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Abstract

Stochastic problems play a huge role in many applications including biology, chemistry, physics, economics, finance,
mechanics, and several areas. In this paper, we are concerned with the nonlocal stochastic-integral problem of the arbitrary
(fractional) orders stochastic differential equation

dx(t) T

TR f1(t, D*X(t)) + f2(t, B(t)), t€ (0,T], X(0) =Xp +J f3(s, DPX(s))dW(s),
0

where B is any Brownian motion, W is a standard Brownian motion, and X is a second order random variable. The Hyers -
Ulam stability of the problem will be studied. The existence of solution and its continuous dependence on the Brownian motion

B will be proved. The three spatial cases Brownian bridge process, the Brownian motion with drift and the Brownian motion
started at A will be considered.

Keywords: Stochastic processes, stochastic differential equations, existence of solutions, continuous dependence, Brownian
motion, Brownian bridge process, Brownian motion with drift .
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1. Introduction

Over the years, fractional differential equations and its applications have gotten extensive attention, it
is widely used in various disciplines, interested researchers can see the work in [4, 9, 12, 17, 31, 34]. Many
authors have been interested to study fractional stochastic differential equations (see [1, 2, 5, 8, 10, 11,
13, 15, 19, 21, 27, 28]). The existence and uniqueness of solutions to stochastic differential equations have
been studied by many authors see [14, 16, 18, 25]. In [24], the author discussed a computational method
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to get an approximate solution of a stochastic beam equation. A simulation analysis of this problem is
carried out with matlab, author constructed the stochastic partial differential equation

o2 o*u(x, t) n %u(x, t) n ou(x,t) Sazu(x,t) — Gyl t) + Galx, B(1)

A oz ¢ ot ox2

subject to some conditions. He referred that by employing the Hilbert space of all square-integrable
functions, the problem is reduced to a first order of the form

dXt = f(t, Xt) + g(t, Xt)dBt.

So, interested researchers with numerical methods of stochastic problems (see [6, 24, 33]). Let (Q, G, 1) be
a probability space where () is a sample space, G is a o-algebra of subsets of () and p is the probability
measure (see [7, 32, 36]). Let I = [0,T] and X(t;w) = {X(t),t € I, w € Q} be a second order stochastic
process,

E(X%(t)) < oo, t € L.

Let C = C(I,[2(Q)) be the class of all mean square second order continuous stochastic processes on I

with the norm
| X [[c=sup || X(t) ]2, [| X(t) l2= 1/ E(X2(t)).
tel

The motivation of this work is to generalize the results of [14]. The authors, in [14], studied the stochastic

differential equation
dX

at
with the nonlocal random initial condition

f(t, X(t)) + W(t), te(0,T]

n
X(0)+ ) aX(t) =Xo, T € (0,T),
k=1

where X is a second order random variable, W(t) is the standard Brownian motion and ay are positive
real numbers. Let B(t),t € [0, T] be any Brownian motion, W(t) is a standard brownian motion and
o, 3 € (0,1], p < «. Here, we are concerned with the nonlocal stochastic-integral problem of the arbitrary
(fractional) orders stochastic differential equation

dX(t
Y (L DX () + (L B(Y), te (0T 1)
with the stochastic-integral condition
-
X(0) :X0+J f3(s, DPX(s))dW(s), (12)
0

where X is a second order random variable. The existence of solutions X € C of the problem (1.1)-(1.2)
will be proved. The sufficient condition of the uniqueness of the solution will be given. The Hyers-Ulam
stability of the problem (1.1)-(1.2) will be proved. The continuous dependence of the unique solution on
the Brownian motion B and its three spatial cases, Brownian bridge process, the Brownian motion with
drift and the Brownian motion started at A, will be studied.

2. Preliminaries

Here, we offer some fundamental definitions.



A. M. A. El-Sayed, M.E.I. El-Gendy, ]J. Math. Computer Sci., 33 (2024), 408-419 410

Definition 2.1. Let X € C(I,[(Q)) and «, 3 € (0,1]. The stochastic integral operator of order {3 is defined
by

t B [371
IBX(t) = J(tr(sé)X(s)ds

and the stochastic fractional order derivative is defined by

dx
D*X(t) = 17 ==,
(t) dt

For properties of stochastic fractional calculus see [11, 20].

Definition 2.2 (Brownian motion with drift, [25, 30]). A Brownian motion B is called a Brownian motion
with drift u and volatility o if it can be written as

B(t) = ut+oW(t), teRy,
where W(t) is a standard Brownian motion.

Definition 2.3 (Brownian motion started at A, [26]). A process B(t) is called a Brownian motion started
at A, A € [L(Q) if it can be written as
B(t) = A+ W(t),

where W(t) is a standard Brownian motion.

Definition 2.4 (Brownian bridge, [29]). A Brownian motion B is called a Brownian bridge if it can be

written as
t

B(t) = a(l—1)+ bt+(1—1) J d1W(s)

0

, tel0,1), a,beR,

where W(t) is a standard Brownian motion.

3. Solution of the problem

Throughout the paper we assume that the following assumptions hold.

i- The functions f; : I x [L(Q) — [,(Q), i =1,2,3 are measurable in t € I, Vx € [,(Q) and continuous
inx €,(Q), Vtel.

ii- There exists a constant b > 0, and a second order process a(t) € L[,(Q), a =sup |la(t)||2, such that
tel

[ fi(t,x(t)) o< a+b [ x(t) [, 1=1,2,3.

iii- bTI™* < T(2— ).

Now, we have the following lemma concerning the integral representation of the solution of the problem
(1.1)-(1.2).

Lemma 3.1. Let the solution of the initial value problem (1.1)-(1.2) be exists. Then it can be represented as

.
X(t) = X0+L fa(s, I BU(s))dW(s) + I*U(t), te[0,T], (3.1)

where U(t) is given by
U(t) = "% [f1(t, U(t)) + f2(t, B(1))]. (3.2)
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Proof. Let X(t) be a solution of (1.1). Operating by I'~* on equations (1.1), we obtain

D*X(t) = 11—“‘1):1?) = I"%[f1(t, D*X(t)) + f2(t, B(t))] .

Let
D*X(t) = U(t) € C([0, T], L2(Q)),
then .
X(t) = X(0) + I*U(t) = X +J f3(s, DPX(s))dW(s) + I*U(t).
0
But d q
B _11-p = _1x—PB1l—a & _ 70—f
DPX(t) =1 th(t)_I I th(t)_I U(t).

Then we obtain (3.1),

-
X(t) =Xo + L f3(s, IS PU(s))dW(s) + I*U(t), t € [0,TI,

and the fractional-order integral equation

) :Jt (t—s)™%

t—g)x
o mf](s,u(snds +J

. mfz(s,B(s))ds. (3.3)

Conversely, let U(t) be a solution of (3.3). Then from (3.1) and (3.2) we obtain

.
X(t) = Xo + L f5(s, I PU(s))dW(s) + I*T'*[f; (t, U(t)) + F2(t, B(t))]

T t

f3(s, 1% PU(s))dW(s) +J [f1(s, D*X(s)) + fa(s, B(s))lds,

:Xo-i-J
0

0

%x(t) — f1(t, DX(1)) + f2(t, B(t)),

and
-

X(0) = Xo + L fa(s, DBX(s))dW(s).

Then we have proved the equivalence between the problem (1.1)-(1.2) and the equations (3.1) and (3.3). O

4. Existence of solution

Theorem 4.1. Let the assumptions (i)-(iii) be satisfied, then the fractional-order integral equation (3.3) has at least
one solution U(t) € C.

Proof. Consider the set Q such that
Q={UeC:[Ullc <r}cC.
Define the mapping FU(t) where
FU(t) = I * [f1(t, U(t)) + f2(t, B(1))].
Let U € Q, then

t t

IFUlL < J
0 0



A. M. A. El-Sayed, M.E.I. El-Gendy, ]J. Math. Computer Sci., 33 (2024), 408-419

412

t

MN1l— )
0

t t
(t—s)™« J(t—s)_“
<Ra+b U = ds+b | ——— | B
2atv el [T tas o[ 1S e as
0 0
Tlfoc
<2 B =T
2a+bf[Ulc+b| HdF(Z—oc) T
where
1—x 1T—a
—Ra+b|lU b || B <[2a+br+b| B -
r=Ra+b | Ulc+b B el fr—p < Ratbrib | Bllcl jr—gs
Thus

_Ratb| BT
S T2—a)—[bTl-«] °

< [l et b ues) lds+ [ 2 S tia(s)la+ b | Bls)
0

2] ds

That proves F : Q — Q and the class {FQ} is uniformly bounded on Q. Now, considering t,t, € [0, T]

such that [t, — t1| < 6, then

_ —x t1 — -
[FU(t2) — FU(t1)[]2 < |J %fﬂs’u(s))ds_J =

o mﬂ(s,u(sndsllz

t (. oy—a R,
+IIJ (J?(l_s)fz(s,B(s))ds—L (=8)% ¢ Bs))dsly

0 o) N1l—«)
lta—s) ¥ —(th—s) 2 (tp—s)
S R e  CACIL I I et
Ut —s) (th—s)~* 2 (tp—s)"
I Rl Blds + | T s

Then

t —g) % t — oc

IFU(t2) — FU(t1)[l2 < 2a—|—er 2—8) *—(t1—s) J
0 MN1l—o«)

B (tl—s "‘

+ blIB| J J
¢ 0 F(

+

(t2—s)*— (tl—S) (tz—S) *
[2a+br][J )d Ll

0 (t2—s)*(t1 —s)*T(1— F1—o

B (tp—s)¥—(t; —8)* Bt —s)*
*b”B”C[L (=) )d“L M=o

$)*(tg —s)*TIM(1 — o

This proves the equi-continuity of the class {FQ} on Q. Now, let U,, € Q, U,, — U w.p.1 (see [7]).

t t
Lim CLim | [(t—=s8)7F (t—s)— "
n—00 Fun =mn—oo wal(s,un(s))derJMfz(s,B(s))ds]
Lo 0
[(t=s) [ (t=s)
_ Lim —s) % Lim [(t—s)"%
=n'S00 | f1(s, Un(s))ds+ n=oo J M- o fo(s,B(s))ds
0 0

U(s))dsll2

|ds

IdSJ

ds]

ds].
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(t—s) Lim (
mfl(s, n—o0 un(S))dS +J'

( (t—s)
| |
t

|

mfz(s,B(s))ds

t
(t—s)~* (t—s)~*

T1—«) mfz(S,B(s))ds:Fu.

fl(S,U(S))dS +J

0

This proves that {FU} is continuous. Consequently, the closure of {FU} is compact (see [7]). Thus, equation
(3.3) has a solution U € C. O

Now for the problem (1.1)-(1.2), we have the following theorem.

Theorem 4.2. Let the assumptions (i)-(iii) be satisfied, then the problem (1.1)-(1.2) has at least one solution X € C
given by (3.1).

Proof. From Lemma 3.1, the solution of the problem (1.1)-(1.2) is given by (3.1),
T
X(t) = Xp +J f3(s, I PU(s))dW(s) + I*U(t), te[0,T],
0

where U is given by (3.3). Now, let U be a solution of (3.3), then we have

=
IX(t)]l2 < ||Xo||2+\/ . If3(s, I¢=BU(s)))I3ds + I*([U(t)ll>

T
< ||xo||z+\/ . (a+ blIT*=BU(s)[l2)* ds + I¥|U (1)

T
< [ Xoll2 + (a+bliUflcIo=B(1))* ds + [IUlcI*(1)

Jo

rT tx—B 2 %
< Xoll2 + <<1+b|U-||C)> ds +[[Ullc

Jo Ma—pB+1 Moa+1)

Te B 2 “
———— | ds+|[[U

(xf

—B+

< [ Xoll2 +

T
a+blu =
0( Ul e

< [ Xoll2 + (a+b|U||c > VT +IUc s

M +1)

Then

X

oa+1)

TP
Mo—p+
So, the solution X of the problem (1.1)-(1.2) exists and X € C([0, T], L(Q)). O]

Xllc < IXoll + <a+br ) Vi

4.1. Uniqueness theorem
For discussing the uniqueness of the solution U € C([0, T], L2(Q)) of fractional order integral equation
(3.3), consider the following assumption.

iv- The functions f; : [ x [o(Q) — [»(Q), i = 1,3 are measurable in t € I, Vx € [»(Q) and satisfy the
Lipschitz condition

| fi(t,x(t)) = fi(t, y(t) [2< b [ x(t) —y(t) ]2 and a(t) =fi(t,0), i=1,3.
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Theorem 4.3. Let the assumptions (ii)-(iv) be satisfied, then the integral equation (3.3) has a unique solution U € C
and consequently, the problem (1.1)-(1.2) has a unique solution X € C.

Proof: From assumption (iv) we can deduce that
I (t, X)ll2 = lIfi(t, 0)ll2 < [Ifi(t, X) — fi(t, 0)ll2 < bIx(t)ll2

and
IIfi(t, X)[l2 < a+ bl[X(t)].

Then the assumptions of Theorem 4.1 are satisfied and (3.3) has at least one solution. Let U; and U, be
two solutions of (3.3), then

t )&
||U1(t)—U2(t)|2<J E=8) %t (s, Un(s)) — (s, Un(s))llads

< b|[U; — Uy Jt(t_s)“ds<b||u — Uy Tli
ST T S T T2 )
Then
Tl—oc
(1-b Ui —UWllc <0 = Uy —Usf[c <O
MN2—«)

and this implies that
U —Uallc =0 = Uj(t) = Up(t).

Then the solution of fractional order integral equation (3.3) is unique. Let X;, X, be two solutions of (3.1),

then
-

X1 (t) = Xa(t) = L [f3(s, %P (s)) — fa(s, I* PUn(s))]AW(s) + I(Uy (t) — Ua(t)),

then
-
1X1(t) = Xa(t)ll2 < IIJ [F3(s, 1P U (s)) — F3(s, 1 PUs(s)JAW(s)l2 + I¥[Us (1) — Ua(t)]]2
0
=
< JO [1f3(s, I B Uy (s)) — f3(s, 1%~ BUa(s))lFds + I¥|[Uy (t) — Uz (t)]]2
T
<oy | 1P (s) — Un(s))a2ds + 11U (0) = Ul
So
To B T™
X1 —Xalle € VTboe————|[U; — U Uy — Ulc.
X1 —Xallc F(1+oc—[5)” 1— Uzlle + F(1+oc)” 1— Uzlle
Hence from the uniqueness of U, we obtain
X1 —Xallc = 0.

Consequently, the solution (3.1) of the initial value problem (1.1)-(1.2),

-
X(t) =Xo +J0 f3(s, I PU(s))dW(s) + I*U(t) € C(I, 1(Q)),

is unique one.
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5. Continuous dependence on the Brownian motions

Definition 5.1. The solution X € C of the problem (1.1)-(1.2) depends continuously on the Brownian
motion B if Ve > 0, 36 > 0 such that

B(t) =B ()2 <8 = [X=X"c <e,

where X* is the solution of

T

Xﬁ):X0+J;fjaFX5Lﬁ@ﬂdMﬁﬂ+&“uﬂﬂ,Lﬁﬁ):ll“wﬂtufun+fﬂtBﬂﬂﬂ.

Consider now the following theorem.
Theorem 5.2. The unique solution of the problem (1.1)-(1.2) depends continuously on B(t).

Proof. First of all we have

e Wl < [ 5 it us) — fils Wislkds + | ST s Bls) — fals, B (5]l
. t (t_s)—oc t (t_s)—oc .
<blU-Wie | Frds+b | LBl B (s)lads,

Thus, we get

1—x t )
U)W (0 < BIU = Wle s +b | =B B 1) laas

* * t(t_s)_(x * * *
<SOTU—Ule +b | ——  5ds = bT*||U — U*[|c + bT*5,
0 IM1l—o«)
then
(1—bTH)IU—U*lc < bT*S
and bT*5
U Urfle € —— 2 — ¢y
| lc Aoy ©
Now
.
IIX(t) = X*(t)ll2 < ||J [f3(s, I PU(s)) — f3(s, ¥ BU*(s)]dW(s)|lr + I*|[U(t) — U* ()]
0
-
< J||f3(s,1a—f3u*(s))—fa(s,la—ﬁu*(sm%dw1“|u*(t)—u*(t)nz
0
=
<b L (I%=B[U* (s) — U(s)l2)2ds + I¥IU* () — U*(t)]l.
Then
Ta—B T
X—XYe<bVT——— U—-U*lc + ——|U—Uu*
X~ Xle 0V T U= Wle + U= Wl
Tafﬁ T
< e (bvT <
Q(vﬁﬂa—6+lf%ﬂa+n) ¢

and the result follows. O
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5.1. Examples

(I) Let B(t) = ut + oW/(t) be the Brownian motion with drift, B*(t) = u*t + ¢*W/(t) and W is a standard
Brownian motion, then Ve > 0, 36 > 0 such that

max{|p— p*|,|o— 0"} <5,

then
IB(t) — B*(t)ly = tlu — | + [W(t)|lo — 0¥ < (T +VT) = 6.

Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian motion with drift.

(II) Let W be a standard Brownian motion and

B(t) =a(l—t)+bt+(1—1)

Oe——
—
2] (2]
=
~
—+
m
(=)
N
—_
—
<

and .
w
B*(t) =a*(1—t)+b*t+ (1—t)Jdl(z), tel0,T),
0
where
max{a—a*,b—b*} <6.
So, we can get
IB—B*l2=1Ila—a*)(1—1t)+(b—b")t| <8|(1—1t) +t[= 3.
Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian bridge.
(ITI) Finally, let W be a standard Brownian motion, A be a second order random variable A € [,(Q) and
B(t) = A+W()
be the Brownian motion started at A € [,(Q). Let
B*(t) = A"+ WI(t), [[A-A%2<5,

then we can get
IB—B%ll2 =lIA—A%2 <8.

Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian motion started at A € 1,(Q).

6. Hyers-Ulam stability

The functional equation
Fi(d(x)) = F2(d(x))
is said to have the Hyers-Ulam stability if for an approximate solution ¢ such that

[F1(ds(x)) —Falds(x))] < &

for some fixed constant & > 0, there exists a solution ¢ such that

[b(x) —ds(x)l < e

for some positive constant €. Sometimes we call ¢ a d-approximate solution (see [3, 22, 23]).
In this section, we have the following definition.
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Definition 6.1. Problem (1.1)-(1.2) is said to be Hyers-Ulam stable if for an approximate (5-approximate)
solution X5 € C([0, T], Lp(Q)) of (1.1)-(1.2) such that

Xs(t) = [f1(t, D¥Xs (1)) + f2(t, B(t))]]| <8

2

4
dt

for some fixed constant & > 0, there exists a solution X € C([0, T],1,(Q)) of (1.1)-(1.2) such that
| X—Xs |lc<e
for some € > 0.
Now, we have the following theorem.
Theorem 6.2. Let the assumptions of Theorem 4.1 be satisfied. Then the problem (1.1)-(1.2) is Hyers-Ulam stable.

Proof. Firstly, from Lemma 3.1, we have

U (t) — T *[f1(t, Us(t)) + f2(t, B(t)) Il
= P2 S X (0 = [ (1, DX, (6) + Fa(t, B(1))l
11— d o4 1—x étli(x
<1 IIEXs(t)—[fl(t,D Xs(t)) +fat, B(t))lla < T'7%6 < o o)
Now
| U(t) = Us () [l2 = [T [ (t, (L) + F2(t, B(E))] — T *[f1(t, Us (1)) + 2, B(1))]|]
—ﬂhl“fﬂtuﬁn+fﬂt8&n—dl“fﬂtu(ﬂ)-ﬁthm
+ T (4, Us (1) + (4, B(E)] — Us (1),
P‘WﬂuU(n—ﬁﬁﬂkﬁmb+ml“ﬁ&ﬂgun+ﬁ&BMH—UAﬂm
11—
<% | (4 U(E) — (&, Us [t |h+6rf__“)
tl—oc 6t1 Lo . . . Tl—oc
<bIU=Uslle 1oy oy < PTIU-Wsllc +8T%, T = o
Thus ST+
|| U —Us HC< m =€
and

x—f3 [ed
IX(0) = Xe 8]l < bV (o ellU = Uslle) + g U~ Usle

U Uyl (bvT— " L
< _
U= Uslle VT e =y T Fi v o)

T(x—B T
VT =1 T e ) = ©

U —Usllc)

N

Then we obtain our result
IIX—X;sllc < e. O
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7. Example

Consider

dX(t)  [k(t)+DIX(t)] . B(t)sint
at 9+ [X(6) o) (+ [ Bt ) 7

with the stochastic-integral condition

1 ,—s %
X(O):XO+J € "D2XE) qws), te (0,1, (7.2)

0 (36 + 82)

The solution of the initial value problem (7.1)-(7.2) can be represent as

T e*SI%U(s)

X(t):Xo+L i) AW(s) + TiU(t), te[0,T], (7.3)
where U(t) is given by
Ult) = i [ (k(t) + U(t)] B(t)sint
X ) (B (l2) ]

K(1)+DIX(1)] f(s,Bls)) — BlUsnt g

. . 3
In the basic problem of this paper, let fi(s,DiX(s)) = m = SAFB L)

!
f3(s, D2X(s)) = %_ Let also « = 3 and B = 3. Easily, the problem (7.1) with nonlocal inte-
gral condition (7.2) satisfies all the assumptions (i)-(iii) of Theorem 4.1, then there exists at least one
solution to the problem (7.1)-(7.2) on [0, 1], given by (7.3). It also satisfies condition (iv), so using Theorem

4.3, there exists a unique solution.

8. Conclusions

In this paper, in Theorem 4.1, we proved the existence of solutions x € C([0, T], [(€)) of the nonlocal
stochastic-integral problem of the arbitrary (fractional) orders stochastic differential equation

-
= f1(t, D¥X(t)) + f2(t,B(t)), t e (0, T], X(0) =Xo —|—J f3(s, DPX(s))dW(s),
0

dX(t)
dt

where B is any Brownian motion, W is a standard Brownian motion, and Xy is a second order random
variable. The sufficient condition for the uniqueness of the solution have been given in Theorem 4.3. The
Hyers-Ulam stability of the problem have been proved in Theorem 6.2. The continuous dependence of the
unique solution on the Brownian motion B is proved. The three spatial cases Brownian bridge process,
the Brownian motion with drift and the Brownian motion started at A have been considered.
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