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Abstract

The objective of the current article is to guarantee the solvability of implicit θ-Caputo fractional differential equations with
integral boundary conditions. We establish the necessary conditions to guarantee unique solutions and demonstrate Ulam-
Hyers-Rassias stability. Additionally, we include examples to illustrate the key findings.
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1. Introduction

Fractional calculus is a potent tool in applied mathematics, offering a way to analyze a wide range of
problems in various scientific and technical fields. Fractional derivatives have yielded significant results in
[5, 18–23]. The study of partial fractional differential equations, as well as ordinary differential equations,
has made substantial progress in recent years. For further exploration, one could refer to the monographs
by Abbas et al. [2], Baleanu et al. [17], Kilbas et al. [26], Lakshmikantham et al. [28], and numerous
researchers have contributed highly useful findings in this area [6, 7, 9–12, 25].

During a lecture at Wisconsin University in 1940, Ulam first brought up the subject of stability in func-
tional equations. He asked, ”Under what circumstances does the existence of an additive mapping that
is close to an essentially additive mapping hold?” (See [33] for more information.) In 1941, Hyers offered
the first response to Ulam’s query, focusing on the situation involving Banach spaces [29]. Thistype of
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stability is referred to as Ulam-Hyers stability. In 1978, Rassias significantly expanded the Ulam-Hyers
stability by including variables [14]. The concept of stability in functional equations appears when an
inequality is employed as a perturbation instead of the original equation. As a result, the difference be-
tween the solutions of the inequality and those of the functional equation that is being presented revolves
around the issue of stability in functional equations. Ulam-Hyers and Ulam-Hyers-Rassias stability in
different types of functional equations have received a lot of attention, as addressed in the monographs
by [1, 24, 29].

The Riemann-Liouville derivative has been generalized in the classical papers to include fractional
derivatives of a function with regard to function, for example, called it θ. Since the kernel is visible
According to θ, In [4], Almeida recently updated his analysis of this derivative and provided a Caputo-
type regularization of the previous formulation along with several intriguing features. This operator’s
properties can be found in [3, 27, 30].

In several references, the authors have discussed the existence, stability, or other qualitative character-
istics of solutions to different kinds of integral equations, For further details, the readers can refer to some
interesting research papers [8, 13, 31, 32, 35].

Motivated by these works, we study existence and Ulam-Hyers-Rassias stability of following implicit
θ-Caputo fractional differential problem (IFDP).

cDγ;θy(t) = f
(
t,y(t),cDδ;θy(t),

∫ t
0
k(t, τ)cDγ;θy(τ)dτ

)
, (1.1)

y(0) =
1
Γ(ρ)

∫1

0
θ′(τ)(θ(1) − θ(τ))ρ−1 h1(τ,y(τ)) dτ, (1.2)

y′(1) =
1
Γ(ρ)

∫1

0
θ′(τ)(θ(1) − θ(τ))ρ−1 h2(τ,y(τ)) dτ, (1.3)

where 1 < δ < γ 6 2 and 0 < ρ < 1, here θ (t) is non decreasing function with θ ′ (t) 6= 0, ∀ t ∈ J = [0, 1],
and cDγ,θ is the θ-Caputo fractional derivative. In this study, we discuss some results on the stability
of solutions to problem (1.1)-(1.3). In order to fulfill these aims, we use the concepts of fixed-point theo-
rem to establish the existence and uniqueness of solutions for the proposed problem and analyze some
stabilities, namely, Hyers−Ulam, and Hyers-Ulam-Rassias stability. We present our results in a general
platform, which covers many particular cases for specific values of θ as particular cases of our main result,
we obtain implicit θ-Caputo fractional differential problem with nonlocal boundary conditions involving
Riemann-Stieltjes integrals, and integral equation of Volterra-Stieltjes type

The paper has been divided under four sections. Two parts make up Section 2, which includes the
primary findings. In part one, it was discussed how the integral equation (2.1) and FIDE (1.1)-(1.3) are
equivalent. The results of the problem (1.1)-(1.3) are presented in Part two, one utilizing the Banach
contraction principle and the other employing the Krasnosel’skii fixed point theorem. In Section 3, we
will also discuss the Ulam-Hyers Russian stability of our problem. Additionally, we provide some specific
cases and examples that illustrate our conclusions in Section 4. We terminate the investigation with
conclusions.

2. Existence results

This section discusses existence and uniqueness of mild solutions for the Ulam stability for the prob-
lem (1.1)-(1.3).
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(H1) Functions hi :: J×R→ R, i = 1, 2 are continuous, such that there exist constants 0 6 ki < 1, meet

|hi(t, τ1) − hi(t, τ2)| 6 ki|τ1 − τ2|,

note that

|hi(t, τ)| 6 Hi + ki|τ|, where Hi = sup
t∈J

|hi(t, 0)|, i = 1, 2.

(H2) f : J×R3 → R is continuous, such that there exists ψ ∈ C(J, R+), with norm ‖ψ‖, meet

|f(t, τ1, τ2, τ3) − f(t,σ1,σ2,σ3)| 6 ψ(t)
(
|τ1 − σ1|+ |τ2 − σ2|+ |τ3 − σ3|

)
,

note that

|f(t, τ1, τ2, τ3)| 6 ‖ψ‖(|τ1|+ |τ2|+ |τ3|) + F, with F = sup
t∈J

|f(t, 0, 0, 0)|.

∀ t ∈ J, τi,σi ∈ R, (i = 1, 2, 3).

(H3) k(t,σ) is continuous for all (t,σ) ∈ J× J, with K is a positive constant, such that

max
t,σ∈J

|k(t,σ)| = K.

Lemma 2.1. The IFDP (1.1)-(1.3) has a mild solution of which it satisfies

y(t) = h(t,y(t)) +
∫ 1

0
G(t, τ)u(τ)dτ, (2.1)

here

u(t) = f
(
t,h(t) +

∫ 1

0
G(t, τ)u(τ)dτ, Iγ−δ;θu(t),

∫ t
0
k(t, τ)u(τ)dτ

)
,

G(t, τ) =


θ′(τ)(θ(t)−θ(τ))γ−1

Γ(γ) −
θ′(τ)(θ(t)−θ(0))(θ(1)−θ(τ))γ−2

θ′(1) Γ(γ−1) , 0 6 τ 6 t 6 1

θ′(τ)(θ(t)−θ(0))(θ(1)−θ(τ))γ−2

θ′(1) Γ(γ−1) , 0 6 t 6 τ 6 1

(2.2)

G◦ := max{
∫ 1

0
|G(t, τ)| dτ,

and

h(t,y(t)) =
∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h1(τ,y(τ))dτ

+
(θ(t) − θ(0))

θ′(1)

∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h2(τ,y(τ)) dτ.

(2.3)
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Proof. Let cDγ,θy(t) = u(t) in (1.1), then

u(t) = f(t,y(t), Iγ−δ;θu(t),
∫ t

0
k(t, τ)u(τ)dτ),

and

y(t) = a◦ + a1(θ(t) − θ(0)) +
1
Γ(γ)

∫ t
0
θ′(τ)(θ(t) − θ(τ))γ−1u(τ)dτ. (2.4)

We can get the following from (1.2) and (1.3)

a◦ =

∫ 1

0

θ′(τ)(θ(1) − θ(τ))γ−1

Γ(γ)
h1(τ,y(τ))dτ,

differentiate (2.4) we receive

y′(t) = a1 θ
′(t) +

1
Γ(γ− 1)

∫ t
0
θ′(τ)(θ(t) − θ(τ))γ−2u(τ)dτ.

So,

a1 =
1

θ′(1) Γ(ρ)

∫1

0
θ′(τ)(θ(1) − θ(τ))ρ−1 h2(τ,y(τ)) dτ

−
1

θ′(1) Γ(γ− 1)

∫1

0
θ′(τ)(θ(1) − θ(τ))γ−2u(τ)dτ.

Consequently, the solution of (1.1)-(1.3) is outlined below:

y(t) =

∫1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h1(τ,y(τ))dτ

+
(θ(t) − θ(0))

θ′(1)

∫1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h2(τ,y(τ)) dτ

−
(θ(t) − θ(0))
θ′(1) Γ(γ− 1)

∫1

0
θ′(τ)(θ(1) − θ(τ))γ−2u(τ)ds+

1
Γ(γ)

∫ t
0
θ′(τ)(θ(t) − θ(τ))γ−1u(τ)dτ.

Lemma 2.2. The Lipschitzian function h : J×R→ R, has a Lipschitz constant c, with

‖h(t,µ) − h(t,ν)‖ 6 c ‖µ− ν‖.

Proof. We obtain for any for all x,y ∈ X and t ∈ J∣∣h(t, x(t)) − h(t,y(t))|
6

∣∣∣∣ ∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h1(τ, x(τ))dτ+

(θ(t) − θ(0))
θ′(1)

∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h2(τ, x(τ)) dτ

−

∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h1(τ,y(τ))dτ−

(θ(t) − θ(0))
θ′(1)

∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
h2(τ,y(τ)) dτ

∣∣∣∣
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6
1

Γ(ρ+ 1)
‖h1(τ, x) − h1(τ,y)‖+ (θ(t) − θ(0))

θ′(1) Γ(ρ+ 1)
‖h2(τ, x) − h2(σ,y)‖

6
k1(θ(1) − θ(0))ρ

Γ(ρ+ 1)
‖x− y‖+ k2 (θ(1) − θ(0))ρ (θ(t) − θ(0))

θ′(1) Γ(ρ+ 1)
‖x− y‖

6
(θ(1) − θ(0))ρ[k1 θ

′(1) + k2 (θ(t) − θ(0))
θ′(1) Γ(ρ+ 1)]

‖x− y‖.

Then
‖h(t, x) − h(t,y)‖ 6 c ‖x− y‖,

with c = (θ(1)−θ(0))ρ[k1 θ
′(1) +k2 (θ(1)−θ(0))]

θ′(1) Γ(ρ+1) .

2.1. Exsistence of solution

Based on the Krasnoselskii [14] fixed point Theorem, we will proved the first existence result for IFDP
(1.1)-(1.3).

Theorem 2.3. There is at least one mild solution on I for IFDP (1.1)-(1.3) under the assumptions (H1) through
(H3). If

(θ(1) − θ(0))ρk1 + t(θ(1) − θ(0))ρ+1k2

Γ(ρ+ 1)
+

G◦ ‖ψ‖
1 −ℵ

< 1.

Proof. Consider the operator z : C(J, R)→ C(J, R) by:

zy(t) = h(t,y(t)) +
∫ 1

0
G(t, τ)v(τ)dτ, (2.5)

with

v(t) = f
(
t,y(t), Iγ−δ;θv(t),

∫ t
0
k(t, τ)v(τ)dτ

)
.

Define the set
Bσ = {y ∈ C(J, R) : ‖y‖ 6 σ},

with

σ >

(θ(1)−θ(0))ρH1+t(θ(1)−θ(0))ρ+1H2
Γ(ρ+1) + G◦ F

1−ℵ

1 −
( (θ(1)−θ(0))ρk1+t(θ(1)−θ(0))ρ+1k2

Γ(ρ+1) +
G◦ ‖ψ‖

1−ℵ

) ,

and

ℵ =
‖ψ‖(θ(1) − θ(0))γ−δ

Γ(γ− δ+ 1)
+ ‖ψ‖K.

Additionally, we define operators z1 and z2 on Bσ by

z1y(t) = h(t,y(t)),

z2y(t) =

∫ 1

0
G(t, τ)v(τ)dτ.

Take into account that z1 and z2 are defined on Bσ, and for any y ∈ C(J, R),

z(t) = z1y(t) +z2y(t), t ∈ J.

The proof will be divided down into the following steps:
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Step 1. Take y1,y2 ∈ Br and t ∈ J, we obtain

|z1y1(t) +z2y2(t)| 6 |z1y1(t)|+ |z2y2(t)|

6 |h(t,y1(t))|+

∫ 1

0
|G(t, τ)||v(τ)|dτ,

(2.6)

where v(t) = f
(
t,y2(t), Iγ−δ;θv(t),

∫t
0 k(t, τ)v(τ)dτ

)
|v(t)| =

∣∣f(t,y2(t), Iγ−δ;θv(t),
∫ t

0
k(t, τ)v(τ)dτ

)∣∣
6 F+ψ(t)|y2(t)|+ψ(t)

∫ t
0

θ′(τ)(θ(t) − θ(τ))γ−δ−1

Γ(γ− δ)
|v(τ)| dτ+ψ(t)

∫ t
0
|k(t, τ)||v(τ)|dτ,

Taking supermum for t ∈ I, we have

‖v‖ 6 F+ ‖ψ‖ ‖y2‖+ ‖ψ‖
(θ(1) − θ(0))γ−δ

Γ(γ− δ+ 1)
‖v‖+ ‖ψ‖K‖v‖.

Then

‖v‖ 6 F+ ‖ψ‖ σ
1 −

(‖ψ‖(θ(1)−θ(0))γ−δ
Γ(γ−δ+1) + ‖ψ‖K

) .

And

|h(t,y1(t))| 6
∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
|h1(τ,y1(τ))|dτ

+
(θ(t) − θ(0))
θ′(1)

∫ 1

0

θ′(τ)(θ(1) − θ(τ))ρ−1

Γ(ρ)
|h2(τ,y1(τ))|dτ,

Γ(ρ)|[H2 + k2|y2(τ)|]dτ 6
(θ(1) − θ(0))ρ[H1 + k1‖y1‖]

Γ(ρ+ 1)
+

(θ(1) − θ(0))ρ (θ(1) − θ(0))[H2 + k2‖y2‖]
θ′(1) Γ(ρ+ 1)

.

Hence (2.6) implying that, for each t ∈ J,

|z1y1(t) +z2y2(t)| 6
(θ(1) − θ(0))ρ[H1 + k1‖y1‖]

Γ(ρ+ 1)
+

(θ(1) − θ(0))ρ+1 [H2 + k2‖y2‖]
θ′(1) Γ(ρ+ 1)

+
G◦ (F+ ‖ψ‖ σ)

1 − ℵ

6 σ.

Taking supremum over t ∈ I, we have

‖z1y1 +z2y2‖ 6 σ.

This proves that z1y1 +z2y2 ∈ Bσ, ∀ y1,y2 ∈ Bσ.
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Step 2. lemma 2.2 makes it evident that A1 represents a contration mapping when c < 1.

Step 3. First, establish the continuity of operator z2 is continuous.
Let {yn}n∈N be a sequence with yn → y as n→∞ in C(J, R).
Afterward, for each t ∈ J

|z2yn −z2y| 6
∫ 1

0
|G(t, τ)||vn(τ) − v(τ)|dτ, (2.7)

where vn, v ∈ C(J, R)

vn(t) = f
(
t,yn(t), Iγ−δ;θvn(t),

∫ t
0
k(t, τ)vn(τ)dτ

)
v(t) = f

(
t,y(t), Iγ−δ;θv(t),

∫ t
0
k(t, τ)v(τ)dτ

)
,

so that by (H2)

|vn(t) − v(t)|

6 ψ(t)

(
|yn(t) − y(t)|+

∫ t
0

θ′(τ)(θ(t) − θ(τ))γ−δ−1

Γ(γ− δ)
|vn(τ) − v(τ)|dτ+

∫ t
0
k(t, τ)|vn(τ) − v(τ)|dτ

)
6 ‖ψ‖

(
‖yn − y‖+ ‖vn − v‖(θ(1) − θ(τ))γ−δ

Γ(γ− δ+ 1)
+K ‖vn − v‖

)
.

Thus

‖vn − v‖ 6 ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(t)−θ(τ))γ−δ

Γ(γ−δ+1)

)‖yn − y‖.

For yn → y, thus, we have vn(t) → v(t) as n → ∞ for each t ∈ J. And then let ε > 0 be shall ensure, for
each t ∈ J, we get |vn(τ)| 6 ε, and |v(τ)| 6 ε. Then

|G(t, τ)||vn(τ) − v(τ)| 6 |G(t, τ)|[|vn(τ)|+ |v(τ)|]

6 2ε|G(t, τ)|,

∀ t ∈ J, the function τ→ 2ε|G(t, τ)| is integrable on J. Then applying Lebesgue Dominated Convergence
Theorem, and (2.7), we may conclude that

‖z2yn −z2y‖ → 0 as n→∞.

As a result, z2 is continuous. Furthermore, it is simple to confirm that

‖z2y‖ 6 G0
(F+ ‖ψ‖ σ

1 −ℵ

)
6 σ,

according to the definitions of ℵ. This demonstrate that z2 is uniformly bounded on Bσ.
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In the end, we demonstrate that z2 maps bounded sets into equicontinuous sets of C(J, R), i.e., Bσ is
equicontinuous.

Next, suppose that ∀ ε > 0, ∃ δ > 0 and t1, t2 ∈ I, t1 < t2, |t2 − t1| < δ, Then we get

|z2y(t2) −z2y(t1)| 6
∫1

0
|G(t2, τ) − G(t1, τ)| |v(τ)|dτ

6
F+ ‖ψ‖ σ

1 −ℵ

∫1

0
|G(t2, τ) − G(t1, τ)| dτ.

As t1 → t2, he right-hand side of the above mentioned inequality tends to zero and is independent of y .
Consequently,

|z2y(t2) −z2y(t1)|→ 0, ∀ |t2 − t1|→ 0.

As a result, {zy} is equi-continuous on Bσ. according to the Arzela-Ascoli Theorem [16], and z is a
compact operator, we conclusion that z : C(J, R)→ C(J, R) is completely continuous.

As a result, all assumptions of Krasnoselskii’s fixed point theorem are met and demonstrates that
z1 +z2 has a fixed point on Bσ. Hence, there is a mild solution to the IFDP (1.1)-(1.3).

Our second conclusion proves using Banach’s fixed point theorem the uniqueness of solution to the
IFDP (1.1)-(1.3).

Theorem 2.4. Suppose that hypotheses of Theorem 2.3 meet, with

c+
G◦ ‖ψ‖

1 − ‖ψ‖
(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

) < 1, (2.8)

Then, a unique mild solution on J provided by the IFDP (1.1)-(1.3).

Proof. Therefore, IFDP (1.1)-(1.3) has at least one solution, according to Theorem 2.3. Thus, all that is
required of us is to demonstrate that z mentioned in (2.9) is a contraction operator.

Next, select x,y ∈ C(J, R). After that, for t ∈ J, we obtain

zx(t) −zy(t) = h(t, x(t)) +
∫ 1

0
G(t, τ)u(τ)dτ− h(t,y(t)) −

∫ 1

0
G(t, τ)v(τ)dτ, (2.9)

here u, v ∈ C(J, R), with

u(t) = f
(
t, x(t), Iγ−δ;θu(t),

∫ t
0
k(t, τ)u(τ)dτ

)
.

v(t) = f
(
t,y(t), Iγ−δ;θv(t),

∫ t
0
k(t, τ)v(τ)dτ

)
.

Then, for t ∈ J

|zx(t) −zy(t)| 6 |h(t, x(t)) − h(t,y(t))|+
∫ 1

0
G(t, τ) |u(τ) − v(τ)|dτ, (2.10)

however, given the condition (H2), we obtain
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|u(t) − v(t)|

6 ψ(t)

(
|x(t) − y(t)|+

∫ t
0

θ′(τ)(θ(t) − θ(τ))γ−δ−1

Γ(γ− δ)
|u(τ) − v(τ)| dτ+

∫ t
0
k(t, τ)|u(τ) − v(τ)|dτ

)
6 ‖ψ‖

(
‖x− y‖+ (θ(t) − θ(0))γ−δ

Γ(γ− δ+ 1)
‖u− v‖+K‖u− v‖

)
.

Thus

‖u− v‖ 6 ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)‖x− y‖.
Back to (2.10) and using lemma 2.2, we get

‖zx−zy‖

6

(
c+

G◦ ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

))‖x− y‖.
By

(
c+

G◦ ‖ψ‖
1−‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)) < 1, we deduce that z is a contraction. As a result, according to Banach’s

contraction principle, z has a unique fixed point on J, and that is a mild solution of the IFDP (1.1)-
(1.3).

3. Ulam-Hyers Stability

We now investigate the Ulam stability for IFDP (1.1)-(1.3). Make Φ : J→ R+ be a continuous function
and suppose that ε > 0. This kind of inequality is considered:

|cDγ;θy(t) − f
(
t,y(t),cDδ;θy(t),

∫ t
0
k(t, τ)cDγ;θy(τ)dτ

)
|6 ε, t ∈ J (3.1)

|cDγ;θy(t) − f
(
t,y(t),cDδ;θy(t),

∫ t
0
k(t, τ)cDγ;θy(τ)dτ

)
| 6 θ(t), t ∈ J (3.2)

|cDγ;θy(t) − f
(
t,y(t),cDδ;θy(t),

∫ t
0
k(t, τ)cDα;φy(τ)dτ

)
| 6 ε θ(t), t ∈ J. (3.3)

Theorem 3.1. Assume that the premises of Theorem 2.4 meet. Ulam−Hyers is thus stable for IFDP (1.1)-(1.3).

Proof. Take ε > 0 and let the function z ∈ C(J, R) be fulfills inequality (3.1), i.e.,

|cDγ;θz(t) − f
(
t, z(t),cDδ;θz(t),

∫ t
0
k(t, τ)cDγ;θz(τ)ds

)
| 6 ε, t ∈ J

and permit FIDE (1.1)-(1.3) to have a unique solution y ∈ C(J, R), consequently, lemma 2.1 gives the
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equivalence betwwen IFDP (1.1)-(1.3) and integral equation

y(t) = h(t,y(t)) +
∫ 1

0
G(t, τ)u(τ)dτ,

u(t) = f
(
t,h(t,y(t)) +

1
Γ(γ)

∫ 1

0
G(t, τ)u(τ)dτ, Iγ−δ;θu(t),

∫ t
0
k(t, τ)u(τ)dτ

)
.

Operating by Iγ,θ on (3.1), and by integrating, we obtain∣∣∣∣z(t) − h(t, z(t)) − ∫ 1

0
G(t, τ)v(τ)dτ

∣∣∣∣ 6 ε (θ(1) − θ(0))γ

Γ(γ+ 1)
. (3.4)

For each t ∈ J, we have

|z(t) − y(t)| =
∣∣z(t) − h(t,y(t) − ∫ 1

0
G(t, τ)u(τ)dτ

∣∣
6
∣∣z(t) − h(t, z(t) + ∫ 1

0
G(t, τ)v(τ)dτ

∣∣
+
∣∣h(t, z(t) + ∫ 1

0
G(t, τ)v(τ)ds− h(t,y(t) −

∫ 1

0
G(t, τ)u(τ)dτ

∣∣
6
ε (θ(1) − θ(0))γ

Γ(γ+ 1)
+
∣∣h(t, z(t)) − h(t,y(t))∣∣+ ∫ 1

0
G(t, τ)|v(τ) − u(τ)|dτ

6
ε (θ(1) − θ(0))γ

Γ(γ+ 1)
+ c ‖z− y‖+ G◦‖u− v‖ .

Actuality, demonstration of Theorem 2.4 gives

‖u− v‖ 6 ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)‖z− y‖.
Then, ∀ t ∈ J

‖z− y‖ 6 ε (θ(1) − θ(0))γ

Γ(γ+ 1)
+ c ‖z− y‖+ G◦ ‖ψ‖

1 − ‖ψ‖
(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)‖z− y‖.
Thus

‖z− y‖ 6ε (θ(1) − θ(0))γ

Γ(γ+ 1)

[
1 −

(
c +

G◦ ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

))]−1

= χ ε,

for let χ =
(θ(1)−θ(0))γ
Γ(γ+1)

[
1 −

(
c +

G◦ ‖ψ‖
1−‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

))]−1

. So, the FIDE (1.1)-(1.3) is Ulam-Hyers

stable.

By setting Φ(ε) = χ ε, Φ(0) = 0. It can be demonstrated that the the FIDE (1.1)-(1.3) is generalized
Ulam-Hyers stable.
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3.1. Ulam-Hyers-Rassias Stability.

Next, we present the Ulam−Hyers −Rassias stable result.

Theorem 3.2. Assume assumptions (H1) − (H3) and

(H4) The function Φ ∈ C(J, R+) is increasing and there exists λΦ > 0 with, ∀ t ∈ J, we get

Iγ Φ(τ) 6 λΦ Φ(τ).

are satisfied. Then IFDP (1.1)-(1.3) is Ulam−Hyers−Rassias stable with regard to to Φ.

Proof. Consider z ∈ C(J, R) to be the solution of Eq.(3.3), that is,

∣∣cDγ;θz(t) − f
(
t, z(t),cDδ;θz(t),

∫ t
0
k(t, τ)cDγ;θz(τ)dτ

)∣∣ 6 ε Φ, t ∈ J

and take y is a solution of the problem (1.1)−(1.3). As a result, we get

y(t) = h(t,y(t)) +
∫ 1

0
G(t, τ)u(τ)dτ,

with u ∈ C(I, R)

u(t) = f
(
t,y(t), Iγ−δ;θu(t),

∫ t
0
k(t, τ)u(τ)dτ

)
.

Applying Iγ on each sides of the inequality (3.3) and then integrating, we get∣∣∣∣z(t) − h(t, z(t)) − ∫ 1

0
G(t, τ)v(τ)dτ

∣∣∣∣ 6 ε

Γ(γ)

∫t
0
θ′(τ)(θ(t) − θ(τ))γ−1 Φ(τ)dτ

6 ελΦΦ(t),

with v ∈ C(J, R)

v(t) = f
(
t, z(t), Iγ−δ;θv(t),

∫ t
0
k(t, τ)v(τ)dτ

)
.

For each t ∈ J, we obtain

|z(t) − y(t)| =
∣∣z(t) − h(t,y(t)) + ∫1

0
G(t, τ)u(τ)dτ

∣∣
6
∣∣z(t) − h(t, z(t)) + ∫1

0
G(t, τ)v(τ)dτ

∣∣
+
∣∣h(t, z(t)) + ∫1

0
G(t, τ)v(τ)ds− h(t,y(t)) −

∫1

0
G(t, τ)u(τ)dτ

∣∣
6ε λΦ Φ(t) + c ‖z− y‖+ G◦‖v− u‖.
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In actuality, from evidence of Theorem 2.4,

‖u− v‖ 6 ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)‖z− y‖.
Hence, for each t ∈ J

‖z− y‖ 6 ε λΦ Φ(t) + c ‖z− y‖+ G◦ ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

)‖z− y‖.
Thus

‖z− y‖ 6
[
1 −

(
c+

G◦ ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

))] ε λΦ Φ(t) = cΦε Φ(t),

where

cΦ =
[
1 −

(
c+

G◦ ‖ψ‖
1 − ‖ψ‖

(
K +

(θ(1)−θ(0))γ−δ
Γ(γ−δ+1)

))] λΦ.

Therefore, the IFDP (1.1)-(1.3) is Ulam-Hyers-Rassias stable considering Φ.

4. Discussion and Illustrations

In this part, we offer specific existence results for a few boundary value problems that serve as special
illustrations of our fundamental finding.

• Assume Υ(τ) =
(θ(1)−θ(τ))ρ
Γ(ρ+1) , Then, using Riemann-Stieltjes integrals, we build

cDγ,θy(t) = f
(
t,y(t),cDδ,θy(t),

∫ t
0
k(t, τ)cDγ,θy(τ)dτ

)
, t ∈ (0, 1).

With the Riemann-Stieltjes boundary condition

y(0) =
∫ 1

0
h1(τ,y(τ))dΥ(τ),

y′(1) =
∫ 1

0
h2(τ,y(τ)) dΥ(τ).

Several investigations have looked into this type of boundary condition, for instance [34].

• For ρ → 1, θ(t) = t, f(t,y(t),u(t), v(t)) = −χ n(t) φ(y(t)), h1(t,y(t)) = h2(t,y(t)) = y(t), a
nonlocal value problem with an integral condition is obtained.

cDγ,θy(t) + χ n(t)φ(y(t)) = 0, t ∈ (0, 1)

y(0) =
∫ 1

0
y(τ)dτ and y′(1) =

∫ 1

0
y(τ)dτ,

which this kind of problem is investigated in [15].
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• For γ→ 0, θ(t) = t f(t,y(t),u(t), v(t)) = p(t)+ f1(t, v(t)), and k(t, τ) = t
t+τ . Then problem (1.1)-

(1.3) represents Chandrasekhar’s integral equations with integral boundary condition as follows

y(t) = p(t) + f1
(
t,
∫ t

0

t

t+ τ
y(τ)dτ

)
, (4.1)

y(0) =
1
Γ(ρ)

∫ 1

0
(1 − τ)ρ−1 h1(τ,y(τ)) dτ, (4.2)

y′(1) =
1
Γ(ρ)

∫ 1

0
(1 − τ)ρ−1 h2(τ,y(τ)) dτ, (4.3)

let us analyze the function g : R× R→ R, as defined by the formula

g(t, τ) =


t ln t+τt , for t > 0 and τ > 0,

0 for t = 0 and τ > 0.

We observe that the problem (4.1)-(4.3) can be expressed as Volterra-Stieltjes type

y(t) = p(t) + f
(
t,
∫ t

0
y(τ)dτg(t, τ)

)
, (4.4)

with integral bounday conditions (4.2)-(4.3). Recently, the problem of such a type was intensively
investigated in [19].

Example 1. Take the following IFDP into account:

cD
4
3 ;ln(1+t) =

e−t

et + 8

(
|y(t)|

1 + |y(t)|
−

|cD
5
4 ;ln(1+t)y(t)|

1 + |cD
5
4 ;ln(1+t)y(t)|

−
|
∫1

0 ln(t + τ)cD
5
4 ;ln(1+t)y(t)|

1 + |
∫1

0 ln(t + τ)cD
5
4 ;ln(1+t)y(t)|

)
(4.5)

y(0) =
1
Γ( 1

2)

∫ 1

0
(ln(2) − ln(1 + τ))

1
2

siny(τ)
20(1 + τ)

dτ, (4.6)

y′(1) =
1
Γ( 1

2)

∫ 1

0
(ln(2) − ln(1 + τ))

1
2
e−y(τ)

30(1 + τ)
dτ. (4.7)

Let

f(t,µ,ν,ω) =
e−t

et + 8

(
|µ(t)|

1 + |µ(t)|
−

|ν(t)|

1 + |ν(t)|
−

|ω(t)|

1 + |ω(t)|

)
.
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Note that, f is continuous function. For each µi,νi,ωi ∈ R, and t ∈ [0, 1], (i = 1, 2)

|f(t,µ1,ν1,ω1) − f(t,µ2,ν2,ω2)| 6
e−t

et + 8
(
|µ1 − µ2|+ |ν1 − ν2|+ |ω1 −ω2|

)
6

1
9
(
|µ1 − µ2|+ |ν1 − ν2|+ |ω1 −ω2|

)
.

Thus, (H2) is verified with ‖ψ‖ = 1
9 , and

|h(t, x(t)) − h(t,y(t))| 6
1

1.772453

∫ 1

0
(ln(2) − ln(1 + τ))

1
2
| sin x(τ) − siny(τ)|

20(1 + τ)
dτ

+
1

1.772453

∫ 1

0
(ln(2) − ln(1 + τ))

1
2
|e−x(τ) − e−y(τ)|

30(1 + τ)
dτ.

And we are going to be meeting the lemma 2.2, so, with constant c = 0.031348808 the function h is
lipschitz. We shall show that condition (2.8) holds.

c+
G◦ ‖ψ‖

1 − ‖ψ‖
(
K +

(φ(1)−φ(0))γ−δ
Γ(γ−δ+1)

) ' 0.4297118717 < 1,

Hence γ = 4
3 , δ = 5

4 , c = 0.03134, ‖ψ‖ = 1
9 , K = ln(2) and G0 < 3. We can see that all hypotheses of

Theorem 2.4 are fulfilled. Consequently, problem IFDP (4.5)-(4.7) has a unique mild solution defined on
I. Moreover, problem IFDP (4.5)-(4.7) is Ulam-Hyers-Rassias stable.

Example 2. Take the following IFDP into account:

cD
3
2 ;ty(t) =

2 + y(t) +cD
4
3 ;ty(t) +

∫1
0 e
t−τ cD

3
2 ;ty(τ)dτ

2et+1
(
1 + y(t) +cD

4
3 ;ty(t) +

∫1
0 e
t−τ cD

3
2 ;ty(τ)dτ

) , t ∈ [0, 1] (4.8)

y(0) =
1
Γ( 1

2)

∫ 1

0
(1 − τ)

1
2

y

10e−τ+2(1 + y)
dτ, (4.9)

y′(1) =
1
Γ( 1

2)

∫ 1

0
(1 − τ)

1
2

cosy
30(τ+ 2)

dτ. (4.10)

Let

f(t,µ,ν,ω) =
2 + |µ|+ |ν|+ |ω|

2et+1
(
1 + |µ|+ |ν|+ |ω|

) ,

Note that, f is continuous function. For each µi,νi,ωi ∈ R, and t ∈ [0, 1], (i = 1, 2)

|f(t,µ1,ν1,ω1) − f(t,µ2,ν2,ω2)| 6
1

2e
(
|µ1 − µ2|+ |ν1 − ν2|+ |ω1 −ω2|

)
.
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Thus, (H2) is verified with ψ(t) = 1
2et+1 . In addition, we obtain

|f(t,µ,ν,ω)| =
1

2et+1

(
2 + |µ|+ |ν|+ |ω|

)
,

with f(t, 0, 0, 0) = 1
et+1 , and ‖ψ‖ = 1

2e .
Set h1(t, x(t)) = cosx

30(t+2) and h2(t, x(t)) = x
10e−s+2(1+x)

|h1(t, x(t)) − h1(t,y(t))| 6
∣∣ cos x
30(t + 2)

−
cosy

30(t + 2)

∣∣
6

1
30

|x(t) − y(t)|,

and

|h2(t, x(t)) − h2(t,y(t))| 6
∣∣ x

10e−t+2(1 + x)
−

y

10e−t+2(1 + y)

∣∣
6

1
10e

|x(t) − y(t)|.

Hence, the condition (H1) is satisfied with k1 = 1
30 and k2 = 1

10e . From (2.2) clearly for α = 3
2 , then G0 < 1.

Thus condition
k1 + tk2

Γ(γ+ 1)
+

G◦ ‖ψ‖
1 −ℵ

' 0.4103216862 < 1,

where ℵ =
‖ψ‖

Γ(γ−δ+1) + ‖ψ‖K = 0.2568803025 is satisfied with γ = 3
2 , δ = 4

3 , F = 1
e , ‖ψ‖ = 1

2e k1 = 1
30 ,

k2 = 1
10e and K = e. Theorem 2.3 implies that the IFDP (4.8)-(4.10) has at least one mild solution on I.

5. Conclusion

Our purpose in this paper is to study the existence and uniqueness of mild solutions for boundary
value problems of implicit θ−Caputo fractional differential equation (1.1)-(1.3) our established based on
Krasnoselskii’s fixed point theorem and Banach contraction principle. In addition, stability analysis in the
Ulam–Hyers sense of a given implicit θ−Caputo differential equation of fractional order, supplemented
with fractional integral type boundary conditions was considered. Finally, we end the article with illus-
trations were provided to confirm the results’ applicability. In the future, the concept presented here can
be extended to the system of fractional integral equations of n-product type. New results can also be
obtained by considering more generalized kernels. Interested researchers can subsequently extend this
concept to two-dimensional integral equations of fractional order.
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[2] S. Abbes, M. Benchohra, G M. N’Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York,
(2012). 1

[3] R. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc.
Appl. Anal., 15 (2012), 700–711. 1

[4] R. Almeida, A Caputo fractional derivative of a function concerning another function, Commun. Nonlinear Sci. Numer.
Simul., 44 (2017), 460–481. 1

[5] Sh. M Al-Issa, A. M. A. El-Sayed, H. H. G. Hashem, An Outlook on Hybrid Fractional Modeling of a Heat Controller
with Multi-Valued Feedback Control, Fractal Fract., 7 (2023), 759. 1

[6] A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions for N-term non-autonomous fractional differential equa-
tions, Positivity, 9 (2005), 193–206. 1

[7] A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions for multi-term non-autonomous fractional differential
equations with polynomial coefficients, Electron. J. Differential Equations, 2006 (2006), 12 pages. 1

[8] Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. A. Kaabar, Z. Siri, Monotone Iterative Method for ψ−Caputo
Fractional Differential Equation with Nonlinear Boundary Conditions, Fractal Fract., 5 (2021), 81. 1

[9] M. Belmekki, M. Benchohra, Existence results for fractional order semilinear functional differential equations, Proc. A.
Razmadze Math. Inst., 146 (2008), 9–20. 1

[10] M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential
equations, Appl. Anal., 87 (2008), 851–863.

[11] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv.
Math. Appl., 3 (2008), 1–12.

[12] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential
equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350. 1

[13] A. Berhail, N. Tabouche, M. M. Matar, J. Alzabut, On nonlocal integral and derivative boundary value problem of
nonlinear Hadamard Langevin equation with three different fractional orders. Bol. Soc. Mat. Mex., 26 (2020), 303–318. 1

[14] T. A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31. 1, 2.1
[15] S. Chasreechai, J. Tariboon, Positive solutions to generalized second−order three−point integral boundary−value problems,

Electron. J. Differential Equations, 2011 (2011), 14 pages. 4
[16] R. F. Curtain, A. J. Pritchard, Functional analysis in modern applied mathematics, Academic Press, London-New York,

(1977). 2.1
[17] K. Diethelm, D. Baleanu, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific

Publishing, New York, (2012). 1
[18] A. M. A. El-Sayed, Sh. M. Al-Issa, Existence of integrable solutions for integro-differential inclusions of fractional order;

coupled system approach, J. Nonlinear Sci. Appl., 13 (2020), 180–186. 1
[19] A. M. A. El-Sayed, Sh. M. Al-Issa, On a set-valued functional integral equation of Volterra-Stiltjes type, J. Math. Com-

puter Sci., 21 (2020), 273–285. 4
[20] A. M. A. El-Sayed, F. M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation-

oscillation model, Pure Math. Appl., 12 (2001), 296–310.
[21] A. M. A. El-Sayed, F. M. Gaafar, Fractional calculus and some intermediate physical processes, Appl. Math. Comput.,

144 (2003), 117–126.
[22] A. M. A. El-Sayed, H. H. G. Hashem, Sh. M Al-Issa, New Aspects on the Solvability of a Multidimensional Functional

Integral Equation with Multivalued Feedback Control, Axioms, 12 (2023), 15 pages.
[23] H. H. G. Hashem, A. M. A. El-Sayed, Sh. M. Al-Issa, Investigating Asymptotic Stability for Hybrid Cubic Integral

Inclusion with Fractal Feedback Control on the Real Half-Axis, Fractal Fract., 7 (2023), 16 pages. 1
[24] S. M. Jung, K. S. Lee, Hyers-Ulam stability of first order linear partial differential equations with constant coefficients,

Math. Inequal. Appl., 10 (2007), 261–266. 1
[25] A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continu-

ously differentiable functions, Differ. Equ., 41 (2005), 84–89. 1
[26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, Elsevier Science B.V., Amsterdam, 204 (2006). 1
[27] V. Kiryakova, Generalized Fractional Calculus and Applications, Wiley & Sons, Inc., New York, (1994). 1
[28] V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publish-

ers, Cambridge, (2009). 1
[29] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13 (1993), 259–270. 1
[30] S. G. Samko, A. A. Kilbas, O. I. Mariche, Fractional integrals and derivatives, translated from the 1987 Russian

original, Yverdon, (1993). 1
[31] A. G. M. Selvam, D. Baleanu, J. Alzabut, D. Vignesh, S. Abbas, On Hyers−Ulam Mittag−Leffler stability of discrete

fractional Duffing equation with application on inverted pendulum, Adv. Difference Equ., 2020 (2020), 15 pages. 1
[32] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, Sh. Rezapour, On the qualitative analysis of the fractional

boundary value problem describing thermostat control model via ψ−Hilfer fractional operator, Adv. Difference Equ., 2021
(2021), 28 pages. 1

[33] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, (1968). 1

https://link.springer.com/book/10.1007/978-1-4614-4036-9
https://link.springer.com/book/10.1007/978-1-4614-4036-9
https://link.springer.com/article/10.2478/s13540-012-0047-7
https://link.springer.com/article/10.2478/s13540-012-0047-7
https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.3390/fractalfract7100759
https://doi.org/10.3390/fractalfract7100759
https://link.springer.com/article/10.1007/s11117-005-2715-x
https://link.springer.com/article/10.1007/s11117-005-2715-x
https://mathscinet.ams.org/mathscinet/relay-station?mr=2255244
https://mathscinet.ams.org/mathscinet/relay-station?mr=2255244
https://doi.org/10.3390/fractalfract5030081
https://doi.org/10.3390/fractalfract5030081
https://mathscinet.ams.org/mathscinet/relay-station?mr=2464039
https://mathscinet.ams.org/mathscinet/relay-station?mr=2464039
https://www.tandfonline.com/doi/full/10.1080/00036810802307579
https://www.tandfonline.com/doi/full/10.1080/00036810802307579
https://mathscinet.ams.org/mathscinet/relay-station?mr=2390179
https://mathscinet.ams.org/mathscinet/relay-station?mr=2390179
https://www.sciencedirect.com/science/article/pii/S0022247X07008062?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0022247X07008062?via%3Dihub
https://doi.org/10.1007/s40590-019-00257-z
https://doi.org/10.1007/s40590-019-00257-z
https://onlinelibrary.wiley.com/doi/10.1002/mana.19981890103
https://mathscinet.ams.org/mathscinet/relay-station?mr=2781049
https://mathscinet.ams.org/mathscinet/relay-station?mr=2781049
https://books.google.com/books?hl=en&lr=&id=pReCl1ubMcUC&oi=fnd&pg=PP1&dq=Functional+Analysis+in+Modern+Applied+Mathematics&ots=jDpw2tl3XX&sig=M8B88k3NvuA3CH8d_x-H6cSE86M
https://books.google.com/books?hl=en&lr=&id=pReCl1ubMcUC&oi=fnd&pg=PP1&dq=Functional+Analysis+in+Modern+Applied+Mathematics&ots=jDpw2tl3XX&sig=M8B88k3NvuA3CH8d_x-H6cSE86M
https://www.worldscientific.com/doi/epdf/10.1142/8180
https://www.worldscientific.com/doi/epdf/10.1142/8180
https://www.isr-publications.com/jnsa/articles-8378-existence-of-integrable-solutions-for-integro-differential-inclusions-of-fractional-order-coupled-system-approach
https://www.isr-publications.com/jnsa/articles-8378-existence-of-integrable-solutions-for-integro-differential-inclusions-of-fractional-order-coupled-system-approach
http://dx.doi.org/10.22436/jmcs.021.04.01
http://dx.doi.org/10.22436/jmcs.021.04.01
https://mathscinet.ams.org/mathscinet/relay-station?mr=1942895
https://mathscinet.ams.org/mathscinet/relay-station?mr=1942895
https://www.sciencedirect.com/science/article/abs/pii/S009630030200396X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S009630030200396X?via%3Dihub
https://doi.org/10.3390/axioms12070653
https://doi.org/10.3390/axioms12070653
https://doi.org/10.3390/fractalfract7060449
https://doi.org/10.3390/fractalfract7060449
https://mia.ele-math.com/10-22/Hyers-Ulam-stability-of-first-order-linear-partial-differential-equations-with-constant-coefficients
https://mia.ele-math.com/10-22/Hyers-Ulam-stability-of-first-order-linear-partial-differential-equations-with-constant-coefficients
https://link.springer.com/article/10.1007/s10625-005-0137-y
https://link.springer.com/article/10.1007/s10625-005-0137-y
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C
https://mathscinet.ams.org/mathscinet/relay-station?mr=1265940
https://cambridgescientificpublishers.com/product/theory-of-fractional-dynamic-systems
https://cambridgescientificpublishers.com/product/theory-of-fractional-dynamic-systems
https://mathscinet.ams.org/mathscinet/relay-station?mr=1321558
https://mathscinet.ams.org/mathscinet/relay-station?mr=1347689
https://mathscinet.ams.org/mathscinet/relay-station?mr=1347689
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02920-6
https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02920-6
https://doi.org/10.1186/s13662-021-03359-z
https://doi.org/10.1186/s13662-021-03359-z
https://doi.org/10.1186/s13662-021-03359-z
https://www.scirp.org/reference/referencespapers?referenceid=1921995


A. M. A. El-Sayed, et al., J. Math. Computer Sci., 34 (2024), 35–51 51

[34] J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math.
Soc., 74 (2006), no. 2, 673–693. 4

[35] A. Zada, H. Waheed, J. Alzabut, E. logo, X. Wang, Existence and stability of impulsive coupled system of fractional
integrodifferential equations, Demonstratio Mathematica, 52 (2019), 296–335. 1

https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610706023179
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0024610706023179
https://doi.org/10.1515/dema-2019-0035
https://doi.org/10.1515/dema-2019-0035

	Introduction
	Existence results
	Exsistence of solution

	Ulam-Hyers Stability
	Ulam-Hyers-Rassias Stability.

	Discussion and Illustrations
	Conclusion

