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Abstract 
Rockfill dams are economical and fast tools for flood detention and control purposes. Artificial 

intelligence approaches may provide user-friendly alternatives to very complex and time-consuming 

numerical methods such as finite volume and finite element for predicting flow through rockfill dam. 

Therefore, this paper examines the potential of coactive neuro-fuzzy inference system (CANFIS) for 

estimation of flow through trapezoidal and rectangular rockfill dams. The results showed that accurate 

flow predictions can be achieved with a CANFIS with the Takagi–Sugeno–Kang (TSK) fuzzy model and the 

Bell membership function for both trapezoidal and rectangular rockfill dams. Furthermore, Levenberg-

Marquardt and Delta-Bar-Delta were the best algorithms for training the network in order to estimate 

flow through rectangular and trapezoidal rockfill dams, respectively. Overall, the results of this study 

suggest the possibility for using CANFIS for prediction of flow through rockfill dam. 

 

Keywords: Flow forecast, Rockfill dam, Coactive neuro-fuzzy inference system 

 

1. Introduction 
The flood disaster phenomenon is a complex natural system, which frequently occurs (e.g. 

[19], [47], [12], [16], [45], [22]). Floods have the greatest damage potential and affect the 

greatest number of people in comparison with all the other natural disasters worldwide [34]. 
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Though non-structural measures improve the preparedness to floods and reduce losses, the 

necessity of structural measures would always remain to reduce the extent of physical damage 

caused by floods [15]. A rockfill dam is an economical and fast tool for flood detention and 

control purposes when rock is available [39]. Rock dumps can be used to store water in mining 

facilities and to build gabion spillways, and groins [43]. The objectives of building rockfill 

detention dams are flow storage for a specific period and lowering of the outflow hydrograph 

[38].  

In rockfill dams, due to the large size of pores, the flow is inherently turbulent and therefore 

not amenable to a classic seepage analysis on the basic of Darcy’s low, so a non-Darcy flow 

relationship must be used. In this type of dams, analysis of two-dimensional (2D) flow hydraulic 

solve by using numerical methods such as finite volume and finite element. Numerical methods 

are very complex and time-consuming. Also, numerical methods calculation is performed 

frequently, and so the rate of convergence is slow. Furthermore, the result is affect by the initial 

values and a local minimum or premature convergence is likely to be obtained, and so the 

solution is sometimes unstable. 

Intelligent computing tools based on fuzzy logic and artificial neural networks (ANNs) have 

been successfully applied in various problems with superior performances. A new approach of 

combining these two powerful artificial intelligence tools, known as neuro-fuzzy systems, has 

increasingly attracted scientists in different fields [44]. This approach is found to be highly 

adaptive and efficient in investigating non-linear relationships among different variables [46]. 

The data driven neuro-fuzzy modeling systems are designed to overcome inherent drawbacks 

of both fuzzy systems and ANNs [18]. Neuro-fuzzy systems are applied in various domains, e.g., 

control, data analysis, decision support, etc [31]. 

The drawback of frequently calling the time-consuming and complex numerical methods 

analysis in the process of optimization can be overcome by computational intelligence methods 

[48]. In recent years, artificial intelligence technique such as neuro-fuzzy has become 

increasingly popular in hydrology and water resources among researchers and practicing 

engineers. For instance; neuro-fuzzy has been used successfully for prediction of suspended 

sediment ([24], [8], [26], [37]), evaporation and evapotranspiration modeling ([23], [25], [3], 

[30]), real time reservoir operation ([6], [7], [36]), ground-water vulnerability [10], modeling 

stage–discharge relationship ([9], [28]), water quality problems [29], estimation of scour depth 

near pile groups [49], short-term flood forecasting [33], rainfall–runoff modeling ([14], [20]), 

prediction of water level in reservoir [5], modeling hydrological time series ([32], [13]). 

To the knowledge of the authors, no work has been reported in the literature that 

investigates the accuracy of coactive neuro-fuzzy inference system (CANFIS) model for 

prediction of flow through rockfill dam. Therefore, the objective of the present study was to 

evaluate the capabilities of a CANFIS model for prediction of flow through trapezoidal and 

rectangular rockfill dams. Also, the effect of using different fuzzy models and membership 

functions on CANFIS model performance was investigated in this paper. The experimental study 

was carried out for evaluating the accuracy of the method. 

 

2 Data and Method 
2.1 Experimental data 

Experimental data were needed for evaluating the accuracy of the method. The experiments 

were conducted in two laboratory flume with 10 and 0.77 m long, 0.3 m wide and 0.5 m height. 

Diameters of rocks that used in the experiments were 2.5 and 4.5 cm. The particle rocks were 

sifted through two sieves to get these particle sizes. In each series of the experiments, the height 
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of water in upstream and downstream sides of trapezoidal and rectangular rockfill dams were 

measured in different discharges (lit s-1). For measuring water level variation along the flume 

and downstream channel, a number of sensitive digital point gauges were installed. Each point 

gauge was equipped with memory storage to record water level. In addition, each dam was 

equipped by a thin galvanized basket to hold rockfill dams in their positions. Overall, the used 

data set includes 23 patterns of rectangular rockfill dam and 34 patterns of trapezoidal rockfill 

dam. Schematic views of trapezoidal and rectangular rockfill dams are shown in Figs. 1 and 2, 

respectively. 

 
 

 

 

 

 

 

 

 

 

Fig. 1. Sketch of trapezoidal rockfill dam 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sketch of rectangular rockfill dam 

 

2.2. Neuro-Fuzzy Systems (NFS) 

Both ANNs and fuzzy logic solely do have certain disadvantages and advantages. Neuro-fuzzy 

systems have thus been developed by combining the semantic transparency of rule based fuzzy 

systems with the learning capability of neural networks [27]. A combination of ANNs and fuzzy 

logic can result in synergy that improves speed, fault tolerance, and adaptiveness [40]. Fuzzy 

inference systems are also valuable, as they combine the explanatory nature of rules (MF) with 

the power of neural networks. These kinds of networks solve problems more efficiently than 

ANNs when the underlying function to model is highly variable or locally extreme [4]. The 

proposed neuro-fuzzy model is a multilayer neural network-based fuzzy system and the system 

has a total of five layers. In this connectionist structure, the input and output nodes represent 

the input states and output response, respectively, and in the hidden layers, there are nodes 

functioning as membership functions (MF) and rules. This eliminates the disadvantage of a 

normal feedforward multilayer network, which is difficult for an observer to understand or to 

modify [42]. A specific approach in neuro-fuzzy development is the adaptive neuro-fuzzy 

inference system (ANFIS), which has shown significant results in modeling non-linear functions 

[21].  

 

2.2.1. Coactive neuro-fuzzy inference system 

The architecture of ANFIS is a one-output fuzzy inference system based on an adaptive 

network. CANFIS is a generalized form of ANFIS. CANFIS enables to obtain more than one 
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outputs and has the advantage of non-linear rule formations [17]. The CANFIS model integrates 

fuzzy inputs with a modular neural network to quickly solve poorly defined problems [41]. The 

fundamental component of CANFIS is a fuzzy axon, which applies membership functions to the 

inputs. The output of a fuzzy axon is computed using the following formula: 
 

(1)     ijiij wxMFwxf ,min,   

where i = input index, j = output index, xi = input i, wij=weights (MF parameters) corresponding 

to the j th MF of input i and MF=membership function of the particular subclass of the fuzzy 

axon. This system can be viewed as a special three-layer feed forward neural network. The first 

layer represents input variables, the middle (hidden) layer represents fuzzy rules and the third 

layer represents output variables [35]. CANFIS architecture is shown in Fig.3.  

 

 
Fig. 3 CANFIS architecture 

 

 

2.2.1.1 CANFIS Architecture  

Consider a CANFIS structure with n inputs and one output. For model initialize, a common 

rule set with n inputs and m IF-THEN rules as follows [35] 

Rule 1: If z1 is A11 and z2 is A12 . . . and zn is A1n then u1 = p11z1 + p12z2 +· · · + p1n zn+q1    

Rule 2: If z1 is A21 and z2 is A22 . . . and zn is A2n then u2 = p21z1 + p22z2 +· · · + p2n zn+q2 

  

Rule m: If z1 is Am1 and z2 is Am2 . . and zn is Amn then um = pm1z1 + pm2z2 +· · · +pmnzn +qm 

The corresponding CANFIS structure is illustrated in Fig.3. All layers in CANFIS structure are 

either adaptive or fixed. The function of each layer is described as follows: 

Layer 1 (Premise Parameters): Every node in this layer is a complex-valued membership 

function (μij) with a node function:  

 

(2)    mjni  1,1   for        iijiijij zAzAO  ,1 

Each node in layer 1 is the membership grade of a fuzzy set (Aij) and specifies the degree to 

which the given input belongs to one of the fuzzy sets. 

Layer 2 (Firing Strength): Every node in this layer is product of all the incoming signals. This 

layer receives input in the form of the product of all the output pairs from the first layer: 

(3) )1( mj      for        nniiijj zAzAzAwO 12211,2 ,..., 

Layer 3 (Normalized Firing Strength): Every node in this layer calculates rational firing strength: 



Majid Heydari, Parisa Hosseinzadeh Talaee / TJMCS Vol .2 No.3 (2011) 515-528 

519 

 

(4) 
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,3    for   )1( mj   

Layer 4 (Consequence Parameters): Every node in this layer is multiplication of normalized firing 

strength from the third layer and output of neural network: 

 

(5)  jnJnJJjjjj qZPZPZPwuwO  22211,4     for    mj 1  

Layer 5 (Overall Output): The node here computes the output of CANFIS network: 

(6) jjj uwO ,5  

A fuzzy set is usually described by its membership function (MF) [1]. Due to smoothness and 

concise notation, the Gaussian and Bell membership functions are increasingly popular for 

specifying fuzzy sets. The Bell membership function has one more parameter than the Gaussian 

membership function, so a non fuzzy set can be approached when the free parameter is tuned. 

These membership functions are defined as follow [5]: 

(7)  (Bell function) 

 
  12

1

1

1

1
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x




  

Where x= input to the node and a1, b1 and c1 = adaptable variables known as premise 

parameters.  

(8)  (Gaussian function)  

2

2
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A Gaussian membership function is determined by c and σ: c represents the centre of the MF; 

and σ determines the width of the MF 

Axons are valuable because their MF can be modified through back propagation during 

network training to expedite the convergence.  

The second major component of CANFIS is a modular network that applies functional rules to 

the inputs. The number of modular networks matches the number of network outputs and 

processing elements in each network corresponding to the number of MF. Two fuzzy structures 

are mainly used: the Tsukamoto model and the Takagi–Sugeno–Kang (TSK) model. Finally, a 

combiner is used to apply the MF outputs to the modular network outputs. The combined 

outputs are then channeled through a final output layer, and the error is back propagated to 

both the MF and the modular network [35].  

 

2.2.1.2 Tsukamoto Fuzzy Model 

    In the Tsukamoto fuzzy models, the consequent part of each fuzzy if-then rule is specified by a 

membership function of a step function centered at the constant. As a result, the inferred output 

of each rule is defined as a crisp value induced by the rule’s firing strength. The overall output is 

taken as the weighted average of each rule’s output. This fuzzy model avoids the time consumed 

by the defuzzification process since it aggregates each rule’s output by the method of weighted 

average [11]. 

 

2.2.1.3 Takagi–Sugeno–Kang (TSK) Fuzzy model 

    The TSK fuzzy model introduced in 1984 by T. Takagi, M. Sugeno, and K. T. Kang [21]. Fuzzy 

models that assume local model presentations with local function dynamics at the consequent 



Majid Heydari, Parisa Hosseinzadeh Talaee / TJMCS Vol .2 No.3 (2011) 515-528 

520 

 

or rule-layer of the models are known as Takagi–Sugeno–Kang (TSK) models. In this model, the 

output is calculated by performing fuzzy interpolations of simpler functional models in the 

neighboring fuzzy partitions. The ability of accurate modeling of a system, globally or locally, is 

the significant advantage of TSK models. Specifically, the accurate global learning ability of TSK 

models motivates various practical applications of such models in non-linear system estimation. 

One of the main criteria to categorize existing TSK models is locality of learning. This criterion 

depends on the model’s learning objective function, which is a minimization problem of the 

global or the local learning errors [44].  

In this study the CANFIS architecture used, and the problem is proposed to network models 

by means of two inputs and one output parameter. The height of water in upstream (Hup) and 

downstream (Hdown) sides of the dams were selected as the inputs of the models. The flow 

through the dams was the target outputs of the models. An experimental data set including 23 

patterns of rectangular rockfill dam and 34 patterns of trapezoidal rockfill dam were applied. In 

the CANFIS models developed here, 60% of the available data were used for training, 20% for 

cross-validation and 20% for testing network. All experimental data were randomly placed in 

these sets. Before applying the CANFIS to the data, the training, cross-validation and testing 

subsets were scaled (normalized) to the range of 0–1 using the following equation: 

(9) 













minmax

5.05.0
XX

XX
X norm

 

where X is the input value, Xnorm is the scaled input value of the input value X, and Xmax and Xmin 

are the respective maximum and minimum values of the unscaled measured data. In this paper, 

the Bell and Gaussian membership functions and TSK and Tsukamoto fuzzy models were used. 

For small to medium-sized data sets, the number of membership functions assigned to each 

network input, will usually be between 1 and 10. The various algorithms (i.e., Levenberg-

Marquardt, Delta-Bar-Delta, Step, Momentum, ConjugateGradient and Quickprop) were applied 

in order to identify the one which trains a given network more efficiently. Besides, different 

transfer functions (i.e., Sigmoid, Linear sigmoid, Tanh, Linear Tanh, Linear and Bias) were used 

in order to identify the one which gives the best results in depicting the non-linearity of the 

modeled natural system. The best architecture of the network was determined by trial and 

error. In fact, the optimal network architecture for each model was selected from the one which 

resulted in minimum errors and best correlation in the data set. The process of designing the 

networks is managed by NeuroSolution for Excel Release 4.2 software produced by 

NeuroDimension, Inc. 

 

2.3 Criteria of evaluation 

    To evaluate the success of CANFIS in learning, several statistical measures could be used for 

comparison between the flow values calculated by CANFIS method and those obtained by the 

experimental study. The statistical criteria considered were root mean square error (RMSE), 

percentage error of estimate (PE), the ratio between average estimated flow values and 

observed values (RA), coefficient of determination (R2) and mean absolute error (MAE). The RA 

shows under (RA<1) or over (RA>1) estimation of the flow. Also, the RMSE and PE are used to 

determine how much the network has reached to desired output values. The performance 

evaluation criteria used in this study can be calculated utilizing the following equations: 

 



Majid Heydari, Parisa Hosseinzadeh Talaee / TJMCS Vol .2 No.3 (2011) 515-528 

521 

 

 

n

OP

RMSE

n

i

ii




 1

2

 
(10) 

%100



O

OP
PE  (11) 

O

P
RA   (12) 

 

 












n

i

i

n

i

ii

OO

PO

R

1

2

1

2

2 1  

 

(13) 

)(
1

1





n

i

ii OP
n

MAE  

 

(14) 

Where iP  and iO  are the predicted and observed values, respectively; P  and O are the average 

of iP  and iO , and n is the total numbers of data. 

 

3. Results and discussion 
3.1. Results of the method for trapezoidal rockfill dam 

    In the present study, flow through trapezoidal and rectangular rockfill dams was estimated by 

a CANFIS model. The data used for developing this model was obtained from the experimental 

study and the prediction capability of the model was analyzed by means of comparison with 

observed data. In order to assess obtained results, network was run in various manners. Also, 

the characteristic of type of the fuzzy models and the membership functions were studied. In 

each simulation, the effect of the different types of the fuzzy models and the membership 

functions were evaluated. Furthermore, the number of membership functions can determine the 

performance of a neuro-fuzzy system, in terms of reducing the size of error and generalization 

[2]. The final architectures of the neuro-fuzzy models found after many trials are given in Table 

1 and 2. The RMSE, PE, RA and R2 statistics of each CANFIS model in the test phase are also 

provided in these tables. 

From the results obtained, CANFIS model appears to be a useful tool for prediction of the 

flow through rockfill dams. 

In trapezoidal rockfill dam, among of the used fuzzy models, the TSK fuzzy model presented a 

better performance (R2=0.982, RMSE=0.555 lit s-1 and PE=1.199%) compared with the 

Tsukamoto fuzzy model. The Tanh function as a transfer and the Delta-Bar-Delta algorithm for 

the network learning were the best architecture as these proved by trial and error for the TSK 

fuzzy model. Based on Table 1, the TSK fuzzy model had a tendency to underestimate (RA<1) 

flow through trapezoidal rockfill dam. On the contrary, the Tsukamoto fuzzy model 

overestimated (RA>1) flow values. Also, different number of membership function in range [1, 

10] for each fuzzy model was tested and the number of membership function that gives the 

minimal output errors are given in Table 1 with respect to type of membership function for each 

study. 
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Figures 4 and 5 show the evolution of the MAE according to the number of epochs and 

membership functions in the TSK fuzzy model. Different numbers of epochs and membership 

functions were tested for access the best architecture. After many trial and error attempts it was 

determined that when using 700 epochs and 8 MF, the MAE was the lowest and more or less 

epochs and MF did not reduce the MAE further. 

It can be seen from Table 1 and Fig.4 that the trained CANFIS network with 8 MF per input 

variable shows the best performance. Furthermore, in the best architecture the Bell 

membership function had slightly better results than the Gaussian membership function. 

Figure 6 shows the plots between the measured and the estimated flow values by the model 

for training, validation and testing sets in trapezoidal rockfill dam. The selected TSK model 

provided a best fit model for all the three data sets. 
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Fig.4 MAE error for CANFIS model with different number of MF in trapezoidal rockfill dam 
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Fig.5 Variation of MAE value for various numbers of epochs for CANFIS model in trapezoidal rockfill dam 

 
Table 1 The final architectures and value of standard statistical indexes of the NF models for the test phase in 

trapezoidal rockfill dam 

R2 RA PE (%) 
RMSE 

(lit/s) 
Numbers 

of Epoch 

Numbers 

of MF 
Types 

of MF 
Learning algorithm 

Transfer 

function 
Nero-Fuzzy 

0.982 0.988 1.199 0.555 700 8 Bell Delta-Bar-Delta Tanh TSK model 

0.951 1.639 16.397 2.744 600 5 Bell ConjugateGradient 
Linear 

Sigmoid 

Tasukamoto 

model 
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Fig.6 Comparison of the flow predicted by CANFIS model and the observed values in trapezoidal rockfill dam 

 

3.2. Results of the method for rectangular rockfill dam 

    Obtained results for rectangular rockfill dam for flow prediction are presented in this section. 

The final architectures of the CANFIS models that were found after many trials are given in 

Table 2. The statistics values of each CANFIS model in the test phase are also given in this table. 

Similar to trapezoidal rockfill dam, comparison of the model performance between the TSK 

and Tsukamoto fuzzy models indicated that the TSK model was more suitable for flow 

prediction in rectangular rockfill dam. The TSK fuzzy model presented the best R2, RMSE and PE 

statistics of 0.975, 0.965 lit s-1 and 4.129%, respectively. 

As shown in Table 2, the best overall performance in the TSK fuzzy model was achieved by 

the network trained with the Levenberg-Marquardt algorithm and the sigmoid function as a 

transfer function. 

The TSK fuzzy model overestimated (RA>1) flow, whilst the Tsukamoto fuzzy model 

underestimated (RA<1) it (Table. 2). The presented results are briefed for only the Bell 

membership function as it had slightly better results than the Gaussian membership function. 

Figure 7 depicts the MAE versus number of membership functions for the TSK fuzzy model. 

Different number of membership functions was tried and the best one that gives the minimum 

MAE was selected. Two Bell membership functions to the CANFIS model were found enough for 

modeling flow through rectangular rockfill dams. 

Moreover, the MAE errors against number of epoch for the TSK fuzzy model are shown in 

Fig.8. It can be seen that the MAE errors for testing data set more or less reach a minimum after 

100 epochs. 
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Figure 9 shows the observed flow values and the predicted ones by the TSK fuzzy model in 

rectangular rockfill dam. As can be seen from this figure, it appears the model outputs 

appropriately correspond with the experimental data. 
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Fig.7 MAE error for CANFIS model with different number of MF in rectangular rockfill dam 
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Fig.8 Variation of MAE value for various numbers of epochs for CANFIS model in rectangular rockfill dam 

 
Table 2 The final architectures and value of standard statistical indexes of the NF models for the test phase in 

rectangular rockfill dam 

R2 RA PE (%) 
RMSE 

(lit/s) 
Numbers 

of Epoch 

Numbers 

MF 
Types 

of MF 
Learning algorithm 

Transfer 

function 
Nero-Fuzzy 

0.975 1.041 4.129 0.965 100 2 Bell Levenberg-Marquardt Sigmoid TSK model 

0.737 0.995 19.6240 3.681 200 2 Bell ConjugateGradient Bias 
Tasukamoto 

model 
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Fig.9 Comparison of the flow predicted by CANFIS model and the observed values in rectangular rockfill dam 

 

4. Conclusions 
    In the presented article a CANFIS technique was applied for predicting the flow through 

trapezoidal and rectangular rockfill dams. The TSK and Tsukamoto fuzzy models were 

developed and their abilities to predict flow through rockfill dams were compared. Input data to 

each model in CANFIS included height of water in upstream and downstream sides of the dams. 

The output of the CANFIS was flow through the dams. The results revealed that the TSK fuzzy 

model was more efficient than the Tsukamoto fuzzy model for prediction of flow through 

rockfill dams. Moreover, in both types of dams, the Bell function performed better than the 

Gaussian function. Also, 8 and 2 membership functions provided the best results in trapezoidal 

and rectangular rockfill dams, respectively. 

To sum up, the results of this study indicated that the flow values predicted using the CANFIS 

model were in good agreement with experimental data, indicating CANFIS model can be 

employed successfully in estimating flow through rockfill dam. 

In general, the findings of this study indicated that intelligence methods such as CANFIS 

model can be used as an effective tool for prediction of flow through rockfill dam instead of very 

complex and time-consuming numerical methods. 
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