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Abstract
This article develops a new mathematical model that describes the dynamics of viral infections in presence of adaptive im-

munity. The developed model accounts for the presence of a non-cytolytic cure and considers both cell-to-cell and virus-to-cell
transmission modes, along with the lytic and non-lytic effects of both cellular and humoral immune responses. Moreover, the
well-posedness of the model is demonstrated through the non-negativity and boundedness of its solutions. Also, five equilib-
riums are established and five threshold parameters are derived to ensure the global stability of these equilibria. Finally, the
dynamics of the model have been shown through numerical illustrations using specific parameters related to human immunod-
eficiency virus (HIV) infection.
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1. Introduction

After the introduction of the virus into the body, its spread occurs through several modes of trans-
mission [14]. In addition to the conventional virus-to-cell mode of transmission, cell-to-cell transmission
also plays a crucial role in the spread of the virus. The propagation of the virus is facilitated by its
three-dimensional diffusion, creating concentration gradients around infected cells. Moreover, surface
retention and cell-cell adhesion as well as cell-cell adhesion and polarization contribute to this process
[27]. Merwaiss et al. [15] have explored the phenomenon of cell-to-cell transmission in the context of
the bovine viral diarrhea virus (BVDV), while Sattentau’s work has shed light on its relevance to human
immunodeficiency virus (HIV) transmission [20]. Additionally, Zeng’s research has delved into cell-to-
cell transmission with regard to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [26].
Notably, Xiao et al. [25] demonstrated that the inhibition of cell-to-cell transmission could lead to the
clearance of the hepatitis C virus (HCV).

When faced with a viral infection, the body activates its immune system. There are two main cat-
egories of immune responses: innate immunity and the adaptive immune response, also known as the
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specific response. The latter has two branches: cellular immunity which involves cytotoxic T lympho-
cyte (CTL) cells, and humoral immunity which operates through antibodies. Adaptive immunity it also
functions in countering viral infections through two mechanisms: lytic and non-lytic. The lytic immune
response of CTL cells consists of killing infected cells, while the antibody immune response neutralizes
the virus. The non-lytic immune response involves inhibiting viral replication through soluble factors se-
creted by immune cells [24]. The non-lytic impact of immunity was initially modelled by Wodarz, without
making a distinction between the contribution of antibodies and CTL cells [24]. Subsequently, multiple
models were developed that account for the non-lytic influence of antibodies [3, 11] and CTL cells [9]
separately. Further, other recent immunological models described by delay differential equations (DDES)
have been presented in [1, 18, 19].

A cure is characterized by a non-cytolytic recovery mechanism, facilitating the transformation of some
infected cells into uninfected ones. Guidotti et al. [5] have observed cytokine-induced recovery in indi-
viduals afflicted with acute hepatitis B. This recovery is the result of the loss of covalently closed circular
DNA (cccDNA) from their nucleus [5].

Motivated by both biological factors and mathematical models cited above, we develop a mathematical
model for viral infection that takes into account the cure of infected cells, both cell-to-cell and virus-to-cell
transmissions, as well as the adaptative immunity with lytic and non-lytic effects. The developed model
is formulated by the following system of ordinary differential equations (ODEs):

U ′(t) = λ− dUU−
β1UV

(1 + q1C)(1 + q1A)
−

β2UI

(1 + q2C)(1 + q2A)
+ εI,

I ′(t) =
β1UV

(1 + q1C)(1 + q1A)
+

β2UI

(1 + q2C)(1 + q2A)
− (dI + ε)I− pIC,

V ′(t) = kI− dVV − rVA,
C ′(t) = σIC− dCC,
A ′(t) = ρVA− dAA,

(1.1)

where U(t), I(t), V(t), C(t), and A(t) denote the concentrations of the uninfected cells, infected cells,
virus particles, CTL cells, and antibodies at time t, respectively. It is assumed that uninfected cells are
produced at a constant rate λ, die at rate dU, and become infected with either the virus-to-cell mode of
transmission at rate β1UV or the cell-to-cell mode of transmission at rate β2UI. Both modes of infection
are inhibited by the non-lytic component of cellular immunity at rates 1 + q1C and 1 + q2C, respectively
and by the non-lytic component of humoral immunity at rate 1 + q1A and 1 + q2A, respectively. Infected
cells die at rate dI and are killed by the lytic component of cellular immunity at rate pIC and return to
the uninfected state at rate εI. The virus is produced at rate kI and cleared at rate dVV . Antibodies occur
at rate ρVA, die at rate dAA, and neutralize the virus at rate rVA. CTL cells occur at rate σIC and die
at rate dCC. The flow diagram of our model is shown in Figure 1. In addition, Table 1 summarizes the
biological meaning of each parameter of model (1.1).

Figure 1: The flowchart representing the dynamics of model (1.1).
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Table 1: Biological meanings of model’s parameters.
Parameter Biological meaning

λ Production rate of uninfected cells
dU Death rate of uninfected cells
dI Death rate of infected cells
dV Clearance rate of virions
k Viral production rate
p Clearance rate of infection by CTL cells
r Neutralization rate of virus by antibodies
dA Death rate of antibodies
dC Death rate of CTL cells
q1 CTL non-lytic strength against virus-to-cell infection
q1 Antibodies non-lytic strength against virus-to-cell infection
q2 CTL non-lytic strength against cell-to-cell infection
q2 Antibodies non-lytic strength against cell-to-cell infection
β1 Virus-to-cell infection rate
β2 Cell-to-cell infection rate
ρ Activation rate of antibodies
σ Activation rate of CTL cells
ε Cure rate of infected cells

The importance of the present study is that our model formulated by system (1.1) covers and improves
numerous mathematical models recently constructed to describe the dynamics of viral infections. For
instance, in the absence of humoral immunity and the cure of infected cells, system (1.1) comes back
to the model introduced by Hattaf and Yousfi in [9] for SARS-CoV-2 infection that includes the models
proposed in [4, 13, 16]. In the absence of cellular immunity, system (1.1) is reduced to the immunological
model presented by El Karimi et al. [11], which includes the recent viral models proposed in [2, 3, 10, 17].
Furthermore, the model of Wodarz [23] for HCV infection in presence of both humoral and cellular
immunity is improved and generalized by considering cell-to-cell transmission, cure of infected cells, as
well as lytic and non-lytic immune responses effects.

The rest of the paper is organized as follows. The next section establishes the basic results including
the well-posedness of the model by establishing the global existence, uniqueness, non-negativity, and
boundedness of solutions, as well as the threshold parameters and equilibria. Section 3 is dedicated to
the study of the global stability for the equilibria using the Lyapunov functions. As for Section 4, it
illustrates our analytical findings by numerical simulations based on biological parameters related to the
case of HIV infection. The conclusion of our work on the results is the focus in the last section.

2. Basic results

By the standard results on differential equations, it is obvious that the model (1.1) admits a unique
solution. In this section, we determine some basic results concerning the proprieties of such solution,
equilibria and threshold parameters like the basic reproduction number and the reproduction numbers
for adaptative immunity.

Theorem 2.1. Any solution of system (1.1) with non-negative initial conditions, remains non-negative and bounded
for all t > 0.

Proof. From system (1.1), we have

dU

dt
|U=0 = λ+ εI > 0, for all I > 0,
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dI

dt
|I=0 =

β1UV

(1 + q1C)(1 + q1A)
> 0, for all U,V ,A,C > 0,

dV

dt
|V=0 = kI > 0, for all I > 0,

dC

dt
|C=0 = 0,

dA

dt
|A=0 = 0.

Hence, it follows from [21, Proposition B.7] that U, I, V , C, and A are non-negative. Next, let consider

N(t) = U(t) + I(t) +
dI
2k
V(t) +

p

σ
C(t) +

rdI
2kρ

A.

Then

N ′(t) = λ− dUU−
dI
2
I(t) −

dIdV
2k

V −
pdC
r
C(t) −

rdIdA
2kρ

A 6 λ− dN(t),

where d = min{dU, dI2 ,dV ,dC,dA}. Hence, lim supt→+∞N(t) 6
λ

d
. Therefore, U, I, V , C, and A are

bounded. This completes the proof.

Now, we determine all possible equilibria of the system (1.1). Obviously, the point N0 = (U0, 0, 0, 0, 0)

with U0 =
λ

dU
is an equilibrium corresponding to the state without infection called the infection-free

equilibrium. As a result, the basic reproduction number R0 given by

R0 =
λ(kβ1 + dVβ2)

dU(dI + ε)dV
= R01 + R02,

where R01 =
λkβ1

dU(dI + ε)dV
and R02 =

λkβ2

dU(dI + ε)
are the basic reproduction numbers related to virus-to-

cell and cell-to-cell transmission, respectively. Biologically, R0 represents the average number of secondary
infections produced by one infected cell at the beginning of infection. When R0 > 1, model (1.1) has a
second equilibrium point N1 = (U1, I1,V1, 0, 0), where

U1 =
λ

dUR0
, I1 =

λ(R0 − 1)
dIR0

, and V1 =
kλ(R0 − 1)
dIdVR0

.

This case corresponds to the presence of infection and the absence of immunity. In the presence of
cellular immunity and the absence of humoral immunity, any equilibrium for the model (1.1) satisfies the
following system 

λ− dUU− dII− pIC = 0,
β1UV

1 + q1C
+

β2UI

1 + q2C
− (dI + ε)I− pIC = 0,

kI− dVV = 0,
σIC− dCC = 0.

Since C > 0, we have I =
dC
σ

, V =
kdC
σdV

, C =
σ(λ− dUU) − dIdC

pdC
, and U

[
β1k

dV(1 + q1C)
+

β2

1 + q2C

]
−

(dI + ε) − pC = 0. Let u∗1 =
λ

dU
− dIdC
σdU

. Then 0 < U < u∗1 . If the humoral immunity is not started (not

established), then σI1 − dC 6 0. So, we define the reproduction number for cellular immunity as follows

RC1 =
σI1
dC

=
σλ(R0 − 1)
dCdIR0

,
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which represents the average number of the CTL cells activated by infected cells when viral infection is
successful and antibody immune response has failed [6]. Let us define the functions g1 and f1 on the
closed interval [0,u∗1 ] as follows

g1(U) =
σ(λ− dUU) − dIdC

pdC
and f1(U) = U

[
β1k

dV(1 + q1g1(U))
+

β2

1 + q2g1(U)

]
− dI − ε− pg1(U).

We have f1(0) = −dI − ε− pg1(0) < 0, f1(u
∗
1) = u

∗
1 [
β1k
dV

+β2] − dI − ε, and

f ′1(U) =

[
kβ1

dV(1 + q1g1(U))
+

β2

1 + q2g1(U)

]
−U

[
kβ1q1g

′
1(U)

dV(1 + q1g1(U))2 +
β2q2g

′
2(U)

(1 + q2g1(U))2

]
− pg ′1(U).

Since g ′1(U) < 0, we have f ′1(U) > 0. If RC1 < 1, then I1 <
dC
σ

. Thus U1 > u
∗
1 and we have

f1(u
∗
1) = u

∗
1 [
k

dV
β1 +β2] − dI − ε < U1[

k

dV
β1 +β2] − dI − ε.

Moreover, U1[
k
dV
β1 + β2] − dI − ε =

(dI + ε)dV
kβ1 + dVβ2

[ kdV β1 + β2] − dI − ε = 0. So f1(u
∗
1) < 0. As f1 is an

increasing function, then f1(u) = 0 has no solution and the model (1.1) has no equilibrium. If RC1 > 1,
then U1 < u∗1 and f1(u

∗
1) > 0. Thus, there is a unique point U2 ∈ (0,u∗1) such that f1(U2) = 0, this

establishes the existence and uniqueness of an equilibrium point of the model (1.1), when C 6= 0, A = 0,
and RC1 > 1.

In the presence of humoral immunity and the absence of CTL immunity, any equilibrium must satisfy
the following system 

λ− dUU− dII = 0,
β1UV

1 + q1A
+

β2UI

1 + q2A
− (dI + ε)I = 0,

kI− dVV − rVA = 0,
ρVA− dAA = 0.

(2.1)

By system (2.1) we deduce that V =
dA
ρ

, I =
1
dI

(λ− dUU) , and A and U satisfy the following equations

A =
kρ

rdAdI
(λ− dUU) −

dV
r

and U

[
β1dA

ρ(1 + q1A)
+
β2(λ− dUU)

dI(1 + q2A)

]
−
dI + ε

dI
(λ− dUU) = 0.

By the last equation of the system (1.1), if the humoral immunity has not started, then ρV − dA 6 0, so
we define the reproduction number for humoral immunity by

RA1 =
ρ

dA
V1 =

ρkλ

dAdIdVR0
(R0 − 1),

which represents the average number of the antibodies activated by virus when viral infection is successful

and CTL immune response has failed [6]. Since A > 0, then 0 < U < u∗2 , where u∗2 =
λ

dU
−
dVdAdI
kρdU

.

Now, consider the functions g2 and f2 defined on the closed interval [0,u∗2 ] by

g2(U) =
kρ

rdAdI
(λ− dUU) −

dV
r

and f2(U) = U

[
β1dA

ρ(1 + q1g2(U))
+

β2(λ− dUU)

dI(1 + q2g2(U))

]
−
dI + ε

dI
(λ− dUU).

We have f2(0) < 0 and by computation f2(u
∗
2) =

dIdVd
2
A

k2ρ2dU
(kβ1 +dVβ2)(R

A
1 − 1). If RA1 > 1, then f2(u

∗
2) > 0.

Thus, there is a point U3 ∈ (0,u∗2) such that f2(U3) = 0. Furthermore, using the equality dI + ε =
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β1U3V
I(1+q1A) +

β2U3
1+q2A

, we deduce that

f ′2(U3) = β1V
1 + q1g2(U3) − q1U3g

′
2(U3)

(1 + q1g2(U3))2 −
β2U3q2g

′
2(U3)h(U3)

(1 + q2g2(U3))2 − h ′(U3)
β1U3V

h(U3)(1 + q1g2(U3))
,

where h(U) = 1
dU

(λ− dUU). Since h ′ < 0 and g ′2 < 0, then f ′2(U3) > 0, this establishes the uniqueness of

U3 and therefore that of the equilibrium point N3 = (U3, I3,V3, 0,A3), where I3 = h(U3), V3 =
dA
ρ

, and

A3 = g2(U3).
Now, we consider the ultimate case, which corresponds to A 6= 0 and C 6= 0. Any equilibrium point

must satisfy the following system

λ− dUU− dII− pIC = 0,
β1UV

(1 + q1C)(1 + q1A)
+

β2UI

(1 + q1C)(1 + q2A)
− (dI + ε)I− pIC = 0,

kI− dVV − rVA = 0,
σIC− dCC = 0,
ρVA− dAA = 0.

So, V =
dA
ρ

, I =
dC
σ

, A =
kρdC
rσdA

−
dV
r

, and C =
σ

pdC
(λ− dUU) −

dI
p

. In addition, we have the following

equation

U

[
β1V

(1 + q1C)(1 + q1A)
+

β2I

(1 + q1C)(1 + q2A)

]
− (dI + ε)I− pIC = 0.

Since C > 0, 0 < U < u∗3 , where u∗3 =
1
σdU

(λσ− dIdC). So, we define the functions g3 and f3 on the

interval [0,u∗3 ] by

g3(U) =
σ

pdC
(λ− dUU) −

dI
p

,

f3(U) = U

[
β1V

(1 + q1g3(U))(1 + q1A)
+

β2I

(1 + q1g3(U))(1 + q2A)

]
− (dI + ε)I− pIg3(U).

Thus, in the presence of both humoral and cellular immunity, the model (1.1) admits an equilibrium point
if and only if there is U4 ∈ (0,u∗3) such that f3(U4) = 0, in this case, the equilibrium point is given by

N4 =

(
U4,

dC
σ

,
dA
ρ

,g3(U4),
kρdC
rσdA

−
dV
r

)
.

Now, we define the reproduction number for humoral immunity in competition as

RA2 =
ρ

dA
V2 =

ρkdC
σdVdA

,

where V2 =
kdC
dVdA

, as well as the reproduction number for cellular immunity in competition as

RC2 =
σ

dC
I3 =

I3

I4
=

σ

dIdC
(λ− dUU3).

From the biological perspective, RC2 provides a measure for the average number of CTL cells activated
by infected cells when the antibody immune response is already triggered, and RA2 describes the same
for antibody immune cells activated by virions when the CTL immune response is already triggered
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[6, 22]. Note that A4 =
dV
r
(RA2 − 1), so RA2 > 1. We have f3(0) = −(dI + ε)I4 − pI4g3(0) < 0 and f ′3 > 0.

Furthermore,

f3(u
∗
3) =

I4
I3

[
u∗3

(
I3

I4

β1V3

1 + q1A4
+

β2I3

1 + q2A4

)
− (dI + ε)I3

]
,

thus, if RC2 6 1, then I3 6 I4, u∗3 6 U3, and A3 6 A4, so, we deduce

f3(u
∗
3) 6

I4
I3

[
U3

(
β1V3

1 + q1A3
+

β2I3

1 + q2A3

)
− (dI + ε)I3

]
=
I4
I3
f2(U3) = 0.

It follows that f3 < 0 on the interval (0,u∗3) and the model (1.1) has no equilibrium when RC2 6 1. On the
other hand, if RC2 > 1, then I3 > I4, u∗3 > U3, A3 > A4, and

f3(u
∗
3) >

I4
I3

[
U3

(
β1V3

1 + q1A3
+

β2I3

1 + q2A3

)
− dII3

]
=
I4
I3
f2(U3) = 0.

It follows that there is a unique point U4 ∈ (0,u∗2) such that f3(U4) = 0. Thus if RC2 > 1, then the model
(1.1) admits a unique equilibrium.

We summarize the discussions above to the following theorem.

Theorem 2.2.

1. If R0 6 1, then model (1.1) admits one infection-free equilibrium N0 = (U0, 0, 0, 0, 0), where U0 =
λ

dU
.

2. If R0 > 1, then model (1.1) has an infection equilibrium without immunity, N1 = (U1, I1,V1, 0, 0), where

U1 =
λ

dUR0
, I1 =

λ(R0 − 1)
dIR0

, and V1 =
kλ(R0 − 1)
dIdVR0

.

3. If RC1 > 1, then the model (1.1) has an infection equilibrium with only cellular immunity N2 = (U2, I2,V2,
C2, 0), where

U2 ∈ (0,
λ

dU
−
dIdC
σdU

), I2 =
dC
ρ

, V2 =
kdC
ρdV

, and C2 =
σ(λ− dUU2) − dIdC

pdC
.

4. If RA1 > 1, then model (1.1) has an equilibrium with only humoral immunity N3 = (U3, I3,V3, 0,A3), where

U3 ∈ (0,
λ

dU
−
dIdVdA
kρdU

), I3 =
1
dI

(λ− dUU3), V3 =
dA
ρ

, and A3 =
kρ(λ− dUU3)

rdAdI
−
dV
r

.

5. If RA2 > 1 and RC2 > 1, then model (1.1) has an infection equilibrium with both cellular and humoral immune
responses N4 = (U4, I4,V4,C4,A4), where

U4 ∈ (0,
(λσ− dIdC)

σdU
), I4 =

dC
σ

, V4 =
dA
ρ

, C4 =
(σ(λ− dUU) − dIdC)

pdC
, and A4 =

kρdC
rσdA

−
dV
r

.

3. Stability analysis

In this section, we study the stability of model’s equilibria. In the next, we use the function φ given by
φ(x) = x− 1 − ln x. Note that φ is defined and nonnegative on the interval (0,+∞). Moreover, φ(x) = 0
if and only if x = 1.

Theorem 3.1. The infection-free equilibrium N0 is globally asymptotically stable if R0 6 1, and becomes unstable
when R0 > 1.
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Proof. Let N = (U, I,V ,C,A) and consider the Lyapunov function T0 defined by

T0(N) = U0φ

(
U

U0

)
+ I+

U0β1

dV
V +

p

σ
C+

rU0β1dA
ρdV

A.

We have T0(N) > 0, for all N ∈ R∗+× (R+)
4 and T0(N) = 0 iff N = N0. Furthermore, for any solution N(t)

of model (1.1), we have

dT0

dt
= −

dU
U

(U−U0)
2 +U0

[
β1V

(1 + q1A)(1 + q1C)
+

β2I

(1 + q2A)(1 + q2C)

]
− dII− pIC

+
U0β1

dV
V ′ +

p

σ
C ′ +

rU0β1dA
ρdV

A ′

6 −
dU
U

(U−U0)
2 +U0(β1V +β2I) − dII− pIC+

U0β1

dV
V ′ +

p

σ
C ′ +

rU0β1dA
ρdV

A ′

6 −
dU
U

(U−U0)
2 + dII(R0 − 1) −

P

σ
dCC−

rU0β1dA
ρdV

A.

Thus if R0 6 1, then
dT0

dt
6 0 and

dT0

dt
= 0 iff N = N0. By LaSalle’s ivariance principle [12], we deduce

that N0 is globally asymptotically stable when R0 6 1. If R0 > 1, then the characteristic equation of model
(1.1) at N0 is given by

(x+ dU)(x+ dV)(x+ dA)w(x) = 0, (3.1)

where w(x) = (x2 + dV − λβ2
dU

+ dI)x+ dVdI(1 − R0). We have w(0) = dVdI(1 − R0) < 0 and lim
x→+∞w(x) =

+∞. Then the characteristic equation (3.1) has at least one positive eigenvalue, thus N0 is unstable when
R0 > 1, which proves the theorem.

To study the global stability of the remaining equilibria, we need the following condition
(

(1 + q1C)(1 + q1A)

(1 + q1Ci)(1 + q1Ai)
− 1

)(
(1 + q1C)(1 + q1A)

(1 + q1Ci)(1 + q1Ai)
−
V

Vi

)
6 0,(

(1 + q1C)(1 + q1A)

(1 + q1Ci)(1 + q1Ai)
− 1

)(
(1 + q1C)(1 + q1A)

(1 + q1Ci)(1 + q1Ai)
−
I

Ii

)
6 0.

(H)

Theorem 3.2. If the condition (H) holds forN1, RA1 6 1, and RC1 6 1, then the infection free-immunity equilibrium
N1 is globally asymptotically stable, and it becomes unstable if RC1 > 1 or RA1 > 1.

Proof. We define the Lyapunov function as follows

T1(N) = U1φ

(
U

U1

)
+ I1φ

(
I

I1

)
+
β1U1V1

kI1
V1φ

(
V

V1

)
+
p

σ
C+

β1rU1V1

kρI1
A.

Clearly, T1(N) > 0, for all N ∈ (R∗+)
3 ×R2

+, and T1(N) = 0 iff N = N1. In addition along a solution N(t),
for model (1.1), we have

dT1

dt
=

(
1 −

U1

U

)
U ′ +

(
1 −

I1
I

)
I ′ +

(
1 −

V1

V

)
V ′ +

p

σ
C ′ +

β1rU1V1

kρI1
A ′

=

(
1 −

U1

U

)(
λ− dUU−

β1UV

(1 + q1C)(1 + q1A)
−

β2UI

(1 + q2C)(1 + q2A)

)
+

(
1 −

I1
I

)(
β1UV

(1 + q1C)(1 + q1A)
+

β2UI

(1 + q2C)(1 + q2A)
− dII− pIC

)
+

(
1 −

V1

V

)
(kI− dVV − rVA) +

p

σ
(σIC− dCC) +

β1rU1V1

kρI1
(ρVA− dAA).
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Since λ = dUU1 +β1U1V1 +β2U1I1, dI =
β1U1V1

I1
+β2U1 and dVV1 = kI1, we deduce that

dT1

dt
=

(
1 −

U1

U

)(
dU(U1 −U) +β1U1V1 −

β1UV

(1 + q1C)(1 + q1A)
+β2U1I1 −

β2UI

(1 + q2C)(1 + q2A)

)
+

(
1 −

I1
I

)(
β1UV

(1 + q1C)(1 + q1A)
+

β2UI

(1 + q2C)(1 + q2A)
− (
β1U1V1

I1
+β2U1)I− pIC

)
+

(
1 −

V1

V

)
(kI−

kI1
V1
V − rVA) +

p

σ
(σIC− dCC) +

β1rU1V1

kρI1
(ρVA− dAA)

= −
dU
U

(U−U1)
2 +β2U1I1

(
3 −

U1

U
−

U

U1(1 + q2C)(1 + q2A)
− (1 + q2C)(1 + q2A)

)
+β1U1V1

(
4 −

U1

U
−
V1I

VI1
−

UVI1
U1V1I(1 + q1C)(1 + q1A)

− (1 + q1C)(1 + q1A)

)
+β1U1V1

(
−1 + (1 + q1C)(1 + q1A) −

V

V1
+

V

V1(1 + q1C)(1 + q1A)

)
+β2U1I1

(
−1 + (1 + q2C)(1 + q2A) −

I

I1
+

I

I1(1 + q2C)(1 + q2A)

)
+
pdC
σ
C(RC1 − 1) +

β1U1V
2
1r

kI1R
A
1
A(RA1 − 1).

By the arithmetic-geometric mean inequality, we have

3 −
U1

U
−

U

U1(1 + q2C)(1 + q2A)
− (1 + q2C)(1 + q2A) 6 0,

4 −
U1

U
−
V1I

VI1
−

UVI1
U1V1I(1 + q1C)(1 + q1A)

− (1 + q1C)(1 + q1A) 6 0.

In addition, we have from the condtion (H) that

− 1 + (1 + q1C)(1 + q1A) −
V

V1
+

V

V1(1 + q1C)(1 + q1A)

=
(1 + q1C1)(1 + q1A1)

(1 + q1C)(1 + q1A)

[
(1 + q1C)(1 + q1A)

(1 + q1C1)(1 + q1A1)
− 1

] [
(1 + q1C)(1 + q1A)

(1 + q1C1)(1 + q1A1)
−
V

V1

]
6 0,

and

− 1 + (1 + q2C)(1 + q2A) −
I

I1
+

I

I1(1 + q2C)(1 + q2A)

=
(1 + q2C1)(1 + q2A1)

(1 + q2C)(1 + q2A)

[
(1 + q2C)(1 + q2A)

(1 + q2C1)(1 + q2A1)
− 1

] [
(1 + q2C)(1 + q2A)

(1 + q2C1)(1 + q2A1)
−
I

I1

]
6 0.

Hence,
dT1

dt
6 0, when RA1 6 1 and RC1 6 1. It is clear that

dT1

dt
= 0 iff U = U1, I = 1, V = V1, C = C1,

and A = 0. Then by LaSalle’s invariance principle, N1 is globally asymptotically stable. The characteristic
equation of model (1.1) at the equilibrium N1 is given by

(ρV1 − dA − x)(σI1 − dC − x)

∣∣∣∣∣∣
−dV − x −dI 0
β1V1 +β2I1 β2U1 − dI − x β1U1

0 k −dV − x

∣∣∣∣∣∣ = 0, (3.2)

we have ρV1 − dA = dA(R
A
1 − 1) and σI1 − dC = dC(R

C
1 − 1) are a roots of the equation (3.2). Thus, if

RA1 > 1 or RC1 > 1, then the equation (3.2) has at least one positive root. This implies that the equilibrium
N1 is unstable, when RA1 > 1 or RC1 > 1.



M. I. El Karimi, K. Hattaf, N. Yousfi, J. Math. Computer Sci., 34 (2024), 11–26 20

Theorem 3.3. If RA2 6 1 < RC1 and the condition (H) holds forN2, then the infection equilibrium with only cellular
immunty N2 is globally asymptotically stable.

Proof. We consider the Lyapunov function defined as follows

T2(N) = U2φ

(
U

U2

)
+ I2φ

(
I

I2

)
+

β1U2V2

(1 + q1C)kI2
V2φ

(
V

V2

)
+
p

σ
C2φ

(
C

C2

)
+

β1rU2V2

(1 + q1C2)ρkI2
A.

It is obvious that T2(N) > 0, for any point N ∈ (R∗+)
4 ×R+, with equality iff N = N2. Moreover, along a

solution N(t) of the model (1.1), we have

dT2

dt
=

(
1 −

U2

U

)(
λ− dUU−

β1U2V2

(1 + q1C)(1 + q1A)
−

β2U2I2

(1 + q2C)(1 + q2A)

)
+

(
1 −

I− 2
I

)(
β1U2V2

(1 + q1C)(1 + q1A)
+

β2U2I2

(1 + q2C)(1 + q2A)
− dII− pIC

)
+
p

σ

(
1 −

C2

C

)
(σIC− dCC) +

β1rU2V2

(1 + q1C2)ρkI2
(ρAV − dAA).

Using the following equalities 

λ = dUU2 +
β1U2V2

(1 + q1C2)
+

β2U2I2

(1 + q2C2)
,

dII2 =
β1U2V2

(1 + q1C2)
+

β2U2I2

(1 + q2C2)
,

dVV2 = kI2,

I2 =
dC
σ

,

and after simple computations, we obtain

dT2

dt
= −

dU
U

(U−U2)
2 +

β2U2I2

1 + q2C2

(
3 −

U2

U
−

U(1 + q2C2)

U2(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

1 + q2C2

)
+
β1U2V2

1 + q1C2

(
4 −

U2

U
−
IV2

I2V
−

UVI2(1 + q1C2)

U2V2I(1 + q1C)(1 + q1A)
−

(1 + q1C)(1 + q1A)

1 + q1C2

)
+
β1U2V2

1 + q1C2

(
−1 +

(1 + q1C)(1 + q1A)

1 + q1C2
−
V

V2
+

V(1 + q1C2)

V2(1 + q1C)(1 + q1A)

)
+
β2U2I2

1 + q2C2

(
−1 +

(1 + q2C)(1 + q2A)

1 + q2C2
−
I

I2
+

I(1 + q2C2)

I2(1 + q2C)(1 + q2A)

)
+

β1rU2V2dA
ρk(1 + q1C2)I2

A(RA2 − 1).

According to the arithmetic-geometric mean inequality, we have

3 −
U2

U
−

U(1 + q2C2)

U2(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

1 + q2C2
6 0,

4 −
U2

U
−
IV2

I2V
−

UVI2(1 + q1C2)

U2V2I(1 + q1C)(1 + q1A)
−

(1 + q1C)(1 + q1A)

1 + q1C2
6 0.

From the condition (H), we have

−1 +
(1 + q2C)(1 + q2A)

1 + q2C2
−
I

I2
+

I(1 + q2C2)

I2(1 + q2C)(1 + q2A)
6 0,

−1 +
(1 + q1C)(1 + q1A)

1 + q1C2
−
V

V2
+

V(1 + q1C2)

V2(1 + q1C)(1 + q1A)
6 0.

Thus, if RA2 6 1, then
dT2

dt
6 0 for any solution of the system (1.1) with equality iff N = N1. So, according

the LaSalle’s invariance principle, if (H) applies to N2 and R1
2 6 1 < RC1 , then N2 is globally asymptotically

stable.
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Theorem 3.4. If RC2 6 1 < RA1 and the condition (H) holds for N3, then the infection equilibrium with only
humoral immunity N3 is globally asymptotically stable.

Proof. To prove this theorem, we define the Lyapunov function as follows

T3(N) = U3φ

(
U

U3

)
+ I3φ

(
I

I4

)
+

β1U3V3

(1 + q1A3)kI3
V3φ

(
V

V3

)
+
p

σ
C+

rβ1U3V3

ρkI3(1 + q1A3)
A3φ

(
A

A3

)
,

for any N = (U, I,V ,C,A) ∈ (R∗+)
3 ×R+ ×R∗+. Obviously, T3(N) > 0 and with equality iff N = N3. For

any solution N(t) of the system (1.1), we have

dT3

dt
=

(
1 −

U3

U

)
U ′ +

(
1 −

I3

I

)
I ′ +

(
1 −

V3

V

)
V ′ +

p

σ
C ′ +

rβ1U3V3

ρkI3(1 + q1A3)

(
1 −

A3

A

)
A ′

= −
dU
U

(U−U3)
2 +

(
1 −

U3

U

)(
λ− dUU−

β1UV

(1 + q1C)(1 + q1A)
−

β2UI

(1 + q2C)(1 + q2A)

)
+

(
1 −

I3

I

)(
β1UV

(1 + q1C)(1 + q1A)
+

β2UI

(1 + q2C)(1 + q2A)
− dII− pIC

)
+
p

σ
(σIC− dCC) +

rβ1U3V3

ρkI3(1 + q1A3)

(
1 −

A3

A

)
(ρVA− dAA).

By using the following inequalities

λ = dUU3 +
β1U3V3

1 + q1A3
+
β2U3I3

1 + q2A3
,

dI =
β1U3V3

I3(1 + q1A3)
+

β2U3

1 + q2A3
,

dV =
kI3

V3
− rA3,

V3 =
dA
ρ

,

we deduce that

dT3

dt
= −

dU
U

(U−U3)
2 +

β1U3V3

1 + q1A3

[
−1 +

(1 + q1C)(1 + q1A)

1 + q1A3
+

V(1 + q1A3)

V3(1 + q1C)(1 + q1A)
−
V

V3

]
+
β2U3I3

1 + q2A3

[
−1 +

(1 + q2C)(1 + q2A)

1 + q2A3
+

I(1 + q2A3)

I3(1 + q2C)(1 + q2A)
−
I

I3

]
+
β1U3V3

1 + q1A3

[
4 −

U3

U
−

UVI3(1 + q1A)

U3V3I(1 + q1C)(1 + q1A)
−
IV3

I3V
−

(1 + q1C)(1 + q1A)

1 + q1A3

]
+
β2U3I3

1 + q2A3

[
3 −

U3

U
−

U(1 + q2A3)

U3(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

1 + q2A3

]
+
pdCC

σ
(RC2 − 1).

From the condition (H), we have

−1 +
(1 + q1C)(1 + q1A)

1 + q1A3
+

V(1 + q1A3)

V3(1 + q1C)(1 + q1A)
−
V

V3
6 0,

−1 +
(1 + q2C)(1 + q2A)

1 + q2A3
+

I(1 + q2A3)

I3(1 + q2C)(1 + q2A)
−
I

I3
6 0,

and by the arithmetic-geometric inequality, we have

4 −
U3

U
−

UVI3(1 + q1A)

U3V3I(1 + q1C)(1 + q1A)
−
IV3

I3V
−

(1 + q1C)(1 + q1A)

1 + q1A3
6 0,
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3 −
U3

U
−

U(1 + q2A3)

U3(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

1 + q2A3
6 0.

Thus, we deduce that
dT3

dt
6 0 and with equality iff N = N3, as N3 exists, when RA1 > 2. This completes

the proof of the theorem.

Theorem 3.5. If RA2 > 1, RC2 > 1 and the condition (H) holds for N4, then the infection equilibrium with both
humoral and cellular immunity N4 is globally asymptotically stable.

Proof. We define the Lyapunov function as follows

T4(N) = U4φ

(
U

U4

)
+ I4φ

(
I

I4

)
+

β1U4V4

kI4(1 + q1C4)(1 + q1A4)
V4φ

(
V

V4

)
+
p

σ
C4φ

(
C

C4

)
+

rβ1U4V4

ρkI4(1 + q1C4)(1 + q1A4)
A4φ

(
C

C4

)
.

Clearly, T(N) > 0 for all N ∈ (R∗+)
5, and with equality iff N = N4. The differential function of T4 along a

solution N(t) of the system (1.1) is given by

dT4

dt
= −

dU
U

(U−U4)
2 +

β1U4V4

(1 + q1C4)(1 + q1A4)

[
4 −

U4

U

−
UVI4(1 + q1C4)(1 + q1A4)

U4V4I(1 + q1C)(1 + q1A)
−
IV4

I4V
−

(1 + q1C)(1 + q1A)

(1 + q1C4)(1 + q1A4)

]
+

β1U4V4

(1 + q1C4)(1 + q1A4)

[
−1 +

(1 + q1C)(1 + q1A)

(1 + q1C4)(1 + q1A4)
+
V(1 + q1C4)(1 + q1A4)

V4(1 + q1C)(1 + q1A)
−
V

V4

]
+

β2U4I4
(1 + q1C4)(1 + q1A4)

[
3 −

U4

U
−
U(1 + q2C4)(1 + q2A4)

U4(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

(1 + q2C4)(1 + q1A4)

]
+

β2U4I4
(1 + q2C4)(1 + q2A4)

[
−1 +

(1 + q2C)(1 + q2A)

(1 + q2C4)(1 + q2A4)
+
I(1 + q2C4)(1 + q2A4)

I4(1 + q2C)(1 + q2A)
−
I

I4

]
+

rβ1U4V4

kI4(1 + q1C4)(1 + q1A4)

[
−A4V4 +AV4 −

dA
ρ
A+

dA
ρ
A4

]
+ pI4C− pC4I4 −

pdC
σ
C+

pdC
σ
C4.

Since I4 =
dC
σ

and V4 =
dA
ρ

, we have pI4C−pC4I4 −
pdC
σ
C+

pdC
σ
C4 = −A4V4 +AV4 −

dA
ρ
A+

dA
ρ
A4 = 0.

By arithmetic-geometric inequality, we have

4 −
U4

U
−
UVI4(1 + q1C4)(1 + q1A4)

U4V4I(1 + q1C)(1 + q1A)
−
IV4

I4V
−

(1 + q1C)(1 + q1A)

(1 + q1C4)(1 + q1A4)
6 0,

3 −
U4

U
−
U(1 + q2C4)(1 + q2A4)

U4(1 + q2C)(1 + q2A)
−

(1 + q2C)(1 + q2A)

(1 + q2C4)(1 + q1A4)
6 0.

Form the condition (H), we have

−1 +
(1 + q1C)(1 + q1A)

(1 + q1C4)(1 + q1A4)
+
V(1 + q1C4)(1 + q1A4)

V4(1 + q1C)(1 + q1A)
−
V

V4
6 0,

−1 +
(1 + q2C)(1 + q2A)

(1 + q2C4)(1 + q2A4)
+
I(1 + q2C4)(1 + q2A4)

I4(1 + q2C)(1 + q2A)
−
I

I4
6 0.

Then,
dT4

dt
6 0 and

dT4

dt
= 0 iff N = N4. Thus, by the LaSalle invariance principle N4 is globally

asymptotically stable. The conditions RA2 > 1 and RC2 > 1 are necessary for the existence of the equilibrium
N4, so this completes the proof of theorem.
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4. Numerical simulations

In this section, we conduct numerical simulations to assess the stability of the equilibria established
earlier. Such numerical simulations are based on the mixed Euler method presented in [7], which pre-
serves the qualitative properties of model (1.1). Our attention centers on the HIV virus, characterized by
the parameter set detailed in Table 2. The objective is to simulate five distinct global stability scenarios by
employing the parameter values specified in Table 2, while adjusting the values of the parameters λ, β2,
σ, k, dC, and ρ.

Table 2: Estimation of model parameters.
Parameter Unit Value Range Source

λ cells µL−1day−1 10 5.9770 − 24.1860 [8]
dU day−1 0.0139 - [8]
β1 µL virion−1 day−1 2.4× 10−5 2.4× 10−5 − 4.8× 10−3 [8]
dI day−1 0.29 0.2666 − 0.7073 [8]
dV day−1 3 2.06 − 3.81 [8]
k virion cell−1 day−1 - 27 − 7073 [8]
p cell−1 µL day−1 0.01 0.001 − 1 [8]
r molecule−1 µL day−1 0.5 - [8]
dA day−1 0.35 - Assumed
dC day−1 - 0.05 − 0.15 [8]
q1 µL cell−1 0.01 - Assumed
q1 µL cell−1 0.001 - Assumed
q2 µL cell−1 0.02 - Assumed
q2 µL cell−1 0.002 - Assumed
ε day−1 0.01 - Assumed

Figure 2: Dynamics of model (1.1) for R0 = 0.9968 6 1.
Figure 3: Dynamics of model (1.1) for R0 = 3.6199 > 1,
RC1 = 0.5990 6 1, and RA1 = 0.0052 6 1 .

When λ = 10, k = 50, dC = 0.1, β2 = 1.8× 10−6, ρ = 6.7× 10−3 and σ = 0.02, we obtained R0 = 0.9968.
According to Theorem 2.2, system (1.1) possesses one infection-free equilibrium N0 = (719.4244, 0, 0, 0, 0).
From Figure 2, the concentration of uninfected cells approaching the value U0 = 719.4245, while the
concentrations of infected cells, free HIV particles, antibodies, and CTL cells show a declining pattern,
ultimately converging towards zero. This aligns with the results asserted in Theorem 3.1.
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Figure 4: Dynamics of model (1.1) for R0 = 3.2746 > 1,
RC1 = 2.3952 > 1, and RA2 = 0.0286 6 1.

Figure 5: Dynamics of model (1.1) for R0 = 5.4577 > 1,
RA1 = 8.9858 > 1, and RC2 = 0.4250 6 1.

Figure 6: Dynamics of model (1.1) for R0 = 5.4577 > 1, RC2 = 4.2891 > 1, and RA2 = 1.5952 > 1.

When λ = 12, β2 = 10−3, σ = 0.002, k = 27, ρ = 6.7 × 10−6, and dC = 0.1, we obtain R0 =
3.6199 > 1. According to Theorem 2.2, system (1.1) has one infection free-immunity equilibrium N1 =
(238.4868, 29.9484, 269.5355, 0, 0). From Figure 3, the model (1.1) with different initial values converges
towards N1 as RA1 = 0.0052 6 1 and RC1 = 0.3085 6 1. This validates the outcome stated in Theorem 3.2.

When λ = 6, β2 = 1.8 × 10−3, σ = 0.025, k = 50, ρ = 10−4, k = 50, and dC = 0.15, we obtain
R0 = 3.2746 > 1, RC1 = 2.3952 > 1, and RA2 = 0.0286 6 1. According Theorem 2.2, model (1.1) admits one
infection equilibrium with only cellular immunity N2 = (237.3471, 6, 100, 7.3924, 0) and by Theorem 3.3,
model (1.1) converges towards N2. Figure 4 illustrates this finding.

When λ = 10, dU = 0.0139, β2 = 1.8× 10−3, σ = 0.002, k = 50, ρ = 6.7× 10−3, and dC = 0.1, we obtain
R0 = 5.4577 > 1, RA1 = 8.9858 > 1, and RC2 = 0.4250 6 1. According Theorem 2.2, model (1.1) possesses one
infection equilibrium with only humoral immunity N3 = (276.0895, 20.4190, 52.2388, 0, 330.8773). Figure 5
demonstrates that model (1.1) converges towards N3, in accordance with Theorem 3.4.

When λ = 10, β2 = 1.8× 10−3, σ = 0.02, k = 50, ρ = 6.7× 10−3, and dC = 0.1, we obtain R0 = 5.4577 >
1, RA2 = 1.5952 > 1, and RC2 = 4.2891 > 11. According to Theorem 2.2, model (1.1) possesses one infection
equilibrium with cellular and humoral immunity N4 = (491.1226, 5, 52.2388, 25.0568, 35.7143). Figure 6
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demonstrates that model (1.1) converges towards N4, in accordance with Theorem 3.5.

5. Conclusion

In this work, we have developed a new mathematical model that captures the intricate dynamics of
viral infection, considering both cell-to-cell and virus-to-cell transmission modes, adaptive immunity and
non-cytolytic cure mechanisms. Furthermore, the developed model considered both lytic and non-lytic
effects of adaptive immunity. Initially, we have established the well-posed nature of the model, demon-
strating that the differential system possesses positive and bounded solutions. Subsequently, we have
introduced five pivotal threshold parameters associated with our model. The initial threshold parameter
denoted by R0 representing the basic reproduction number, followed by RA1 denoting the reproduction
number of humoral immunity, and RC1 representing the reproduction number of cellular immunity. Ad-
ditionally, RA2 and RC2 correspond to the reproduction numbers of humoral immunity in competition and
cellular immunity in competition, respectively. Our findings show that when R0 < 1, the infection-free
equilibrium is globally asymptotically stable. This indicates that the virus will be completely eradicated
from the human body. However when R0 > 1, the infection-free equilibrium becomes unstable and the
model has four infection equilibria. The stability of such infection equilibria depends on the values of the
threshold parameters RA1 , RC1 , RA2 , and RC2 . More precisely, (i) the infection free-immunity equilibrium
is globally asymptotically stable if RA1 6 1 and RC1 6 1, while it becomes unstable if either RA1 > 1 or
RC1 > 1; (ii) if RC1 > 1 and RA2 6 1, then the infection equilibrium with only cellular immunity is globally
asymptotically stable; (iii) if RC2 6 1 < RA1 , then the infection equilibrium with only humoral immunity is
globally asymptotically stable; as well as (iv) if RA2 > 1 and RC2 > 1, then the infection equilibrium with
both humoral and cellular immunity is globally asymptotically stable. From a biological point of view,
the last results imply that when the basic reproduction number is greater than 1, the virus persists and
the infection becomes chronic. In addition, the activation of one or both immune responses is unable to
eliminate the virus in the human body. According to these findings, when RA2 6 1 < RC1 , cellular immu-
nity dominates over humoral immunity, causing the model to converge towards the infection equilibrium
with only cellular immunity. Conversely, if RC2 6 1 < RA1 , humoral immunity dominates over cellular
immunity, leading the model to converge to the infection equilibrium with only humoral immunity. The
former case is referred to as the over-domination of the cellular immunity, while the latter is denoted as
the over-domination of the humoral immunity in [8].
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