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Abstract
In this paper we study some qualitative properties of the solutions for the following difference equation

yn+1 =
α+α0y

r
n +α1y

r
n−1 + · · ·+αky

r
n−k

β+β0yrn +β1y
r
n−1 + · · ·+βky

r
n−k

, n > 0, (I)

where r,α,α0,α1, . . . ,αk,β,β0,β1, . . . ,βk ∈ (0,∞) and k is a non-negative integer number. We find the equilibrium points for
the considered equation. Then classify these points in terms of local stability or not. We investigate the boundedness and the
global stability of the solutions for the considered equation. Also we study the existence of periodic solutions of Eq. (I).

Keywords: Boundedness, local stability, periodicity, global stability.

2020 MSC: 39A10.
©2024 All rights reserved.

1. Introduction

Difference equations play a crucial role in mathematical modeling, providing a powerful frame-
work to describe dynamic processes over discrete time intervals. Unlike differential equations that deal
with continuous changes, difference equations focus on the evolution of a system at distinct time points.
Their significance is evident in diverse fields, from physics and economics to biology and engineer-
ing. Engineers employ them to model discrete-time control systems, ensuring stability and performance.
Economists use the difference equations to analyze economic trends and forecast future developments.
In biology, these equations help describe population dynamics and ecological systems. Additionally in
signal processing, difference equations contribute to the design of digital filters for audio and image
processing. Overall difference equations serve as a versatile tool for understanding and predicting the
behavior of systems in numerous real-world applications (see [1–6, 10, 12–14, 22, 26, 27]).

In this paper we study the boundedness and the global attractivity of the solutions of the difference
equation

yn+1 =
α+α0y

r
n +α1y

r
n−1 + · · ·+αkyrn−k

β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k

, n > 0, (1.1)
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where r,α,α0,α1, . . . ,αk,β,β0,β1, . . . ,βk ∈ (0,∞) and k is a non-negative integer number. Also, we
investigate the periodicity character of the solutions of Eq. (1.1).

The study of the properties of the solutions for the difference equations such as periodicity, global
stability and boundedness has been discussed by many authors. See for examples the following papers
and the references therein. Cinar [2] studied the properties of the positive solution for the equation

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, . . . .

Yang et al. [25] investigated the qualitative behavior of the recursive sequence

xn+1 =
axn−1 + bxn−2

c+ dxn−1xn−2
, n = 0, 1, . . . .

Li et al. [19] studied the global asymptotic of the solutions for the following non-linear difference equation

xn+1 =
a+ xn−1 + xn−2 + xn−3 + xn−1xn−2xn−3

a+ xn−1xn−2 + xn−1xn−3 + xn−2xn−3 + 1
, n = 0, 1, . . . ,

with a > 0. Kulenovic and Ladas [16] presented a summary of a recent work and a large number of open
problems and conjectures on the third order rational recursive sequence of the form

xn+1 =
α+βxn + γxn−1 + δxn−2

A+Bxn +Cxn−1 +Dxn−2
, n = 0, 1, . . . .

Xianyi and Deming [20] proved that the positive equilibrium of the difference equations

xn+1 =
xnxn−1 + xn−2 + a

xn + xn−1xn−2 + a
, xn+1 =

xn−1 + xnxn−2 + a

xnxn−1 + xn−2 + a
, n = 0, 1, . . . ,

with positive initial values x−2, x−1, x0 and non-negative parameter a, is globally asymptotically stable.
Simsek et al. [23] obtained the solutions of the following difference equations

xn+1 =
xn−3

1 + xn−1
, n = 0, 1, . . . .

Yalçınkaya et al. [24] investigated the dynamics of the difference equation

xn+1 =
axn−k

b+ cxpn
, n = 0, 1, . . . .

For more related results see [7–9, 11] and [15, 17–19, 21]. In the following, we present some definitions
and some known results that will be useful in the investigation of Eq. (1.1). Now consider the difference
equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, 2, . . . , (1.2)

with x−k, x−k+1, . . . , x0 ∈ I.

Definition 1.1 ([15]). Eq. (1.2) is said to be permanent and bounded if there exists numbers m and M
with 0 < m < M <∞ such that for any initial condition x−k, x−k+1, . . . , x0 ∈ (0,∞) there exists a positive
integer N which depends on these initial condition such that m < xn < M for all n > N.

Definition 1.2 ([15]).

(i) The equilibrium point x of Eq. (1.2) is locally stable if for every ε > 0, there exists δ > 0 such that
for all x−k, x−k+1, . . . , x0 ∈ I with |x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ, we have |xn − x| < ε for
all n > −k.
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(ii) The equilibrium point x of Eq. (1.2) is globally asymptotically stable if x is locally stable and there
exists λ > 0, such that for all x−k, x−k+1, . . . , x0 ∈ I with |x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < λ,
we have limn→∞ xn = x.

(iii) The equilibrium point x of Eq. (1.2) is global attractor if for all x−k, x−k+1, . . . , x0 ∈ I, we have
limn→∞ xn = x.

(iv) The equilibrium point x of Eq. (1.2) is globally asymptotically stable if x is locally stable, and x is
also a global attractor of Eq. (1.2).

(v) The equilibrium point x of Eq. (1.2) is unstable if x is not locally stable.

Observe that, the linearised equation of Eq. (1.2) about the equilibrium point x is

yn+1 = p1yn + p2yn−1 + · · ·+ pk+1yn−k, (1.3)

where

p1 =
∂f

∂xn
(x, x, . . . , x), p2 =

∂f

∂xn−1
(x, x, . . . , x), . . . ,pk+1 =

∂f

∂xn−k
(x, x, . . . , x),

and the characteristic equation of Eq. (1.3) is

λk+1 −

k+1∑
i=1

piλ
k−i+1 = 0.

Theorem 1.3 ([15]). Assume that p1,p2, . . . ,pk+1 ∈ R. Then the condition

k+1∑
i=1

|pi| < 1,

is a sufficient condition for the locally stability of Eq. (1.3).

Theorem 1.4 ([15]). Let J be an interval of real numbers, f ∈ C
[
Jυ+1, J

]
, and let {xn}∞n=−υ be a bounded solution

of the difference equation
xn+1 = f(xn, xn−1, . . . , xn−υ), n = 0, 1, . . . , (1.4)

with
I = lim

n→∞ inf xn, S = lim
n→∞ sup xn, I,S ∈ J.

Then there exist two solutions {In}∞n=−∞ and {Sn}
∞
n=−∞ of Eq. (1.4) with

I0 = I, S0 = S, In,Sn ∈ [I,S] for all n ∈ Z,

and such that for every N ∈ Z, IN and SN are limit points of {xn}∞n=−v. Furthermore, for every m 6 −υ, there
exist two subsequences {xrn} and {xln} of the solution {xn}

∞
n=−v such that the following are true

lim
n→∞ xrn+N = IN and lim

n→∞ xln+N = SN for every N > m.

The solutions {In}∞n=−∞ and {Sn}
∞
n=−∞ are called full limiting sequences of Eq. (1.4).

2. Boundedness for the solutions of Eq. (1.1)

In this section we study the boundedness of the solutions for Eq. (1.1).

Theorem 2.1. Every solution of Eq. (1.1) is bounded and persists.
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Proof. Let {yn}∞n=−k be a solution of Eq. (1.1) and assume that α∗ = min{α,α0, . . . ,αk}, α∗∗ = max{α,α0,
. . . ,αk},β∗ = min{β,β0, . . . ,βk}, β∗∗ = max{β,β0, . . . ,βk}. It follows from Eq. (1.1) that

yn+1 =
α+α0y

r
n +α1y

r
n−1 + · · ·+αkyrn−k

β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k

6
max{α,α0,α1, . . . ,αk}(1 + yrn + yrn−1 + · · ·+ yrn−k)
min{β,β0,β1, . . . ,βk}(1 + yrn + yrn−1 + · · ·+ yrn−k)

=
max{α,α0,α1, . . . ,αk}
min{β,β0,β1, . . . ,βk}

=
α∗∗

β∗
.

Similarly it is easy to see that

yn >
min{α,α0,α1, . . . ,αk}
max{β,β0,β1, . . . ,βk}

=
α∗

β∗∗
.

Thus we get

0 < γ :=
α∗

β∗∗
6 yn 6

α∗∗

β∗
:= δ <∞, for all n > 1.

Therefore every solution of Eq. (1.1) is bounded and persists. Hence the result holds.

Theorem 2.2. Every solution of Eq. (1.1) is bounded and persists.

Proof. Let {yn}∞n=−k be a positive solution of Eq. (1.1). Then, it follows that

yn+1 =
α

β+β0yrn + · · ·+βkyrn−k
+

α0y
r
n

β+β0yrn + · · ·+βkyrn−k
+ · · ·+

αky
r
n−k

β+β0yrn + · · ·+βkyrn−k

6
α

β
+
α0

β0
+
α1

β1
+ · · ·+ αk

βk
=
α

β
+

k∑
i=0

αi
βi

:= D.

Then {yn}
∞
n=−k is bounded from above by D, that is yn 6 D for all n > 1. Now we can obtain the lower

bound of {yn}∞n=−k by two ways.

(I) By the change of variables yn = 1
zn

for all n > 1, Eq. (1.1) can be rewritten in the form

zn+1 =
βzrnz

r
n−1 · · · zrn−k +β0z

r
n−1z

r
n−2 · · · zrn−k + · · ·+βkzrnzrn−1 · · · zrn−k+1

αzrnz
r
n−1 · · · zrn−k +α0z

r
n−1z

r
n−2 · · · zrn−k + · · ·+αkzrnzrn−1 · · · zrn−k+1

6
β

α
+
β1

α1
+ · · ·+ βk

αk
=
β

α
+

k∑
i=0

βi
αi

:= d∗.

That is yn > 1
d∗ := d for all n > 1 and therefore

d =
1

β
α +

∑k
i=0

βi
αi

6 yn 6
α

β
+

k∑
i=0

αi
βi

= D, for all n > 1,

this completes the proof.

(II) Since yn 6 D for all n > 1, we get from Eq. (1.1) that

yn+1 >
α

β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k

>
α

β+Dr
∑k
i=0βi

:= d∗∗.

Then we see again that

d∗∗ =
α

β+Dr
∑k
i=0βi

6 yn 6
α

β
+

k∑
i=0

αi
βi

= D, for all n > 1.

Thus the proof is completed.
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3. Stability analysis

In this section we investigate the global asymptotic stability of Eq. (1.1). Observe that the equilibrium
points of Eq. (1.1) are given by y = α+Ayr

β+Byr , where A =
∑k
i=0 αi and B =

∑k
i=0 βi.

Lemma 3.1. Eq. (1.1) has a unique positive equilibrium point if one of the following is true

(I) Aβ 6 Bα;
(II) r < 1;

(III) rAβ < Aβ+α[B(r+ 1) +βy−r] +AByr;
(IV) rAβ < B(rα+ 2βy+Byr+1] +β2y1−r.

Proof. Define the function f(x) = α+Axr

β+Bxr − x, x ∈ R. Then

f′(x) =
rxr−1(Aβ−Bα)

(β+Bxr)2 − 1,

so

f′(y) =
ry(r−1)(Aβ−Bα)

(β+Byr)2 − 1.

Also note that
f(0) =

α

β
> 0, lim

x→∞ f(x) = −∞, and lim
x→−∞ f(x) = ∞.

Now we discuss the following cases.

(1) If (I) holds we obtain that f′(y) < 0 for all ȳ ∈ R+, thus Eq. (1.1) has a unique positive equilibrium
point y that satisfies the relation y = α+Ayr

β+Byr and this completes the proof of (I).

(2) Note that

f′(y) < 0 ⇐⇒ ryr−1(Aβ−Bα) < (β+Byr)2

⇐⇒ ryr(Aβ−Bα) < y(β+Byr)2

⇐⇒ ryr(Aβ−Bα) < (α+Ayr)(β+Byr)

⇐⇒ rAβyr − rBαyr < αβ+Aβyr +αByr +ABy2r

⇐⇒ Aβyr(r− 1) < αβ+αByr(r+ 1) +ABy2r,

which is true by using (II), then the result follows.

(3) Again we see from case (2) that

f(y) < 0 ⇐⇒ Aβ(r− 1) < αB(r+ 1) +αβy−r +AByr

⇐⇒ rAβ < Aβ+α[B(r+ 1) +βy−r] +AByr.

Therefore again Eq. (1.1) has a unique positive equilibrium point y.

(4) The proof of the case wherever (IV) holds, is similar to the case (II) as

f′(y) < 0 ⇐⇒ ryr−1(Aβ−Bα) < (β+Byr)2

⇐⇒ ryr−1(Aβ−Bα) < β2 + 2Bβyr +B2y2r

⇐⇒ r(Aβ−Bα) < β2y1−r + 2Bβy+B2y1+r

⇐⇒ rAβ− rBα < β2y1−r + 2Bβy+B2y1+r

⇐⇒ rAβ < B(rα+ 2βy+Byr+1) +β2y1−r,

which is true by using (IV), then the result follows. Thus the proof of the theorem is completed.
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Define the following function

F(yn,yn−1, . . . ,yn−k) =
α+α0y

r
n +α1y

r
n−1 + · · ·+αkyrn−k

β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k

. (3.1)

Then
∂F

∂yn−i
=
ryr−1
n−i[(αiβ−αβi) +

∑k
j=0, j6=i(αiβj −αjβi)y

r
n−i]

(β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k)2 , i = 0, 1, . . . .

Thus the linearised equation of Eq. (1.1) about the equilibrium point y is the linear difference equation

wn+1 −
ryr−1

(β+Byr)2

k∑
i=0

[(αiβ−αβi) + y
r
k∑
j=0

(αiβj −αjβi)]wn−i = 0,

whose characteristic equation is

φn+1 −
ryr−1

(β+Byr)2

k∑
i=0

[(αiβ−αβi) + y
r
k∑
j=0

(αiβj −αjβi)]φ
n−i = 0.

Then it follows by Theorem 1.3 that the equilibrium point y of Eq. (1.1) is locally asymptotically stable if

ryr
k∑
i=0

∣∣∣∣∣∣(αiβ−αβi) + y
r
k∑
j=0

(αiβj −αjβi)

∣∣∣∣∣∣ < (α+Ayr)(β+Byr).

Remark 3.2. For any partial order of the quotients α
β , α0

β0
, α1
β1

, . . . ,αkβk , the function F(yn,yn−1, . . . ,yn−k)
defined by relation (3.1) has the monotonicity character in some of its arguments.

Define the set T = {t ∈ {0, 1, . . . , k} : F is increasing in its argument xn−t} and the set J = {j ∈
{0, 1, . . . , k} : F is decreasing in its argument xn−j}. Also assume the two quantities G =

∑
t∈Tαt and

L =
∑
j∈Jβj.

Theorem 3.3. Every solution of Eq. (1.1) is globally asymptotically stable if one of the following holds

(1.) A > 2G and B > 2L.
(2.) A < 2G, B < 2L, and

β+ L(γr + yr) > (2G−A)δr−1 +

(
2L−B+

2G−A

y

) r−1∑
j=0

y2r−iδi. (3.2)

(3.) A < 2G, B > 2L, and

β+ L(γr + yr) + (B− 2L)
r−1∑
i=0

γr−iyi > (2G−A)

(
δr−1 +

r−1∑
i=0

yr−iδi

)
.

(4.) A > 2G, B < 2L, and

β+ L(γr + yr) + (A− 2G)

(
δr−1 +

r−1∑
i=0

γr−iyi

)
> (2L−B)

r−1∑
i=0

yr−iδi.
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Proof. Assume that {yn}
∞
n=−k be a solution of Eq. (1.1). Observe that it was proven in Theorem 2.1 that

every solution of Eq. (1.1) is bounded and therefore it follows by Theorem 1.4 (method of full limiting
sequences [18]) that there exist solutions {In}

∞
n=−∞ and {Sn}

∞
n=−∞ of Eq. (1.1) with

γ 6 I = I0 = lim
n−→∞ infyn 6 lim

n−→∞ supyn = S0 = S 6 δ,

where
In,Sn ∈ [I,S], n = . . . ,−1, 0, 1, . . . .

Now since S > I, it suffices to show that I > S. We obtain from Eq. (1.1) that

I = I0 =
α+α0I

r
−1 +α1I

r
−2 + · · ·+αkIr−k

β+β0I
r
−1 +β1I

r
−2 + · · ·+βkIr−k

>
α+GIr +HSr

β+KIr + LSr
,

where H = A−G and K = B− L. Then we obtain

α+GIr +HSr 6 βI+KIr+1 + LISr,

or equivalently
α 6 βI+KIr+1 + LISr −GIr −HSr. (3.3)

Similarly it is easy to see that
α > βS+KSr+1 + LIrS−GSr −HIr. (3.4)

Therefore it follows from Eqs. (3.3) and (3.4) that

βS+KSr+1 + LIrS−GSr −HIr 6 βI+KIr+1 + LISr −GIr −HSr,

or
β(I− S) +K(Ir+1 − Sr+1) − LIS(Ir−1 − Sr−1) − (G−H)(Ir − Sr) > 0,

or equivalently

β(I− S) +K(Ir + Ir−1S+ · · ·+ ISr−1 + Sr) − LIS(Ir−2 + Ir−3S

+ Ir−4S2 + · · ·+ ISr−3 + Sr−2) − (G−H)(Ir−1 + Ir−2S+ · · ·+ ISr−2 + Sr−1) > 0,

or

(I− S)
[
β+K(Ir + Sr) + (H−G)Sr−1 + (K− L −

G−H

S
)(Ir−1S+ Ir−2Sr−1 + · · ·+ ISr−1) > 0.

Note that H = A−G and K = B− L, then

(I− S)

[
β+ L(Ir + Sr) + (A− 2G)Sr−1 +

(
B− 2L+

A− 2G
S

) r−1∑
i=0

Ir−iSi

]
> 0. (3.5)

Now if (3.2) is true then we obtain that

β+ L(Ir + Sr) + (A− 2G)Sr−1 +

(
B− 2L+

A− 2G
S

) r−1∑
i=0

Ir−iSi > 0.

Thus it follows from (3.5) that I > S and this completes the proof of (1.). Note that γ 6 I 6 y 6 S 6 δ,
therefore we see that

β+ L(γr + yr) < β+ L(Ir + Sr), (3.6)
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and

(A− 2G)Sr−1 +

(
B− 2L+

A− 2G
S

) r−1∑
i=0

Ir−iSi < (2G−A)δr−1 + (2L−B+
2G−A

y
)

r−1∑
i=0

yr−iδi. (3.7)

Then we get from (3.2), (3.6), and (3.7) that

β+ L(Ir + Sr) + (A− 2G)Sr−1 +

(
B− 2L+

A− 2G
S

) r−1∑
i=0

Ir−iSi > 0.

Thus it follows again from (3.5) that I > S and this completes the proof of (2.).
The proofs of cases (3.) and (4.) are similar to the proofs of the previous two cases and will be omitted.

Hence, the proof of the theorem is completed.

4. Existence of periodic solutions of Eq. (1.1)

In this section, we investigate the existence of periodic solutions of prime period two of Eq. (1.1). In
fact to achieve the existence of periodic solutions of Eq. (1.1) we need some very complicated computa-
tions. So we consider the case whenever r = 1. The cases when r > 1 are similar. Let D =

∑k
i=0,i odd αi,

E =
∑k
j=0,j evenαj, F =

∑k
i=0,i oddβi, and R =

∑k
j=0,j evenβj.

Theorem 4.1. Assume that r = 1, D > E+ β, and R > F, then Eq. (1.1) has periodic solutions of prime period
two if and only if

(R− F)(D− E−β)2 > 4F[αF+ E(D− E−β)]. (4.1)

Proof. First suppose that there exists a periodic solution {. . . ,φ,ψ,φ,ψ, . . .} of Eq. (1.1), where φ and ψ
are distinct positive real numbers. Then it follows from Eq. (1.1) that φ, ψ satisfy the following

φ =
α+Dφr + Eψr

β+ Fφr + Rψr
and ψ =

α+Dψr + Eφr

β+ Fψr + Rφr
,

which are equivalent to
βφ+ Fφr+1 + Rφψr = α+Dφr + Eψr, (4.2)

and
βψ+ Fψr+1 + Rφrψ = α+Dψr + Eφr. (4.3)

Subtracting (4.3) from (4.2) gives

β(φ−ψ) + F(φr+1 −ψr+1) + Rφψ(ψr−1 −φr−1) = (D− E)(φr −ψr).

Wherever r = 1 we see that

β(φ−ψ) + F(φ−ψ)(φ+ψ) = (D− E)(φ−ψ).

Since φ 6= ψ, we have that

φ+ψ =
D− E−β

F
.

By adding (4.2) and (4.3) we obtain

β(φ+ψ) + F(φ2 +ψ2) + 2Rφψ = 2α+ (D+ E)(φ+ψ),

and therefore

φψ =
αF+ E(D− E−β)

F(R− F)
.
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Thus φ and ψ are the roots of the following quadratic equation from which

u2 −
D− E−β

F
u+

αF+ E(D− E−β)

F(R− F)
= 0. (4.4)

Again, since φ 6= ψ, we obtain (
D− E−β

F

)2

>
4[αF+ E(D− E−β)]

F(R− F)
,

which implies that (R− F)(D− E−β)2 > 4F[αF+ E(D− E−β)]. Thus Eq. (4.1) holds.
Secondly suppose that the condition (4.1) is true. We will show that Eq. (1.1) has positive prime period

two solutions. Now assume that k is odd (the case wherever k is even is similar and will be left to the
reader) and choose

x−k = · · · = x−3 = x−1 = φ =

D−E−β
F +

√(
D−E−β

F

)2
−

4[αF+E(D−E−β)]
F(R−F)

2
,

and

x−k+1 = · · · = x−2 = x0 = ψ =

D−E−β
F −

√(
D−E−β

F

)2
−

4[αF+E(D−E−β)]
F(R−F)

2
.

It is easy by direct substitution in Eq. (1.1) to prove that

x1 = x−1 and x2 = x0.

Then it follows by mathematical induction that

x2n = φ and x2n+1 = ψ for all n > −1.

Thus Eq. (1.1) has the positive prime period two solution

. . . ,φ,ψ,φ,ψ, . . . ,

where φ and ψ are the distinct roots of the quadratic Eq. (4.4) and the proof is completed.

5. Conclusion

This paper investigated the qualitative properties of solutions for a specific difference equation, char-
acterized by a complex interplay of coefficients and terms. The exploration includes the identification
of equilibrium points, their classification in relation to local stability, and an in-depth analysis of the
boundedness and global stability of solutions. The investigation extends to the intriguing realm of peri-
odic solutions for the considered equation. Through rigorous examination, the study sheds light on the
dynamic behavior of the system governed by the given difference equation. The findings contribute to
our understanding of discrete-time processes, offering valuable insights into the stability and periodicity
aspects of solutions within the specified parameter space. This research not only expands the theoretical
foundation of the discussed difference equation but also provides a basis for further exploration and ap-
plication in diverse fields where discrete modeling plays a crucial role. In the future we hope that we or
others study the considered equation with real coefficients not only with positive ones.
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