

Hyers-Ulam stability and continuous dependence of the solution of a nonlocal stochastic-integral problem of an arbitrary (fractional) orders stochastic differential equation

A. M. A. El-Sayed ${ }^{\text {a }}$, M. E. I. El-Gendy ${ }^{\text {b,c, }, * ~}$
${ }^{a}$ Faculty of Science, Alexandria University, Egypt.
${ }^{b}$ Department of Mathematics, College of Science and Arts at AI-Nabhaniah, AL Qassim University, Al-Nabhaniah, Kingdom of Saudi Arabia.
${ }^{c}$ Department of Mathematics, Faculty of Science, Damanhour University, Egypt.

Abstract

Stochastic problems play a huge role in many applications including biology, chemistry, physics, economics, finance, mechanics, and several areas. In this paper, we are concerned with the nonlocal stochastic-integral problem of the arbitrary (fractional) orders stochastic differential equation $$
\frac{d X(t)}{d t}=f_{1}\left(t, D^{\alpha} X(t)\right)+f_{2}(t, B(t)), \quad t \in(0, T], \quad X(0)=X_{0}+\int_{0}^{T} f_{3}\left(s, D^{\beta} X(s)\right) d W(s),
$$ where B is any Brownian motion, W is a standard Brownian motion, and X_{0} is a second order random variable. The Hyers Ulam stability of the problem will be studied. The existence of solution and its continuous dependence on the Brownian motion B will be proved. The three spatial cases Brownian bridge process, the Brownian motion with drift and the Brownian motion started at A will be considered.

Keywords: Stochastic processes, stochastic differential equations, existence of solutions, continuous dependence, Brownian motion, Brownian bridge process, Brownian motion with drift .
2020 MSC: 60H20, 26A33, 45K05.
©2024 All rights reserved.

1. Introduction

Over the years, fractional differential equations and its applications have gotten extensive attention, it is widely used in various disciplines, interested researchers can see the work in [4, 9, 12, 17, 31, 34]. Many authors have been interested to study fractional stochastic differential equations (see $[1,2,5,8,10,11$, $13,15,19,21,27,28]$). The existence and uniqueness of solutions to stochastic differential equations have been studied by many authors see [14, 16, 18, 25]. In [24], the author discussed a computational method

[^0]to get an approximate solution of a stochastic beam equation. A simulation analysis of this problem is carried out with matlab, author constructed the stochastic partial differential equation
$$
\alpha^{2} \frac{\partial^{4} u(x, t)}{\partial x^{4}}+\frac{\partial^{2} u(x, t)}{\partial t^{2}}+c \frac{\partial u(x, t)}{\partial t}-s \frac{\partial^{2} u(x, t)}{\partial x^{2}}=G_{1}(x, t)+G_{2}(x, t) \dot{B}(t)
$$
subject to some conditions. He referred that by employing the Hilbert space of all square-integrable functions, the problem is reduced to a first order of the form
$$
\mathrm{d} x_{\mathrm{t}}=\mathrm{f}\left(\mathrm{t}, \mathrm{x}_{\mathrm{t}}\right)+\mathrm{g}\left(\mathrm{t}, \mathrm{x}_{\mathrm{t}}\right) \mathrm{dB}_{\mathrm{t}} .
$$

So, interested researchers with numerical methods of stochastic problems (see [6, 24, 33]). Let (Ω, G, μ) be a probability space where Ω is a sample space, G is a σ-algebra of subsets of Ω and μ is the probability measure (see $[7,32,36])$. Let $\mathrm{I}=[0, \mathrm{~T}]$ and $\mathrm{X}(\mathrm{t} ; w)=\{X(\mathrm{t}), \mathrm{t} \in \mathrm{I}, w \in \Omega\}$ be a second order stochastic process,

$$
E\left(X^{2}(t)\right)<\infty, t \in I .
$$

Let $C=C\left(I, L_{2}(\Omega)\right)$ be the class of all mean square second order continuous stochastic processes on I with the norm

$$
\|X\|_{C}=\sup _{t \in I}\|X(t)\|_{2}, \quad\|X(t)\|_{2}=\sqrt{E\left(X^{2}(t)\right)}
$$

The motivation of this work is to generalize the results of [14]. The authors, in [14], studied the stochastic differential equation

$$
\frac{\mathrm{d} X}{\mathrm{dt}}=\mathrm{f}(\mathrm{t}, \mathrm{X}(\mathrm{t}))+\mathrm{W}(\mathrm{t}), \quad \mathrm{t} \in(0, \mathrm{~T}]
$$

with the nonlocal random initial condition

$$
X(0)+\sum_{k=1}^{n} a_{k} X\left(\tau_{k}\right)=X_{0}, \quad \tau_{k} \in(0, T),
$$

where X_{0} is a second order random variable, $W(t)$ is the standard Brownian motion and a_{k} are positive real numbers. Let $B(t), t \in[0, T]$ be any Brownian motion, $W(t)$ is a standard brownian motion and $\alpha, \beta \in(0,1], \beta \leqslant \alpha$. Here, we are concerned with the nonlocal stochastic-integral problem of the arbitrary (fractional) orders stochastic differential equation

$$
\begin{equation*}
\frac{d X(t)}{d t}=f_{1}\left(t, D^{\alpha} X(t)\right)+f_{2}(t, B(t)), \quad t \in(0, T] \tag{1.1}
\end{equation*}
$$

with the stochastic-integral condition

$$
\begin{equation*}
X(0)=X_{0}+\int_{0}^{T} f_{3}\left(s, D^{\beta} X(s)\right) d W(s) \tag{1.2}
\end{equation*}
$$

where X_{0} is a second order random variable. The existence of solutions $X \in C$ of the problem (1.1)-(1.2) will be proved. The sufficient condition of the uniqueness of the solution will be given. The Hyers-Ulam stability of the problem (1.1)-(1.2) will be proved. The continuous dependence of the unique solution on the Brownian motion B and its three spatial cases, Brownian bridge process, the Brownian motion with drift and the Brownian motion started at A, will be studied.

2. Preliminaries

Here, we offer some fundamental definitions.

Definition 2.1. Let $X \in C\left(I, L_{2}(\Omega)\right)$ and $\alpha, \beta \in(0,1]$. The stochastic integral operator of order β is defined by

$$
I^{\beta} X(t)=\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} X(s) d s
$$

and the stochastic fractional order derivative is defined by

$$
D^{\alpha} X(t)=I^{1-\alpha} \frac{d X}{d t}
$$

For properties of stochastic fractional calculus see [11, 20].
Definition 2.2 (Brownian motion with drift, [25,30]). A Brownian motion B is called a Brownian motion with drift μ and volatility σ if it can be written as

$$
B(t)=\mu t+\sigma W(t), \quad t \in R_{+},
$$

where $W(t)$ is a standard Brownian motion.
Definition 2.3 (Brownian motion started at $A,[26])$. A process $B(t)$ is called a Brownian motion started at $A, A \in L_{2}(\Omega)$ if it can be written as

$$
B(t)=A+W(t)
$$

where $W(t)$ is a standard Brownian motion.
Definition 2.4 (Brownian bridge, [29]). A Brownian motion B is called a Brownian bridge if it can be written as

$$
B(t)=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{d W(s)}{1-s}, t \in[0,1), \quad a, b \in R,
$$

where $W(t)$ is a standard Brownian motion.

3. Solution of the problem

Throughout the paper we assume that the following assumptions hold.
i- The functions $f_{i}: I \times L_{2}(\Omega) \rightarrow L_{2}(\Omega), i=1,2,3$ are measurable in $t \in I, \forall x \in L_{2}(\Omega)$ and continuous in $x \in \mathrm{~L}_{2}(\Omega), \forall \mathrm{t} \in \mathrm{I}$.
ii- There exists a constant $b>0$, and a second order process $a(t) \in L_{2}(\Omega), a=\sup _{t \in I}\|a(t)\|_{2}$, such that

$$
\left\|f_{i}(t, x(t))\right\|_{2} \leqslant a+b\|x(t)\|_{2}, \quad i=1,2,3 .
$$

iii- $\mathrm{bT}^{1-\alpha}<\Gamma(2-\alpha)$.
Now, we have the following lemma concerning the integral representation of the solution of the problem (1.1)-(1.2).

Lemma 3.1. Let the solution of the initial value problem (1.1)-(1.2) be exists. Then it can be represented as

$$
\begin{equation*}
X(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} u(s)\right) d W(s)+I^{\alpha} U(t), \quad t \in[0, T] \tag{3.1}
\end{equation*}
$$

where $\mathrm{U}(\mathrm{t})$ is given by

$$
\begin{equation*}
\mathrm{U}(\mathrm{t})=\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right] . \tag{3.2}
\end{equation*}
$$

Proof. Let $\mathrm{X}(\mathrm{t})$ be a solution of (1.1). Operating by $\mathrm{I}^{1-\alpha}$ on equations (1.1), we obtain

$$
D^{\alpha} X(t)=I^{1-\alpha} \frac{d X(t)}{d t}=I^{1-\alpha}\left[f_{1}\left(t, D^{\alpha} X(t)\right)+f_{2}(t, B(t))\right] .
$$

Let

$$
\mathrm{D}^{\alpha} X(\mathrm{t})=\mathrm{U}(\mathrm{t}) \in \mathrm{C}\left([0, \mathrm{~T}], \mathrm{L}_{2}(\Omega)\right),
$$

then

$$
X(t)=X(0)+I^{\alpha} U(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, D^{\beta} X(s)\right) d W(s)+I^{\alpha} U(t) .
$$

But

$$
D^{\beta} X(t)=I^{1-\beta} \frac{d}{d t} X(t)=I^{\alpha-\beta} I^{1-\alpha} \frac{d}{d t} X(t)=I^{\alpha-\beta} U(t)
$$

Then we obtain (3.1),

$$
X(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} u(s)\right) d W(s)+I^{\alpha} U(t), \quad t \in[0, T]
$$

and the fractional-order integral equation

$$
\begin{equation*}
U(t)=\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s \tag{3.3}
\end{equation*}
$$

Conversely, let $\mathrm{U}(\mathrm{t})$ be a solution of (3.3). Then from (3.1) and (3.2) we obtain

$$
\begin{aligned}
X(t) & =X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} u(s)\right) d W(s)+I^{\alpha} I^{1-\alpha}\left[f_{1}(t, U(t))+f_{2}(t, B(t))\right] \\
& =X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} u(s)\right) d W(s)+\int_{0}^{t}\left[f_{1}\left(s, D^{\alpha} X(s)\right)+f_{2}(s, B(s))\right] d s, \\
\frac{d}{d t} X(t) & =f_{1}\left(t, D^{\alpha} X(t)\right)+f_{2}(t, B(t)),
\end{aligned}
$$

and

$$
X(0)=X_{0}+\int_{0}^{T} f_{3}\left(s, D^{\beta} X(s)\right) d W(s)
$$

Then we have proved the equivalence between the problem (1.1)-(1.2) and the equations (3.1) and (3.3).

4. Existence of solution

Theorem 4.1. Let the assumptions (i)-(iii) be satisfied, then the fractional-order integral equation (3.3) has at least one solution $\mathrm{U}(\mathrm{t}) \in \mathrm{C}$.

Proof. Consider the set Q such that

$$
\mathrm{Q}=\left\{\mathrm{U} \in \mathrm{C}:\|\mathrm{U}\|_{\mathrm{C}} \leqslant \mathrm{r}\right\} \subset \mathrm{C} .
$$

Define the mapping $\operatorname{FU}(\mathrm{t})$ where

$$
\mathrm{FU}(\mathrm{t})=\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right] .
$$

Let $\mathrm{U} \in \mathrm{Q}$, then

$$
\|F U\|_{2} \leqslant \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{f}_{1}(\mathrm{~s}, \mathrm{U}(\mathrm{~s}))\right\|_{2} \mathrm{~d} s+\int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{f}_{2}(\mathrm{~s}, \mathrm{~B}(\mathrm{~s}))\right\|_{2} \mathrm{~d} s
$$

$$
\begin{aligned}
& \leqslant \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\left[\|a(s)\|_{2}+b\|U(s)\|_{2}\right] d s+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\left[\|a(s)\|_{2}+b\|B(s)\|_{2}\right] d s \\
& \leqslant\left[2 a+b\|u\|_{C}\right] \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} d s+b \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\|B\|_{C} d s \\
& \leqslant\left[2 a+b\|u\|_{C}+b\|B\|_{c}\right] \frac{T^{1-\alpha}}{\Gamma(2-\alpha)}=r
\end{aligned}
$$

where

$$
r=\left[2 a+b\|u\|_{c}+b\|B\|_{C}\right] \frac{T^{1-\alpha}}{\Gamma(2-\alpha)} \leqslant\left[2 a+b r+b\|B\|_{C}\right] \frac{T^{1-\alpha}}{\Gamma(2-\alpha)} .
$$

Thus

$$
r \leqslant \frac{[2 a+b\|B\| c] T^{1-\alpha}}{\Gamma(2-\alpha)-\left[b T^{1-\alpha}\right]} .
$$

That proves $F: Q \rightarrow Q$ and the class $\{F Q\}$ is uniformly bounded on Q. Now, considering $t_{1}, t_{2} \in[0, T]$ such that $\left|t_{2}-t_{1}\right|<\delta$, then

$$
\begin{aligned}
\left\|F U\left(t_{2}\right)-F U\left(t_{1}\right)\right\|_{2} \leqslant & \leqslant \int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s \|_{2} \\
& +\left\|\int_{0}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s-\int_{0}^{t_{1}} \frac{\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s\right\|_{2} \\
\leqslant & \left\|\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{-\alpha}-\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s\right\|_{2} \\
& +\left\|\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{-\alpha}-\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s\right\|_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|F U\left(t_{2}\right)-F U\left(t_{1}\right)\right\|_{2} \leqslant & {[2 a+b r]\left[\int_{0}^{t_{1}}\left|\frac{\left(t_{2}-s\right)^{-\alpha}-\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)}\right| d s+\int_{t_{1}}^{t_{2}}\left|\frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)}\right| d s\right] } \\
& +b\|B\| c\left[\int_{0}^{t_{1}}\left|\frac{\left(t_{2}-s\right)^{-\alpha}-\left(t_{1}-s\right)^{-\alpha}}{\Gamma(1-\alpha)}\right| d s+\int_{t_{1}}^{t_{2}}\left|\frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)}\right| d s\right] \\
= & {[2 a+b r]\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{\alpha}-\left(t_{1}-s\right)^{\alpha}}{\left(t_{2}-s\right)^{\alpha}\left(t_{1}-s\right)^{\alpha} \Gamma(1-\alpha)} d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} d s\right] } \\
& +b\|B\| c\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-s\right)^{\alpha}-\left(t_{1}-s\right)^{\alpha}}{\left(t_{2}-s\right)^{\alpha}\left(t_{1}-s\right)^{\alpha} \Gamma(1-\alpha)} d s+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-s\right)^{-\alpha}}{\Gamma(1-\alpha)} d s\right] .
\end{aligned}
$$

This proves the equi-continuity of the class $\{F Q\}$ on Q . Now, let $\mathrm{U}_{\mathrm{n}} \in \mathrm{Q}, \mathrm{U}_{\mathrm{n}} \rightarrow \mathrm{U}$ w.p. 1 (see [7]).

$$
\begin{aligned}
& \underset{n \rightarrow \infty}{\operatorname{limim}_{n \rightarrow \infty}} \mathrm{FU}_{n}={ }_{n \rightarrow \infty}^{\text {l.i.m }}\left[\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}\left(s, U_{n}(s)\right) d s+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s\right] \\
& =\lim _{n \rightarrow \infty}^{\mathrm{lim}} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)} f_{1}\left(s, U_{n}(s)\right) d s+\underset{n \rightarrow \infty}{\operatorname{li.m}} \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}\left(s,{\underset{n}{n} \rightarrow \infty}_{l_{n} . i . m} U_{n}(s)\right) d s+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s \\
& =\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{1}(s, U(s)) d s+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f_{2}(s, B(s)) d s=F U .
\end{aligned}
$$

This proves that $\{\mathrm{FU}\}$ is continuous. Consequently, the closure of $\{\mathrm{FU}\}$ is compact (see [7]). Thus, equation (3.3) has a solution $\mathrm{U} \in \mathrm{C}$.

Now for the problem (1.1)-(1.2), we have the following theorem.
Theorem 4.2. Let the assumptions (i)-(iii) be satisfied, then the problem (1.1)-(1.2) has at least one solution $\mathrm{X} \in \mathrm{C}$ given by (3.1).
Proof. From Lemma 3.1, the solution of the problem (1.1)-(1.2) is given by (3.1),

$$
X(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} U(s)\right) d W(s)+I^{\alpha} U(t), \quad t \in[0, T],
$$

where U is given by (3.3). Now, let U be a solution of (3.3), then we have

$$
\begin{aligned}
\|X(t)\|_{2} & \leqslant\left\|X_{0}\right\|_{2}+\sqrt{\left.\int_{0}^{T} \| f_{3}\left(s, I^{\alpha-\beta} U(s)\right)\right) \|_{2}^{2} d s}+I^{\alpha}\|U(t)\|_{2} \\
& \leqslant\left\|X_{0}\right\|_{2}+\sqrt{\int_{0}^{T}\left(a+b\left\|I^{\alpha-\beta} U(s)\right\|_{2}\right)^{2} d s}+I^{\alpha}\|U(t)\|_{2} \\
& \leqslant\left\|X_{0}\right\|_{2}+\sqrt{\int_{0}^{T}\left(a+b\|U\|_{C} I^{\alpha-\beta}(1)\right)^{2} d s}+\|U\|_{C^{\prime} I^{\alpha}(1)} \\
& \leqslant\left\|X_{0}\right\|_{2}+\sqrt{\int_{0}^{T}\left(a+b\|U\|_{C} \frac{t^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}\right)^{2} d s}+\|U\|_{C} \frac{t^{\alpha}}{\Gamma(\alpha+1)} \\
& \leqslant\left\|X_{0}\right\|_{2}+\sqrt{\int_{0}^{T}\left(a+b\|U\|_{C} \frac{T^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}\right)^{2} d s}+\|U\|_{c} \frac{T^{\alpha}}{\Gamma(\alpha+1)} \\
& \leqslant\left\|X_{0}\right\|_{2}+\left(a+b\|U\|_{C} \frac{T^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}\right) \sqrt{T}+\|U\|_{C} \frac{T^{\alpha}}{\Gamma(\alpha+1)} .
\end{aligned}
$$

Then

$$
\|X\|_{C} \leqslant\left\|X_{0}\right\|_{2}+\left(a+b r \frac{T^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}\right) \sqrt{T}+r \frac{T^{\alpha}}{\Gamma(\alpha+1)}
$$

So, the solution X of the problem (1.1)-(1.2) exists and $X \in C\left([0, T], L_{2}(\Omega)\right)$.

4.1. Uniqueness theorem

For discussing the uniqueness of the solution $\mathrm{U} \in \mathrm{C}\left([0, \mathrm{~T}], \mathrm{L}_{2}(\Omega)\right)$ of fractional order integral equation (3.3), consider the following assumption.
iv- The functions $f_{i}: I \times L_{2}(\Omega) \rightarrow L_{2}(\Omega), i=1,3$ are measurable in $t \in I, \forall x \in L_{2}(\Omega)$ and satisfy the Lipschitz condition

$$
\| f_{i}(t, x(t))-f_{i}\left(t, y(t)\left\|_{2} \leqslant b\right\| x(t)-y(t) \|_{2} \quad \text { and } a(t)=f_{i}(t, 0), \quad i=1,3 .\right.
$$

Theorem 4.3. Let the assumptions (ii)-(iv) be satisfied, then the integral equation (3.3) has a unique solution $\mathrm{U} \in \mathrm{C}$ and consequently, the problem (1.1)-(1.2) has a unique solution $\mathrm{X} \in \mathrm{C}$.

Proof: From assumption (iv) we can deduce that

$$
\left\|\mathfrak{f}_{\mathfrak{i}}(\mathrm{t}, \mathrm{X})\right\|_{2}-\left\|\mathfrak{f}_{\mathfrak{i}}(\mathrm{t}, 0)\right\|_{2} \leqslant\left\|\mathfrak{f}_{\mathfrak{i}}(\mathrm{t}, \mathrm{X})-\mathrm{f}_{\mathfrak{i}}(\mathrm{t}, 0)\right\|_{2} \leqslant \mathrm{~b}\|x(\mathrm{t})\|_{2}
$$

and

$$
\left\|f_{i}(t, X)\right\|_{2} \leqslant a+b\|X(t)\|_{2} .
$$

Then the assumptions of Theorem 4.1 are satisfied and (3.3) has at least one solution. Let U_{1} and U_{2} be two solutions of (3.3), then

$$
\begin{aligned}
\left\|\mathrm{U}_{1}(\mathrm{t})-\mathrm{U}_{2}(\mathrm{t})\right\|_{2} & \leqslant \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{f}_{1}\left(\mathrm{~s}, \mathrm{U}_{1}(\mathrm{~s})\right)-\mathrm{f}_{1}\left(\mathrm{~s}, \mathrm{U}_{2}(\mathrm{~s})\right)\right\|_{2} \mathrm{ds} \\
& \leqslant \mathrm{~b}\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{ds} \leqslant \mathrm{~b}\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\| \mathrm{C} \frac{\mathrm{~T}^{1-\alpha}}{\Gamma(2-\alpha)} .
\end{aligned}
$$

Then

$$
\left(1-\mathrm{b} \frac{\mathrm{~T}^{1-\alpha}}{\Gamma(2-\alpha)}\right)\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}} \leqslant 0 \Rightarrow\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}} \leqslant 0
$$

and this implies that

$$
\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}}=0 \Rightarrow \mathrm{U}_{1}(\mathrm{t})=\mathrm{U}_{2}(\mathrm{t}) .
$$

Then the solution of fractional order integral equation (3.3) is unique. Let X_{1}, X_{2} be two solutions of (3.1), then

$$
X_{1}(t)-X_{2}(t)=\int_{0}^{T}\left[f_{3}\left(s, I^{\alpha-\beta} U_{1}(s)\right)-f_{3}\left(s, I^{\alpha-\beta} U_{2}(s)\right)\right] d W(s)+I^{\alpha}\left(U_{1}(t)-U_{2}(t)\right)
$$

then

$$
\begin{aligned}
\left\|X_{1}(t)-X_{2}(t)\right\|_{2} & \leqslant\left\|\int_{0}^{T}\left[f_{3}\left(s, I^{\alpha-\beta} U_{1}(s)\right)-f_{3}\left(s, I^{\alpha-\beta} \mathrm{U}_{2}(\mathrm{~s})\right)\right] \mathrm{d} W(s)\right\|_{2}+I^{\alpha}\left\|U_{1}(t)-\mathrm{U}_{2}(\mathrm{t})\right\|_{2} \\
& \leqslant \sqrt{\int_{0}^{T}\left\|f_{3}\left(\mathrm{~s}, \mathrm{I}^{\alpha-\beta} \mathrm{U}_{1}(\mathrm{~s})\right)-\mathrm{f}_{3}\left(\mathrm{~s}, \mathrm{I}^{\alpha-\beta} \mathrm{U}_{2}(\mathrm{~s})\right)\right\|_{2}^{2} \mathrm{~d} s}+\mathrm{I}^{\alpha}\left\|\mathrm{U}_{1}(\mathrm{t})-\mathrm{U}_{2}(\mathrm{t})\right\|_{2} \\
& \leqslant \mathrm{~b} \sqrt{\left.\int_{0}^{T}\left(\mathrm{I}^{\alpha-\beta} \| \mathrm{U}_{1}(\mathrm{~s})-\mathrm{U}_{2}(\mathrm{~s})\right) \|_{2}\right)^{2} \mathrm{ds}}+\mathrm{I}^{\alpha}\left\|\mathrm{U}_{1}(\mathrm{t})-\mathrm{U}_{2}(\mathrm{t})\right\|_{2} .
\end{aligned}
$$

So

$$
\left\|X_{1}-X_{2}\right\|_{C} \leqslant \sqrt{\mathrm{~T}} \mathrm{~b} \frac{\mathrm{~T}^{\alpha-\beta}}{\Gamma(1+\alpha-\beta)}\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}}+\frac{\mathrm{T}^{\alpha}}{\Gamma(1+\alpha)}\left\|\mathrm{U}_{1}-\mathrm{U}_{2}\right\|_{\mathrm{C}} .
$$

Hence from the uniqueness of U, we obtain

$$
\left\|X_{1}-X_{2}\right\|_{C}=0
$$

Consequently, the solution (3.1) of the initial value problem (1.1)-(1.2),

$$
X(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} U(s)\right) d W(s)+I^{\alpha} U(t) \in C\left(I, L_{2}(\Omega)\right),
$$

is unique one.

5. Continuous dependence on the Brownian motions

Definition 5.1. The solution $X \in C$ of the problem (1.1)-(1.2) depends continuously on the Brownian motion B if $\forall \epsilon>0, \exists \delta>0$ such that

$$
\left\|B(t)-B^{*}(t)\right\|_{2} \leqslant \delta \Rightarrow\left\|X-X^{*}\right\|_{C} \leqslant \epsilon,
$$

where X^{*} is the solution of

$$
X(t)=X_{0}+\int_{0}^{T} f_{3}\left(s, I^{\alpha-\beta} U^{*}(s)\right) d W(s)+I^{\alpha} U^{*}(t), \quad U^{*}(t)=I^{1-\alpha}\left[f_{1}\left(t, U^{*}(t)\right)+f_{2}\left(t, B^{*}(t)\right)\right] .
$$

Consider now the following theorem.
Theorem 5.2. The unique solution of the problem (1.1)-(1.2) depends continuously on $\mathrm{B}(\mathrm{t})$.
Proof. First of all we have

$$
\begin{aligned}
\left\|\mathrm{U}(\mathrm{t})-\mathrm{U}^{*}(\mathrm{t})\right\|_{2} & \leqslant \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{f}_{1}(\mathrm{~s}, \mathrm{U}(\mathrm{~s}))-\mathrm{f}_{1}\left(\mathrm{~s}, \mathrm{U}^{*}(\mathrm{~s})\right)\right\|_{2} \mathrm{~d} s+\int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{f}_{2}(\mathrm{~s}, \mathrm{~B}(\mathrm{~s}))-\mathrm{f}_{2}\left(\mathrm{~s}, \mathrm{~B}^{*}(\mathrm{~s})\right)\right\|_{2} \mathrm{ds} \\
& \leqslant \mathrm{~b}\left\|\mathrm{U}-\mathrm{U}^{*}\right\|_{\mathrm{C}} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{ds}+\mathrm{b} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{B}(\mathrm{~s})-\mathrm{B}^{*}(\mathrm{~s})\right\|_{2} \mathrm{ds} .
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
\left\|\mathrm{U}(\mathrm{t})-\mathrm{U}^{*}(\mathrm{t})\right\|_{2} & \leqslant \mathrm{~b}\left\|\mathrm{U}-\mathrm{U}^{*}\right\| \mathrm{c} \frac{\mathrm{~T}^{1-\alpha}}{\Gamma(2-\alpha)}+\mathrm{b} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)}\left\|\mathrm{B}(\mathrm{t})-\mathrm{B}^{*}(\mathrm{t})\right\|_{2} \mathrm{ds} \\
& \leqslant \mathrm{bT}^{*}\left\|\mathrm{U}-\mathrm{U}^{*}\right\|_{\mathrm{c}}+\mathrm{b} \int_{0}^{\mathrm{t}} \frac{(\mathrm{t}-\mathrm{s})^{-\alpha}}{\Gamma(1-\alpha)} \delta \mathrm{ds}=\mathrm{bT}^{*}\left\|\mathrm{U}-\mathrm{U}^{*}\right\|_{\mathrm{c}}+\mathrm{bT} T^{*},
\end{aligned}
$$

then

$$
\left(1-\mathrm{bT} \mathrm{~T}^{*}\right)\left\|\mathrm{U}-\mathrm{u}^{*}\right\|_{\mathrm{C}} \leqslant \mathrm{bT}^{*} \delta
$$

and

$$
\left\|\mathrm{U}-\mathrm{u}^{*}\right\|_{\mathrm{C}} \leqslant \frac{\mathrm{bT}^{*} \delta}{\left(1-\mathrm{bT}^{*}\right)}=\epsilon_{1} .
$$

Now

$$
\begin{aligned}
\left\|X(t)-X^{*}(t)\right\|_{2} & \leqslant\left\|\int_{0}^{T}\left[f_{3}\left(s, I^{\alpha-\beta} U(s)\right)-f_{3}\left(s, I^{\alpha-\beta} U^{*}(s)\right)\right] d W(s)\right\|_{2}+I^{\alpha}\left\|U(t)-U^{*}(t)\right\|_{2} \\
& \leqslant \sqrt{\int_{0}^{T}\left\|f_{3}\left(s, I^{\alpha-\beta} U^{*}(s)\right)-f_{3}\left(s, I^{\alpha-\beta} U^{*}(s)\right)\right\|_{2}^{2} d s}+I^{\alpha}\left\|U^{*}(t)-U^{*}(t)\right\|_{2} \\
& \leqslant b \sqrt{\int_{0}^{T}\left(I^{\alpha-\beta}\left\|U^{*}(s)-U^{*}(s)\right\|_{2}\right)^{2} d s}+I^{\alpha}\left\|U^{*}(t)-U^{*}(t)\right\|_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\|X-X^{*}\right\|_{C} & \leqslant b \sqrt{T} \frac{T^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}\left\|U-U^{*}\right\|_{C}+\frac{T^{\alpha}}{\Gamma(1+\alpha)}\left\|U-U^{*}\right\|_{C} \\
& \leqslant \epsilon_{1}\left(b \sqrt{T} \frac{T^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}+\frac{T^{\alpha}}{\Gamma(\alpha+1)}\right) \leqslant \epsilon
\end{aligned}
$$

and the result follows.

5.1. Examples

(I) Let $\mathrm{B}(\mathrm{t})=\mu \mathrm{t}+\sigma \mathrm{W}(\mathrm{t})$ be the Brownian motion with drift, $\mathrm{B}^{*}(\mathrm{t})=\mu^{*} \mathrm{t}+\sigma^{*} \mathrm{~W}(\mathrm{t})$ and W is a standard Brownian motion, then $\forall \epsilon>0, \exists \delta>0$ such that

$$
\max \left\{\left|\mu-\mu^{*}\right|,\left|\sigma-\sigma^{*}\right|\right\} \leqslant \delta,
$$

then

$$
\left\|B(t)-B^{*}(t)\right\|_{2}=t\left|\mu-\mu^{*}\right|+\|W(t)\|_{2}\left|\sigma-\sigma^{*}\right| \leqslant \delta(T+\sqrt{T})=\delta .
$$

Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian motion with drift.
(II) Let W be a standard Brownian motion and

$$
B(t)=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{d W(s)}{1-s}, t \in[0,1),
$$

and

$$
B^{*}(t)=a^{*}(1-t)+b^{*} t+(1-t) \int_{0}^{t} \frac{d W(s)}{1-s}, \quad t \in[0, T)
$$

where

$$
\max \left\{a-a^{*}, b-b^{*}\right\} \leqslant \delta .
$$

So, we can get

$$
\left\|B-B^{*}\right\|_{2}=\left|\left(a-a^{*}\right)(1-t)+\left(b-b^{*}\right) t\right| \leqslant \delta|(1-t)+t|=\delta .
$$

Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian bridge.
(III) Finally, let W be a standard Brownian motion, A be a second order random variable $A \in L_{2}(\Omega)$ and

$$
B(t)=A+W(t)
$$

be the Brownian motion started at $A \in L_{2}(\Omega)$. Let

$$
B^{*}(t)=A^{*}+W(t), \quad\left\|A-A^{*}\right\|_{2} \leqslant \delta,
$$

then we can get

$$
\left\|B-B^{*}\right\|_{2}=\left\|A-A^{*}\right\|_{2} \leqslant \delta .
$$

Then our results in Theorems 4.1-4.3 and 5.2 can be applied for the Brownian motion started at $\mathcal{A} \in \mathrm{L}_{2}(\Omega)$.

6. Hyers-Ulam stability

The functional equation

$$
F_{1}(\phi(x))=F_{2}(\phi(x))
$$

is said to have the Hyers-Ulam stability if for an approximate solution ϕ_{s} such that

$$
\left|F_{1}\left(\phi_{s}(x)\right)-F_{2}\left(\phi_{s}(x)\right)\right| \leqslant \delta
$$

for some fixed constant $\delta \geqslant 0$, there exists a solution ϕ such that

$$
\left|\phi(x)-\phi_{s}(x)\right| \leqslant \epsilon
$$

for some positive constant ϵ. Sometimes we call ϕ a δ-approximate solution (see [3, 22, 23]). In this section, we have the following definition.

Definition 6.1. Problem (1.1)-(1.2) is said to be Hyers-Ulam stable if for an approximate (δ-approximate) solution $X_{s} \in \mathrm{C}\left([0, \mathrm{~T}], \mathrm{L}_{2}(\Omega)\right)$ of (1.1)-(1.2) such that

$$
\left\|\frac{d}{d t} X_{s}(t)-\left[f_{1}\left(t, D^{\alpha} X_{s}(t)\right)+f_{2}(t, B(t))\right]\right\|_{2} \leqslant \delta
$$

for some fixed constant $\delta>0$, there exists a solution $X \in C\left([0, T], L_{2}(\Omega)\right)$ of (1.1)-(1.2) such that

$$
\left\|X-X_{s}\right\|_{C}<\epsilon
$$

for some $\epsilon>0$.
Now, we have the following theorem.
Theorem 6.2. Let the assumptions of Theorem 4.1 be satisfied. Then the problem (1.1)-(1.2) is Hyers-Ulam stable.
Proof. Firstly, from Lemma 3.1, we have

$$
\begin{aligned}
\| U_{s}(t) & -\left.I^{1-\alpha}\left[f_{1}\left(t, U_{s}(t)\right)+f_{2}(t, B(t))\right]\right|_{2} \\
& =\left\|I^{1-\alpha} \frac{d}{d t} X_{s}(t)-I^{1-\alpha}\left[f_{1}\left(t, D^{\alpha} X_{s}(t)\right)+f_{2}(t, B(t))\right]\right\|_{2} \\
& \leqslant I^{1-\alpha}\left\|\frac{d}{d t} X_{s}(t)-\left[f_{1}\left(t, D^{\alpha} X_{s}(t)\right)+f_{2}(t, B(t))\right]\right\|_{2} \leqslant I^{1-\alpha} \delta \leqslant \frac{\delta t^{1-\alpha}}{\Gamma(2-\alpha)} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|\mathrm{U}(\mathrm{t})-\mathrm{U}_{\mathrm{s}}(\mathrm{t})\right\|_{2}= & \left\|\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right]-\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right]\right\|_{2} \\
= & \| \mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right]-\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right] \\
& +\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right]-\mathrm{U}_{\mathrm{s}}(\mathrm{t}) \|_{2} \\
\leqslant & \mathrm{I}^{1-\alpha}\left\|\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))-\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)\right\|_{2}+\left\|\mathrm{I}^{1-\alpha}\left[\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)+\mathrm{f}_{2}(\mathrm{t}, \mathrm{~B}(\mathrm{t}))\right]-\mathrm{U}_{\mathrm{s}}(\mathrm{t})\right\|_{2} \\
\leqslant & \mathrm{I}^{1-\alpha}\left\|\mathrm{f}_{1}(\mathrm{t}, \mathrm{U}(\mathrm{t}))-\mathrm{f}_{1}\left(\mathrm{t}, \mathrm{U}_{\mathrm{s}}(\mathrm{t})\right)\right\|_{2}+\delta \frac{\mathrm{t}^{1-\alpha}}{\Gamma(2-\alpha)} \\
\leqslant & \mathrm{b}\left\|\mathrm{U}-\mathrm{U}_{\mathrm{s}}\right\| \mathrm{c} \frac{\mathrm{t}^{1-\alpha}}{\Gamma(2-\alpha)}+\frac{\delta t^{1-\alpha}}{\Gamma(2-\alpha)} \leqslant \mathrm{bT}^{*}\left\|\mathrm{U}-\mathrm{U}_{s}\right\| \mathrm{c}+\delta \mathrm{T}^{*}, \quad \mathrm{~T}^{*}=\frac{\mathrm{T}^{1-\alpha}}{\Gamma(2-\alpha)} .
\end{aligned}
$$

Thus

$$
\left\|\mathrm{U}-\mathrm{u}_{\mathrm{s}}\right\|_{\mathrm{c}} \leqslant \frac{\delta \mathrm{~T}^{*}}{\left(1-\mathrm{bT} \mathrm{~T}^{*}\right)}=\epsilon_{1}
$$

and

$$
\begin{aligned}
\left\|X(t)-X_{s}(t)\right\|_{2} & \leqslant b \sqrt{T}\left(\frac{T^{\alpha-\beta}}{\Gamma(1-\alpha+\beta)}\left\|\mathrm{U}-\mathrm{U}_{s}\right\|_{\mathrm{c}}\right)+\frac{\mathrm{T}^{\alpha}}{\Gamma(1+\alpha)}\left\|\mathrm{U}-\mathrm{U}_{\mathrm{s}}\right\|_{\mathrm{C}} \\
& \leqslant\left\|\mathrm{U}-\mathrm{U}_{\mathrm{s}}\right\|_{\mathrm{c}}\left(\mathrm{~b} \sqrt{\mathrm{~T}} \frac{\mathrm{~T}^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}+\frac{\mathrm{T}^{\alpha}}{\Gamma(1+\alpha)}\left\|\mathrm{U}-\mathrm{U}_{s}\right\|_{\mathrm{C}}\right) \\
& \leqslant \epsilon_{1}\left(\mathrm{~b} \sqrt{\mathrm{~T}} \frac{\mathrm{~T}^{\alpha-\beta}}{\Gamma(\alpha-\beta+1)}+\frac{\mathrm{T}^{\alpha}}{\Gamma(\alpha+1)}\right)=\epsilon .
\end{aligned}
$$

Then we obtain our result

$$
\left\|X-X_{s}\right\|_{C} \leqslant \epsilon .
$$

7. Example

Consider

$$
\begin{equation*}
\frac{d X(t)}{d t}=\frac{\left[k(t)+D^{\frac{3}{4}} X(t)\right]}{9\left(1+\|X(t)\|_{2}\right)}+\frac{B(t) \sin t}{\left(1+\|B(t)\|_{2}\right)} \tag{7.1}
\end{equation*}
$$

with the stochastic-integral condition

$$
\begin{equation*}
X(0)=X_{0}+\int_{0}^{1} \frac{e^{-s} D^{\frac{1}{2}} X(s)}{\left(36+s^{2}\right)} d W(s), \quad t \in(0,1] . \tag{7.2}
\end{equation*}
$$

The solution of the initial value problem (7.1)-(7.2) can be represent as

$$
\begin{equation*}
X(t)=X_{0}+\int_{0}^{T} \frac{e^{-s} I^{\frac{1}{4}} u(s)}{\left(1+s^{2}\right)} d W(s)+I^{\frac{3}{4}} u(t), \quad t \in[0, T] \tag{7.3}
\end{equation*}
$$

where $U(t)$ is given by

$$
\mathrm{U}(\mathrm{t})=\mathrm{I}^{\frac{1}{4}}\left[\frac{[\mathrm{k}(\mathrm{t})+\mathrm{U}(\mathrm{t})]}{9\left(1+\|\mathrm{X}(\mathrm{t})\|_{2}\right)}+\frac{\mathrm{B}(\mathrm{t}) \sin \mathrm{t}}{\left(1+\|\mathrm{B}(\mathrm{t})\|_{2}\right)}\right] .
$$

In the basic problem of this paper, let $f_{1}\left(s, D^{\frac{3}{4}} X(s)\right)=\frac{\left[k(t)+D^{\frac{3}{4}} X(t)\right]}{9\left(1+\|X(t)\|_{2}\right)}, f_{2}(s, B(s))=\frac{B(t) \sin t}{6\left(1+\|B(t)\|_{2}\right)}$, and $f_{3}\left(s, D^{\frac{1}{2}} X(s)\right)=\frac{e^{-s} D^{\frac{1}{2}} X(s)}{\left(36+s^{2}\right)}$. Let also $\alpha=\frac{3}{4}$ and $\beta=\frac{1}{2}$. Easily, the problem (7.1) with nonlocal integral condition (7.2) satisfies all the assumptions (i)-(iii) of Theorem 4.1, then there exists at least one solution to the problem (7.1)-(7.2) on [0, 1], given by (7.3). It also satisfies condition (iv), so using Theorem 4.3 , there exists a unique solution.

8. Conclusions

In this paper, in Theorem 4.1, we proved the existence of solutions $x \in C\left([0, T], L_{2}(\Omega)\right)$ of the nonlocal stochastic-integral problem of the arbitrary (fractional) orders stochastic differential equation

$$
\frac{d X(t)}{d t}=f_{1}\left(t, D^{\alpha} X(t)\right)+f_{2}(t, B(t)), \quad t \in(0, T], \quad X(0)=X_{0}+\int_{0}^{T} f_{3}\left(s, D^{\beta} X(s)\right) d W(s),
$$

where B is any Brownian motion, W is a standard Brownian motion, and X_{0} is a second order random variable. The sufficient condition for the uniqueness of the solution have been given in Theorem 4.3. The Hyers-Ulam stability of the problem have been proved in Theorem 6.2. The continuous dependence of the unique solution on the Brownian motion B is proved. The three spatial cases Brownian bridge process, the Brownian motion with drift and the Brownian motion started at A have been considered.

Acknowledgment

The researchers would like to thank the Deanship of Scientific Research, Qassim University.

References

[1] M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, M. Elgarhy, Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay, Fractal Fract., 5 (2021), 1-19. 1
[2] S. R. Aderyani, R. Saadati, T. M. Rassias, H. M. Srivastava, Existence, uniqueness and the multi-stability results for a ψ-Hilfer fractional differential equation, Axioms, 12 (2023), 16 pages. 1
[3] R. P. Agarwal, B. Xu, W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl., 288 (2003), 852-869. 6
[4] E. Ahmed, A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, Numerical solution for the fractional replicator equation, Int. J. Mod. Phys. C, 16 (2005), 1017-1025. 1
[5] M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6 (2022), 1-16. 1
[6] A. Babaei, H. Jafari, S. Banihashemi, A collocation approach for solving time-fractional stochastic heat equation driven by an additive noise, Symmetry, 12 (2020), 15 pages. 1
[7] R. F. Curtain, A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London-New York, (1977). 1, 4
[8] M. M. El-Borai, On some stochastic fractional integro-differential equations, Adv. Dyn. Syst. Appl., 1 (2006), 49-57. 1
[9] M. M. Elborai, A. A. Abdou, W. El-Sayed, S. I. Awed, Numerical methods for solving integro partial differential equation with fractional order, J. Posit. Sch. Psychol., 6 (2022), 2124-2134. 1
[10] M. M. Elborai, K. E. S. El-Nadi, Stochastic fractional models of the diffusion of COVID-19, Adv. Math. Sci. J., 9 (2020), 10267-10280. 1
[11] A. M. A. El-Sayed, On stochastic fractional calculus operators, J. Fract. Calc. Appl., 6 (2015), 101-109. 1, 2.1
[12] A. M. A. El-Sayed, A. Arafa, A. Haggag, Mathematical Models for the Novel coronavirus (2019-nCOV) with clinical data using fractional operator, Numer. Methods Partial Differential Equations, 39 (2023), 1008-1029. 1
[13] A. M. A. El-Sayed, F. Gaafar, M. El-Gendy, Continuous dependence of the solution of random fractional order differential equation with nonlocal condition, Fract. Differ. Calc., 7 (2017), 135-149. 1
[14] A. M. A. El-Sayed, M. E. I. El-Gendy, Solvability of a stochastic differential equation with nonlocal and integral condition, Differ. Uravn. Protsessy Upr., 2017 (2017), 47-59. 1
[15] A. M. A. El-Sayed, H. A. Fouad, On a coupled system of stochastic Ito differential and the arbitrary (fractional)order differential equations with nonlocal random and stochastic integral conditions, Mathematics, 9 (2021), 14 pages. 1
[16] A. M. A. El-Sayed, H. A. Fouad, On a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions, Mathematics, 9 (2021), 13 pages. 1
[17] A. M. A. El-Sayed, F. M. Gaafar,Fractional calculus and some intermediate physical processes, Appl. Math. Comput., 144 (2003), 117-126. 1
[18] A. M. A. El-Sayed, F. Gaafar, M. El-Gendy, Continuous dependence of the solution of Ito stochastic differential equation with nonlocal conditions, Appl. Math. Sci., 10 (2016), 1971-1982. 1
[19] A. M. A. El-Sayed, H. H. G. Hashim, Stochastic Itô-differential and integral of fractional-orders, J. Fract. Calc. Appl., 13 (2022), 251-258. 1
[20] F. M. Hafez, The fractional calculus for some stochastic processes, Stochastic Anal. Appl., 22 (2004), 507-523. 2.1
[21] M. A. Hamdy, M. M. El-Borai, M. E. Ramadan, Noninstantaneous impulsive and nonlocal Hilfer fractional stochastic integro-differential equations with fractional Brownian motion and Poisson jumps, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 927-942. 1
[22] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. 6
[23] D. H. Hyers, The stability of homomorphisms and related topics, Teubner, Leipzig, 57 (1983), 140-153. 6
[24] H. Jafari, D. Uma, S. R. Balachandar, S. G. Venkatesh, A numerical solution for a stochastic beam equation exhibiting purely viscous behavior, Heat Transf., 52 (2023), 2538-2558. 1
[25] B. Kafash, R. Lalehzari, A. Delavarkhalafi, E. Mahmoudi, Application of stochastic differential system in chemical reactions via simulation, MATCH Commum. Math. Comput. Chem., 71 (2014), 265-277. 1, 2.2
[26] O. Knill, Probability Theory and Stochastic Process with Applications, Narinder Kumar Lijhara for Overseas Press India Private Limited, India, (2009). 2.3
[27] Q. Li, Y. Zhou, The existence of mild solutions for Hilfer fractional stochastic evolution equations with order $\mu \in(1,2)$, Fractal Fract., 7 (2023), 1-23. 1
[28] M. Medved', M. Pospíšil, E. Brestovanská, Nonlinear integral inequalities involving tempered ψ-Hilfer fractional integral and fractional equations with tempered ψ-Caputo fractional derivative, Fractal Fract., 7 (2023), 1-17. 1
[29] B. Oksendal, Stochastic differential equations: an introduction with applications, Springer-Verlag, Heidelberg, New York, (2000). 2.4
[30] O. Posch, Advanced Macroeconomics, University of Hamburg, (2010). 2.2
[31] S. Z. Rida, A. M. A. El-Sayed, A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys., 140 (2010), 797-811. 1
[32] T. T. Soong, Random differential equations in science and engineering, Academic Press, New York-London, (1973). 1
[33] D. Uma, H. Jafari, S. R. Balachandar, S. G. Venkatesh, A mathematical modeling and numerical study for stochastic Fisher-SI model driven by space uniform white noise, Math. Methods Appl. Sci., 46 (2023), 10886-10902. 1
[34] B.-H. Wang, Y.-Y. Wang, C.-Q. Dai, Y.-X. Chen, Dynamical characteristic of analytical fractional solutions for the spacetime fractional Fokas-Lenells equation, Alex Eng. J., 59 (2020), 4699-4707. 1
[35] E. Wong, Stochastic Processes, Informations and Dynamical Systems, McGraw-Hill, USA, (1971).
[36] E. Wong, Introduction to random processes, Springer-Verlag, New York, (1983). 1

[^0]: *Corresponding author
 Email address: m.elgendy@qu.edu.sa,maysa_elgendy@sci.dmu.edu.eg (M. E. I. El-Gendy)
 doi: 10.22436/jmcs.033.04.07
 Received: 2023-12-15 Revised: 2024-01-02 Accepted: 2024-01-04

