. [29] pre-
sented Haar wavelet technique for solving non-linear variable order integro-differential equations. Also,
there are many numerical techniques that depend on famous polynomials like ([3, 10, 16, 20]) can be used.

Fractional analysis is considered an essential tool of mathematical analysis, which is capable of dealing
with modeling and analysis in many real-life situations ([1, 4, 31]). Fractional-order analysis has gained
more interest due to the study of biological models [2]. One of these mathematical equations is used in
the model under study. This model was studied by many researchers ([5, 14, 26, 30, 33]).

This article presents an application of the SCM based on ACPs for solving the fractional-order system
of FIDEs with a few recent innovations using the collocation method. The system of FIDEs is transformed
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into an algebraic system of equations when the approach is used. The system is then solved to get the
unknowns coefficients, which leads to the approximate solution for the original problem.

For this class of problems, the SCM offers certain advantages, since the ACPs’s coefficients for the
solution can exist rather simply once the numerical algorithms are used. This makes that procedure far
faster than the others. Their favorable characteristics in the approximation of functions have led to their
widespread usage. This approach is also a fast-converging, highly accurate numerical methodology that
may be applied to a variety of problems in both finite and infinite domains. An additional benefit of this
approach is that it does not require the domain discretization or the nonlinear terms to be approximated.

In this manuscript, the ACPs will be used to approximate the fractional derivative formula, which will
then be applied to solve a system of the FIDEs by using the SCM.

The remainder of the manuscript is structured as follows. Definitions and concepts relating to frac-
tional derivatives, the ACPs, and other related notions are presented in Section 2. Section 3 will examine
the error analysis pertaining to a function that is approximated by the ACPs. Using the ACPs, we pro-
vide an approximation formula for the fractional derivatives in Section 4. We will provide the suggested
method’s implementation through Section 5. A numerical simulation of the suggested problem is shown
in Section 6. Lastly, Section 7 contains the conclusions.

2. Preliminaries and definitions

2.1. Fractional integration and fractional derivative

Fractional-order integration and differentiation have been defined in a number of ways in the litera-
ture [14]. The two most significant fractional derivatives that were used to advance the theory of fractional
calculus are the Riemann-Liouville and Caputo derivatives, which have the following definitions.

Definition 2.1. For a given function ψ(t), the Riemann-Liouville fractional integral of fractional order ν
is defined as [14]:

Iνψ(t) =
1
Γ(ν)

∫t
0
(t− τ)ν−1ψ(τ)dτ, t > 0, ν ∈ R+,

where Γ(·) is the gamma function. The operator Iν possesses the following property:

Iν Iρψ(t) = Iν+ρψ(t), ν, ρ > 0.

Definition 2.2. For a given function ψ(t), the Riemann-Liouville fractional derivative of order ν is defined
as follows [14]:

RLDνψ(t) =
dm

dtm

(
Im−νψ(t)

)
, m− 1 < ν 5 m, m ∈N,

where, as usual, N denotes the set of natural numbers.

Several restrictions are applied to the Riemann-Liouville definition for simulating certain real-world
issues [14]. On the other hand, and to address these problems, the Liouville-Caputo (LC) formulation
was developed. We use it, as the definition.

Definition 2.3. In the Liouville-Caputo sense, the fractional derivative LCDν of a function ψ(t) has the
following definition:

LCDνψ(t) =
1

Γ(n− ν)

∫t
0

ψ(n)(τ)

(t− τ)ν−n+1dτ, n− 1 < ν < n, n ∈N.

The Liouville-Caputo fractional derivative LCDν possesses the following properties:

LCDνC = 0, C is a constant,
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and
LCDνtθ =

Γ(θ+ 1)
Γ(θ+ 1 − ν)

tθ−ν, θ ∈N∪ {0}, θ = dνe. (2.1)

Furthermore, we have

LCDν(c1ψ1(t) + c2ψ2(t)) = c1
LCDνψ1(t) + c2

LCDνψ2(t),

for some constants c1 and c2.

2.2. A few ideas about Changhee polynomials

Numerous researchers have examined Changhee polynomials in relation to numerous special numbers
and polynomials in recent years, there are many interesting results that can be found in [17]. DEs derived
from λ-Changhee polynomials were examined, and several novel and precise identities for the λ-Changhee
polynomials related to DEs were provided in [21]. The Changhee polynomials Chm(t) and the Changhee
number Chm are given by ([15, 18, 19, 21, 24])

2
z+ 2

(1 − z)t =

∞∑
m=0

Chm(t)
zm

m!
,

where Chm = Chm(0) are the Changhee numbers, see [20]. The ACPs Ch∗m(t) are ([23])

2
z+ 2

etz =

∞∑
m=0

Ch∗m(t)
tm

m!
.

The ACPs of degree m are defined by

Ch∗m(t) =

m∑
j=0

(
m

j

)
Ch∗m−j t

j. (2.2)

From (2.2), one can get:
d

dt
Ch∗m(t) = mCh∗m−1(t), (2.3)

therefore from (2.3), we get

Ch∗m(t) =

∫t
0
mCh∗m−1(y)dy+Ch

∗
m.

Also, note that Ch∗0 = 1 and 2Ch∗m +mCh∗m−1 = 0, ∀m > 1. We can prove that the ACPs satisfy

∫ 1

0
Ch∗n(t)Ch

∗
m(t)dt =

m∑
i=0

m−i∑
k=0

(
m

i

)(−1)m−i−1(m− i)
(
m− i
k

)
Ch∗k(1)Ch

∗
i

(2(m− i) − k+ 1)
( 2(m− i) − k

m− i

) .

Let
{
Ch∗i (t)

}m
i=1 ⊂ L2[0, 1] be the set of ACPs and let

Ω = Span {Ch∗i (t)}
m
i=1

be a finite-dimensional subspace of L2[0, 1] ([23]). For a function u(t) of L2[0, 1] having a unique approxi-
mation in Ω, say u∗(t), then the subsequent error estimate can be held as

‖u(t) − u∗(t)‖2 6 ‖u(t) − v(t)‖2, ∀ v(t) ∈ Ω.
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But since Ω is a closed subspace of L2[0, 1], then according to [28], we can find that

L2[0, 1] = Ω⊕Ω⊥,

where Ω⊥ is the orthogonal complement of Ω, and so u(t) = v(t) + g(t), and then g(t) = u(t) − v(t),
which means that u(t) − u∗(t) ∈ Ω⊥. Therefore

〈u(t) − u∗(t), v(t)〉 = 0, ∀ v(t) ∈ Ω. (2.4)

Since u∗(t) ∈ Ω, then

u(t) ≈ u∗(t) =
m∑
i=1

ciCh
∗
i (t) = C

T Ch∗(t), (2.5)

where
C = [c1, c2, . . . , cm]T , Ch∗(t) = [Ch∗1(t),Ch

∗
2(t), . . . ,Ch∗m(t)]T .

Let v(t) = Ch∗i (t) and using (2.5) in (2.4), we get〈
u(t) −CT Ch∗(t),Ch∗i (t)

〉
= 0.

Furthermore, from (2.5), we get

〈u(t), Ch∗(t)〉 = CT 〈Ch∗(t), Ch∗(t)〉 .

3. Error analysis

Theorem 3.1. Let the function u(t) ∈ C[0, 1] has continuous derivatives up to (m+ 1)th times and um(t) be the
best approximation of the function u(t) defined in Eq. (2.5), then we have

‖u(t) − um(t)‖ 6 αβ

(m+ 1)!
,

where
α = max

06 t61
u(m+1)(t), β = max{t0, 1 − t0}.

Proof. The Taylor series approximation of u(t) in the neighborhood of a point t = t0 is given by

u(t) = u(t0) +
(t− t0)

1!
u(1)(t0) +

(t− t0)
2

2!
u(2)(t0) + · · ·+

(t− t0)
m

m!
u(m)(t0) +

(t− t0)
m+1

(m+ 1)!
u(m+1)(ξ),

where t0 ∈ [0, 1], ξ ∈ (t0, t). Assume

ũ(t) = u(t0) +
(t− t0)

1!
u(1)(t0) +

(t− t0)
2

2!
u(2)(t0) + · · ·+

(t− t0)
m

m!
u(m)(t0),

then

|u(t) − ũm(t)| =

∣∣∣∣(t− t0)
m+1

(m+ 1)!
u(m+1)(ξ)

∣∣∣∣ .

Since um(t) is the best approximation of u(t), then

‖u(t) − um(t)‖2 6 ‖u(t) − ũm(t)‖2 =

∫ 1

0
|u(t) − ũm(t)|2 dt 6

∫ 1

0

∣∣∣∣(t− t0)
m+1

(m+ 1)!
u(m+1)(ξ)

∣∣∣∣2 dt.
It is assumed that u(t) has continuous derivatives up to (m+ 1)th times, therefore there exists a constant
α such that

α = max
06 t61

u(m+1)(t).
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Now we have

‖u(t) − um(t)‖2 6
∫ 1

0

∣∣∣∣ α

(m+ 1)!
(t− t0)

m+1
∣∣∣∣2 dt. (3.1)

Considering β = max{t0, 1 − t0}, then Eq. (3.1) becomes

‖u(t) − um(t)‖2 6
α2 β2

[(m+ 1)!]2

∫ 1

0
dt.

Hence,

‖u(t) − um(t)‖ 6 αβ

(m+ 1)!
.

So the proof is completed.

4. Fractional derivative approximation with ACPs

In this section, we will show that the LCDβ for um(t) that was introduced in (2.5) can be approximated
using the following result.

Theorem 4.1. Assume that ν > 0 and um(t) as was introduced in (2.5), then we have

LCDβ um(t) =

m∑
i=dνe

i∑
j=dνe

ci κi,j,ν t
j−ν, κi,j,ν =

(i)!Ch∗i−j
(i− j)! Γ(j+ 1 − ν)

, (4.1)

where Ch∗i−j is the Changhee number.

Proof. Consider the ACP, Ch∗i (t) of degree i, with i = 0, 1, . . . ,m, and using (2.1) and (2.2) we can get

LCDβ um(t) =

m∑
i=0

ciD
νCh∗i (t) =

m∑
i=dνe

i∑
j=dνe

ci
(i!)Ch∗i−j
(j!)(i− j)!

LCDβ tj

=

m∑
i=dνe

i∑
j=dνe

ci
(i!)Ch∗i−j

(i− j)! Γ(j+ 1 − ν)
tj−ν =

m∑
i=dνe

i∑
j=dνe

ci κi,j,ν t
j−ν,

where κi,j,ν is defined in (4.1), then the proof is completed.

5. Numerical implementation

Now, we give an outline of the implementation of the presented method to simulate the solution for
the system in its Liouville-Caputo fractional-order form [7]:

LCDβψ1(t) = h1(t) +NF1(ψ1(t),ψ2(t)) −

∫t
0
(NF2(ψ1(τ),ψ2(τ))dτ,

LCDβψ2(t) = h2(t) +NG1(ψ1(t),ψ2(t)) −

∫t
0
(NG2(ψ1(τ),ψ2(τ))dτ,

(5.1)

whereψ1(t) andψ2(t) are unknown functions, h1(t) and h2(t) are nonhomogeneous terms, andNFi(ψ1(t),
ψ2(t)) and NGi(ψ1(t),ψ2(t)), (i = 1, 2) are continuous linear or nonlinear functions. Consider the ICs

ψk(0) = εk, k = 1, 2. (5.2)
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Let ψγ,m(t), γ = 1, 2 be the approximate of the unknown functions ψγ(t), in terms of ACPs as

ψγ,m(t) =

m∑
i=0

cγ,iCh
∗
i (t), γ = 1, 2. (5.3)

Upon substituting from (5.3) and (4.1) into the system (5.1), we get

m∑
i=dβe

i∑
j=dβe

c1,i κi,j,β t
j−β = h1(t) +NF1(ψ1,m(t),ψ2,m(t)) −

∫t
0
NF2(ψ1,m(τ),ψ2,m(τ))dτ, (5.4)

m∑
i=dβe

i∑
j=dβe

c2,i κi,j,β t
j−β = h2(t) +NG1(ψ1,m(t),ψ2,m(t)) −

∫t
0
NG2(ψ1,m(τ),ψ2,m(τ))dτ. (5.5)

By collocating (5.4)-(5.5) at m − 1 points tr = r
m−1 + 1, r = 1, 2, . . . ,m − 1, it will be reduced to the

following system of equations in cγ,i, γ = 1, 2, i = 0, 2, . . . ,m:

m∑
i=dβe

i∑
j=dβe

c1,i κi,j,β t
j−β
r = h1(tr) +NF1(ψ1,m(tr),ψ2,m(tr)) −

∫tr
0
NF2(ψ1,m(τ),ψ2,m(τ))dτ, (5.6)

m∑
i=dβe

i∑
j=dβe

c2,i κi,j,β t
j−β
r = h2(tr) +NG1(ψ1,m(tr),ψ2,m(tr)) −

∫tr
0
NG2(ψ1,m(τ),ψ2,m(τ))dτ. (5.7)

Furthermore, upon substituting (5.3) into (5.2), the initial conditions (5.2) will be converted to the follow-
ing algebraic equations:

m∑
i=0

cγ,iCh
∗
i (0) = εγ, γ = 1, 2. (5.8)

Using the Newton iteration method for solving the system consisting of the equations (5.6)-(5.8) for
cγ,i, γ = 1, 2, i = 0, 1, . . . , m − 1. This then leads us to use substitution to generate the approximate
solution in the form (5.3).

6. Numerical simulation

In this part, we go on to provide a numerical simulation on three test examples, where we address the
system (5.1) with various values of β, for various nonlinear functions [7], in order to check the precision
and quality of the provided scheme. We will compare the outcomes of the suggested method with the
exact solution in each example, as well as the behavior of the approximate solution for various values of
β. We assess the REF [11] to gauge the precision and value of the suggested strategy.

Example 6.1. Consider the following linear system of Volterra FIDEs [22]:

LCDβψ1(t) = 1 + t+ t2 −ψ2(t) −

∫t
0
(ψ1(τ) +ψ2(τ))dτ,

LCDβψ2(t) = −1 − t+ 2et −ψ1(t) −

∫t
0
(ψ1(τ) −ψ2(τ))dτ,

where t ∈ [0, 1] and β ∈ (0, 1], with ψ1(0) = 1, ψ2(0) = −1. The exact solution for β = 1 is ψ1(t) = t+ e
t

and ψ2(t) = t− et. The numerical results that obtained for this case using the introduced method are
illustrated in Figures 1-3. In Figure 1, we compare the numerical results with the exact solution at (β = 1)
with m = 7. In Figure 2, the solution for β = 1.0, 0.98, 0.96, 0.94, with m = 6 is presented. In Figure 3,
the REF of the solution at m = 7, β = 0.98 is given.
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Figure 1: The approximate and exact solutions for Example 6.1, ψi(t), i = 1, 2 with β = 1.

Figure 2: The approximate solution for Example 6.1, ψi(t), i = 1, 2 with distinct β.

Figure 3: The REF of ψi(t), i = 1, 2, for Example 6.1.

Example 6.2. Consider the system of nonlinear Volterra FIDEs [32]:

LCDβψ1(t) =
1
3
ψ1(t)ψ2(t) −

1
2
ψ2

2(t) + 2ψ2(t) −

∫t
0
(ψ1(τ) +ψ2(τ))dτ,

LCDβψ2(t) =
1
3
ψ1(t)ψ2(t) −ψ1(t) −

∫t
0
(ψ1(τ) − 2ψ2(τ))dτ,

where t ∈ [0, 1] and β ∈ (0, 1], with ψ1(0) = ψ2(0) = 0. The exact solution for β = 1 is ψ1(t) = t2 and
ψ2(t) = t. The numerical results that obtained for this case using the introduced method are illustrated in
Figures 4-6. In Figure 4, we compare the numerical results with the exact solution at (β = 1) with m = 4.
In Figure 5, the approximate solution for β = 1.0, 0.9, 0.8, 0.7, with m = 5 is presented. In Figure 6, the
REF of the solution at m = 6, β = 0.98 is given.
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Figure 4: The approximate and exact solutions for Example 6.2, ψi(t), i = 1, 2 with β = 1.

Figure 5: The approximate solution for Example 6.2, ψi(t), i = 1, 2 with distinct β.

Figure 6: The REF of ψi(t), i = 1, 2, for Example 6.2.

Example 6.3. Consider the nonlinear system of Volterra FIDEs [32]:

LCDβψ1(t) = ψ
2
1(t) +ψ

2
2(t) −

∫t
0
ψ1(τ)dτ,

LCDβψ2(t) = −
1
2
(ψ2

2(t) + 2ψ1(t) − 1) −
∫t

0
(ψ1(τ)ψ2(τ))dτ,

where t ∈ [0, 1] and β ∈ (0, 1], with ψ1(0) = 0, ψ2(0) = 1. The exact solution for β = 1 is ψ1(t) = sin(t)
and ψ2(t) = cos(t). The numerical results that obtained for this case using the introduced method are
illustrated in Figures 7-9. In Figure 7, we compare the numerical results with the exact solution at (β = 1)
with m = 6. In Figure 8, the approximate solution for β = 1.0, 0.9, 0.8, 0.7, with m = 7 is presented. In
Figure 9, the REF of the solution at m = 7, β = 0.95 is given.
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Figure 7: The approximate and exact solutions for Example 6.3, ψi(t), i = 1, 2 with β = 1.

Figure 8: The approximate solution for Example 6.3, ψi(t), i = 1, 2 with distinct β.

Figure 9: The REF of ψi(t), i = 1, 2, for Example 6.3.

These results demonstrate that the fractional derivative of the Liouville-Caputo sense can be used to
solve the suggested model in an efficient manner. The way in which the suggested method behaves in the
numerical solution depends on β and m. Additionally, the efficiency and outcomes of the strategy are
markedly enhanced by the proposed approach.

7. Conclusions and future work

This work’s primary objective is to use fractional calculus tools and methodologies to examine the
dynamical behavior of the system of FIDEs using the LC-fractional derivative operator. The numerical
solutions were found in this work using various values of the approximation order m, and the fractional
order β. Lastly, we have shown that learning this mathematical model is remarkably effective with the
proposed strategy. Moreover, by raising m or adding more terms to the approximation solution series,
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we are able to control and reduce the error’s precision. We also concluded that numerical simulations
with the LC-fractional derivative operator are more appropriate for the mathematical model studied in
this work. Our results also show the accuracy and computational efficiency of the suggested strategy. We
plan to handle the same situation in a future analysis utilizing a new form of polynomials or a different
kind of fractional derivative as a generalization of our current work.
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