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Abstract

This paper explores the investigation of a Volterra-Fredholm integro-differential equation that incorporates Caputo frac-
tional derivatives and adheres to specific order conditions. The study rigorously establishes both the existence and uniqueness
of analytical solutions by applying the Banach principle. Additionally, it presents a unique outcome regarding the existence of
at least one solution, supported by exacting conditions derived from the Krasnoselskii fixed point theorem. Furthermore, the
paper encompasses neutral Volterra-Fredholm integro-differential equations, thus extending the applicability of the findings.
Additionally, the paper explores the concept of Ulam stability for the obtained solutions, providing valuable insights into their
long-term behavior. To emphasis the practical significance and reliability of the results, an illustrative example is included,
effectively demonstrating the applicability of the theoretical discoveries.
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1. Introduction

Fractional calculus has emerged as a powerful tool for modeling and analyzing complex phenom-
ena in various scientific and engineering disciplines. This mathematical framework extends the con-
ventional calculus by allowing for fractional-order derivatives and integrals, enabling the representation
of systems with memory and non-local interactions. In recent years, the study of Volterra-Fredholm
integro-differential equations (IDEs) with Caputo fractional derivatives has gained prominence due to its
applicability in diverse fields. This research explores the theoretical and practical aspects of such equa-
tions, with a particular focus on their existence, uniqueness, and stability. The theoretical foundations of
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fractional calculus and IDEs have been substantially advanced through a series of pivotal works. Ahmad
and Sivasundaram [2] and Wu and Liu [45] have contributed to the existence and uniqueness results
of solutions for fractional IDEs, while Kilbas et al. [21] and Zhou et al. [47] have provided essential
theories regarding fractional differential equations. Further developments in this area are presented by
Hamoud and Ghadle [18] and Ndiaye and Mansal [31], who have explored the uniqueness of solutions
for fractional Volterra-Fredholm IDEs and extended the scope to include Caputo fractional derivatives.
Moreover, Dahmani [11] and Feckan et al. [13] have presented new existence and uniqueness results for
high-dimensional fractional differential systems. Additionally, the works of Wang et al. [44], Ahmad et
al. [1], and Smart [39] have contributed to the understanding of fractional differential equations with
diverse characteristics. Recent research by Hamarashid et al. [15, 16] has introduced novel numerical al-
gorithms for approximating solutions of nonlinear boundary integro-differential equations and presented
numerical results for the existence of Volterra-Fredholm integral equations of nonlinear boundary integro-
differential type. Moreover, Srivastava and Saxena [40] have investigated fractional integro-differential
equations with multivariable confluent hypergeometric functions as their kernels. The concept of Ulam
stability in the context of fractional calculus has also gained significance. Ahmad et al. [3] have explored
the Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard
type. Additionally, Raghavendran et al. [32] have proposed the Aboodh transform for solving fractional
integro-differential equations, offering a novel approach to numerical solutions. The dynamical behavior
of random fractional integro-differential equations has been studied by Begum et al. [7], Dong et al. [12],
and Wang et al. [42], enhancing our understanding of these complex systems. Columbu et al. [10] studied
properties of unbounded solutions in a class of chemotaxis models. Their work focuses on understanding
the behavior and properties of solutions within this specific class of models, shedding light on potential
instability in chemotaxis systems. Li et al. [22] explored the combined effects ensuring boundedness in an
attraction-repulsion chemotaxis model involving production and consumption. This investigation likely
touches upon crucial stability aspects that govern the behavior of these systems under different condi-
tions. Li et al. [23] investigated properties of solutions to porous medium problems with various sources
and boundary conditions. This exploration likely contributes insights into stability aspects in systems
described by porous medium problems, possibly shedding light on factors influencing system behavior.
Li and Viglialoro [27] delved into boundedness considerations for a nonlocal reaction chemotaxis model,
even in attraction-dominated scenarios. This study might offer valuable perspectives on stability aspects
within such models, especially in regimes where attraction dynamics dominate. [4, 5, 28, 29, 33, 35—
37, 41] provided remarks on oscillation of second-order neutral differential equations. While not directly
related to PDEs, their insights into oscillatory behavior could inform discussions on system dynamics
and stability in certain differential equation models. Bohner and Li [8] studied the oscillation of second-
order p-Laplace dynamic equations with nonpositive neutral coefficients. Their findings on oscillatory
behavior could potentially contribute to understanding the stability properties of certain dynamic equa-
tions. Li and Rogovchenko’s works [24-26] provided oscillation criteria for various types of second and
third-order neutral differential equations. Although not directly related to PDEs, these criteria may of-
fer valuable insights into stability conditions governing differential equation models. Moaaz et al. [30]
explored oscillation criteria for even-order neutral differential equations with distributed deviating argu-
ments. While focused on differential equations, their findings might offer parallels or insights applicable
to stability analysis in certain PDE systems. In this context, our research aims to contribute to the ongoing
advancements in the field by further investigating Volterra-Fredholm integro-differential equations with
Caputo fractional derivatives. We focus on the existence, uniqueness, and stability of solutions, aiming
to enhance both the theoretical foundations and practical tools for modeling and analyzing complex sys-
tems. This article combines theoretical insights and practical applications, building upon the significant
contributions of past research to the field of fractional calculus and integro-differential equations.

In this paper, we present a novel approach to the study of Volterra-Fredholm IDEs that incorporates
Caputo fractional derivatives, setting our work apart from existing literature in several ways. This pa-
per offers a unique perspective by focusing on the interplay between Caputo fractional derivatives and
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IDEs, thereby extending the applicability of our research to real-world phenomena with fractional-order
behaviors. Additionally, we leverage both the Banach fixed-point theorem and the Krasnoselskii fixed-
point theorem to rigorously establish the existence and uniqueness of solutions, ensuring the robustness
of our findings. Furthermore, we delve into the relatively unexplored realm of Ulam stability in frac-
tional calculus, shedding light on the long-term behavior of fractional-order systems. Our research also
extends to Volterra-Fredholm neutral IDEs, making our findings relevant to a broader range of systems
and phenomena. To emphasize the practical significance of our work, we provide a compelling illustrative
example, showcasing the applicability of our theoretical discoveries in real-world scenarios. Collectively,
these unique elements make this paper a valuable and novel contribution to the field of fractional calculus
and integro-differential equations.

2. Preliminaries

In this section, we concentrate on the prevalent definitions used in fractional calculus, including the
Riemann-Liouville (RL) fractional derivative and the Caputo fractional (CF) derivative, as previously
discussed in academic literature [14, 16, 18, 21, 31, 39, 47]. Let us consider the Banach space C(E, R)
equipped with the infinity norm defined as |n|jec = sup {M(&)| : & € E = [, bl}, where n belongs to
C(E,R).

Definition 2.1 ([21]). The fractional integral of a function ¢ with the RL definition of order 6 > 0 is given
by

&
JPe(E) = r(lé)JO (£—0)%lo(0)de, for £>0,6 € RT,

where R* denotes the set of positive real numbers, and [0 (&) = ¢(&).

Definition 2.2 ([47]). The RL derivative of order , where 6 is confined to the interval (0,1) and the lower
limit is set to zero, is defined for a function ¢ : [0,1) — R as follows:

1 dr 0(0)
F1-8)de )y (£-0F

Definition 2.3 ([47]). The CF derivative of order 5, where $ falls within the range of 0 to 1, is applicable
to a function ¢ : [0,1) — R. It can be represented as:

1 J‘E ¢ 0(0)
r1-:s)Jo (£—0)°

Definition 2.4 ([21]). The CF derivative of the function ¢(¢) is defined as follows. For 6 values between
n—1 and n (exclusive), it is given by:

ID2p(&) = d¢, for &> 0.

D%p(&) = d¢, for &> 0.

‘D2p(&) =

1 J“* ns-1d"e(0)

rm—2a)J, (&=0) den

For & equal to n, it is simply the n'" derivative of ¢(&):

cyd _ d"e(E)
Doo(8) = —

The parameter ¢ in this definition can be a real or even complex number, representing the order of the
derivative.

Definition 2.5 ([21]). The RL fractional derivative of order & > 0 is typically expressed as:

D3(£) =D 3¢(E), wherei—1< 5 <i.
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Definition 2.6 ([16, 47]). In the context of a metric space (x, d), a function ¢ : x — x is defined as a
contraction mapping if 3 a non-negative real number 0 < k < 1 such that for all £ and v in ¥, the
following inequality holds:

d(e(&), (v)) <k d(E,v).

Theorem 2.7 (Banach’s fixed point theorem, see [16, 47]). Let V¥ be a nonempty closed subset of a Banach space
X. Then, for any contraction mapping T from VY to itself, 3 a unique fixed point.

Theorem 2.8 (Arzela-Ascoli theorem, see [47]). A sequence of functions that is both bounded and equicontinuous
within the closed and bounded interval [a, b] possesses a subsequence that converges uniformly.

Theorem 2.9 (Krasnoselskii fixed point theorem, see [47]). In a Banach space X, let ( be a nonempty closed
and convex subset. Within (, there exist two functions H and X with the following properties:

1. H is a contraction mapping;
2. X is compact and continuous;
3. forall & and v in C such that HE + Kv remains within C.

Under these conditions, 3 a v in C for which Hv +Xv = v.

3. Volterra-Fredholm integro-differential equation

In this section, we will investigate both the existence and uniqueness of solutions and their Ulam
stability results for Volterra-Fredholm IDE, offering valuable insights for theoretical foundations. Through
solved examples, we'll illustrate the significance of our findings in understanding the dependable behavior
of fractional-order systems.

3.1. Existence and uniqueness results

In this subsection, we explore into the CF Volterra-Fredholm IDE, given by:

C b
‘D°n(¢) = <P(C)T1(C)+19(C,H(C))+L Z,(¢, N,H(N))dNJrL Z5(C, X, n(X))dX. B.1)

This equation is accompanied by the initial condition:

n(¢o) = Mo- (3.2)

In the above expressions, ¢D?® denotes CF derivative with 0 < § < 1, and 1 : E — R, where E = [{, b],
represents the continuous function under consideration. Additionally, ¥ : ExR — R and Z,, : E x E x
R — R, where n = 1,2, are continuous functions. Before commencing our main results and their proofs,
we present the following lemma along with some essential hypotheses.

(A1) Consider continuous functions Z; and Z; : E x E x R — R defined on the set D ={({,X) : 0 < {y <
N < ¢ < b). They satisfy the following conditions:

1Z1(&, ¥, n1 (X)) — Z1 (&, X, m2(X))]
1Z5(&, N, m1(X)) — Z2(&, X, m2(X))

Az, M1 () —m2 (X)),

<
<AL M1 () —m2 () |

(A2) The function ¥ : E x R — R is continuous, and it satisfies the condition

(A3) The function ¢ : E — R is continuous, and the constants A} AL and Aj§ are all positive.
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Lemma 3.1. Ifno(¢) € C(E,R), then n({) € C(E,R™) constitutes a solution to problem (3.1)-(3.2) if and only if
it complies with the following conditions:

() = +1r(c-x)5‘1 (x) (x)dwlf (C—X)P19(x,n (X)) AR
n =To r(s) . ® n r(s) . M

+1jc(c—x)“fz (6, % (x))dadmlr (c—x)“Jbz (£, %, (X)) dEAX
F(é) < 1le, 8\, 1M F(é) @ < 216, 8N, T ’

(3.3)

for C € E.

Proof. This can be readily demonstrated by utilizing the integral operator (2.1) on both sides of equation
(3.1), resulting in the integral equation (3.3). O

To establish the foundation of our investigation, we now present the following theorem that addresses the
uniqueness of solutions in the context of Volterra-Fredholm IDE, as described in equations (3.1)-(3.2).

Theorem 3.2. Assuming that conditions (A1)-(A3) are fulfilled, and given two positive real numbers (3 and y with
0 < B < 1, if they satisfy the following equations:

l@llo +A5 (A7, +A5,)b
re+1)  (3+1)r(s)

5 ) (z7 +2z3)b
]b =P '“°'+{r(5+1)+(5+1)r(5)

[or=1-pp,
then, the IVP (3.1)-(3.2) possesses a unique continuous solution over the interval [(o, b], where ¥y = max{|9(X, 0)] :
N € E}/ Z’T = maX{|Zl(£, z{/O” : (Elx) € D}/ and Z; = max{|22(£l x/ O)| : (E/ x) € D}
Proof. Define the operator T: C(E, R) — C(E, R) as follows:
1 ¢ 5—1 1 ¢ 5—1
(PO =m0+ i | 1€ 3% o)A+ s | (€= X970 (3o
() Je, r(d) Je,
1

C C b
+J (c—x)f”—l(J zl(a,x,n(x))duj Zo(E, %, (X)) dE
Co X N

0 di.

N————

Furthermore, let’s define @, as the set of functions n € C(E, R) such that ||n|x < y for some y >
0. Our objective is to demonstrate the existence of a fixed point for the operator T within the subset
@, C C(E, R). The fixed point is essentially the one and only solution to the IVP described in equations
(3.1)-(3.2). To prove this, we’ll divide the process into two separate steps.

N

Step 1. Our aim is to demonstrate that the operator T preserves functions within the set @.,. Based on
the previously stated hypotheses, for any function n belonging to the set ®, and for all ¢ in the interval
E, we can establish the following:

B R I S P
(T < ol g | (€907 ToMRIMOOIER s | (€07 o0, mise)ja

b

+1JC(C—N)H<JC 1Z3(&, X n(x))ld£+J 1Z,(8, X n(x))|da)dx
M) Jy, W o

¢ G
<ol + 17 | (€= 30 ol + s | 120790, () =0, 0)

C C
+ DX, 0)])dX + 1J (—x)%1 (J (1Z1(&, R}, n(X)) — Z1(&, KX, 0)[+1Z;1(&, X, O))d&
r(é) to X

b
+J (1Z2(5, %, (X)) = Za(&, X, 0+ |Za(E, X, 0)|)da) ax

to
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H(pHoobé'Y b8 b(5+1) b(5+1)
Ml s TR MY O e MY AT )
lollocb®y ,  b° b° p(3+1) p(8+1)
o+ T+ Y T e T Grore) =Y T Grrs)
(o) p(8+1)
7)\* e
e = T 5 re) 2

)
* £ (A +A*)b
<|n0|+b5< 9 N (zl+zzb>+b5y(\|cplloo+xﬁ+( 5 AL >

(ALY +25)

< nol +

)
Fe+1)  (5+1)r(s) re+1)  (5+1)r(s)
=([I=Bly+By =Y.

Hence, we can conclude that | Tn|| < v, which implies that Tn € @, thereby establishing that T®., is a
subset of @

Step 2. Our objective is to demonstrate that T is a contraction mapping. Consider n; and 1, both belong-
ing to @,

4
(Tm)(Q) = (Tn) (Q)] < 1[ (€= X921 (%) 1 (X) — m (%)
4
L (= R)P (R, m1 (%)) — B(X, 12 (X))| A

1 G G
4 J ((—x)>1 (L 1Z0(&, %, m (X)) — Z4 (€, X, ma(X))|dE

b

H(p”oo Ab® | 1+ b+ + AL b
STo+1) Mo+1) M =M B+ 1) (0)
@l +A5 (A7, +ALIDY 4

= b — - _
< re+1) (5+1)T(d) Hnl nZH €Hm T]ZHI

M1 —m2| + ||111—112||

lollotA; | (A ”‘*
F(6+1) 1T

satisfies as a contraction mapping. Consequently, in accordance with Theorem 2.7, 3 a fixed point denoted
as 1 € C(E, R) such that Ty = 1. This fixed point represents the only solution to the IVP outlined in
equations (3.1) through (3.2). This concludes the proof of the theorem. O

where ¢ =

]bé < 1, we get ||Tny — Tnz|| < €|n1 —n2||- This establishes that T

To set the groundwork for our investigation, we now present the following theorem that addresses the
existence of solutions in the context of Volterra-Fredholm IDE, as described in equations (3.1)-(3.2).

Theorem 3.3. Assume that

(Ad) ()| < V(Gm) € Exx [|Z1(¢X,n)] < o(0),V(,X,n) € ExExX, and ||Z2((,X,n)|| <
p(0),V(¢, X n) e E x E x x, where u, o, and p € C(E,R™).

This implies that there is at least one solution to the problem described in (3.1)-(3.2) over the interval (g, b].

5 5
Proof. Choose a fixed [Hn | + 2lelelnlle | r(gﬂ? + (%:g‘ﬁ(”;) + (t;;grpgg’)] < 1 and define the set @, =

r(s+1)
m € C;|nlls < v}. Within this context, we introduce the operators ©® and ¥ on ®vy as follows:

1

¢ ¢ ¢
_ - 6—1 _ —
(©)(0) =gy | (€0 00NN+ i | (@ %0 | (e, 5 mis) aza
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4 b
+J (c—x)“J Z5(&, ¥n(X))dEdX,
Co N

C
(Wn)(Q) = mo + r(lé)L (= X)PT (X )n(K)dX.

When considering n; and 1, from the set @.,, we observe that:

1 (¢ 1 (¢
O +mal < o+ i | (€N o (eM0AR + i | (2N 1008, ()

r(s) Je re) Je,
1 (¢ 4 b
+J (C—x)61<J Z1(E,N,n(x))da+J ZZ(E/N,H(N))de)dXH
5 5 5+1 5+1
< Hno||+b l@llclinlloc , b%lule , b**ollc b lpllc

r+1) re+1)  (6+DT()  (B+1)r(s) =

Hence, ©n; +¥n, € ®,. Notably, the assumption (A4) ensures that ¥ acts as a contraction mapping.
The continuity of functions ¥, Z;, and Z; specified in (3.1)-(3.2) implies the continuity of the operator ®.
Moreover, it’s important to highlight that © stays uniformly bounded on ®., as follows:

bf’HuHc b ollc |, b pllc

1ol < /551 xre) T Grure)”

Now, we demonstrate the compactness of the operator ©. Given that ¥, Z;, and Z; are bounded on
the compact sets O; = Exx and Qp; = E x E x X, we can define SUP (¢ 1)en, II9(¢,M)]| = C1 and
SUP (¢ %1€ 0, 1Z:(¢, X, m)|| = Cp, where 1 =1,2. For (3, (; € [(o,b], and 1 € @,,, we observe that:

1(©n) (&) — (Bn)(&) ||

1 G 1 1 (1
=HFJ (Cl—x)élﬁ(xlﬂ(x))dNJrJ (cl—x)élj Z,(&,%,1(X))dEdx
N

(8) Je, o) Je,
1 )51 K 1 (% 51
+r(5)J J Z2(&Xn(KX )dadx—(é)Lo(Cz—N) 3(X,n(X))dX
1 )51 2 1 (% s 1 [P
_F(S)J (X L Z1(& R, n(X))dEdR — mLO(cz—x) L Z(&, %, n(X))dEx|
1 Cl Cl

C1
], 10— tonsnisnas + | o %0 | zi(e s n(s) s
b i o
i —xpe L zz(a,x,n(x))dadx—L (G2 — X)* 19 (X, n(X))dx
o 22 b
- (cz—x)f’—lj z1(z,,x,n(x))dadx—J (CZ—N)HJ Z5(€, X, n(X))dEdN
X o X
6 1
- (cl—x)“a(x,n(x))dML (G — X)) L Z1(&,X,m(X))dEAR

b
[ @t za(e om0 dza|
‘JCO X

1 G G b
S| @ e + | T zie wntonde s | za(e xoni)aelax
G2 N W

o
- L (G2 — X)¥1 — (& — )P 1D(X, n(X))dX
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@) @) Gi
—J [(cz—x)“J zl(a,x,n(x))da—(cl—x)élj Z1(E, X%, n(X))dE] dX
Co X N

6 b b
—J [(Gp— )5 J Zy(, %, n(X))dE — (3 — X)5 L Zo(E, %, n()) e ax|

Co N

L _ 5 Cad N 5+1 C3d - 5+1
< F(5+1)|2(C1 )%+ F612) 12(C1 — )+ F(6+2)|2(C1 Q)"
Ci s C2d 511 Cd svry G s G0 syg G0 s
o092 T 522 T2 T ern Y T e Y T i@
G N6 5 B Cpd N6 5 B Csd R T
< 7]“(6—1—1)'2“1 0)°+ G -+ F(6—|—2)|2(C1 0)°+ G -Gl + F(6+2)|2(C1 )%+ ¢ — 1l

This quantity is independent of the choice of 1. Therefore, © exhibits relative compactness on ®-,. Conse-
quently, in accordance with the Arzela-Ascoli theorem, © is a compact operator on @.,. All the conditions
outlined in Theorem 2.9 are satisfied. Therefore, the conclusion of Theorem 2.9 applies, indicating that
the problem (3.1)-(3.2) has at least one solution. This concludes the proof of the theorem. O

3.2. Ulam stability results

In this subsection, we will investigate the Ulam stability of the problem (3.1)-(3.2). Let’s examine the
following inequality:
b

zl(c,x,n(x))dx—L 2@ ¥ nR)dR| <. (34)

4

°Dn(2) — @(On(E) — A& m(T) — L

Definition 3.4. The stability of equation (3.1)-(3.2) in the sense of Ulam-Hyers is established when 3 a
positive constant C, > 0 such that for every ¢ > 0 and for each solution v € C(E, R) to inequality (3.4), 3
a solution & € C(E,R) to equation (3.1)-(3.2) such that [v(() — &(C)| < eCy holds for all ¢ € E.

To establish the foundation of our investigation, we now present the following theorem that addresses
the Ulam stability results in the context of the Volterra-Fredholm IDE (3.1)-(3.2).

Theorem 3.5. Given that (Al) and (A2) hold true, problem (3.1)-(3.2) exhibits Ulam-Hyers stability when € < 1.

Proof. Consider ¢ > 0, and let v € C(E, R) satisfies inequality (3.4). Also, let & € C(E,R) be the unique
solution to the following problem. In this context, we recall that,

= L W) Lo (RN (X)dX L[ W)LY (X, n(X))dX
n(C)—no+r(5)Lo(C— 151 (¥)n(X) +wj (¢~ R)>19(R, (X))

Co
1 C Nf’*l CZ < d bZ < g i
+F(6)LO(C_ ) <L 1(&/ X (K)) 5+L 2(&,X,1(X)) a) .

By integrating inequality (3.4) and incorporating the initial condition of problem (3.2), we obtain:

1 (¢ 1 (¢
(=m0~ g | (€907 Moo - o | (€30 o () ax

(o) Co r(s) Co
L et [€ R T N b°
F(é)LO(C X) szl(a,x,n(x))dadx F(é)LO(C X) Lzz(a,x,n(x))dadx St

Additionally, let’s examine

m1(¢) —m2(Q)

e (e A (SIS P RGN SHIOIES
Sul! Mo F(é) @ ® M2 F(é) % s N2
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1

—Jc(c—x)“f Z1(&, X, my(X))dEdN — 1J ((—xX)*~ 1J Z5(&, X, my(X))dEdN
(o) Je, X T (8) T

1 51 1 5—1
<n1(C)—no—r(6)Lo(C—N) cp(x)m(x)dwmjco(c—x) (X)m (K)dxe

1 (° 5—1 1 (¢ -
~ T CO(C—N) (N2 (N)dNX — F(SJJO(C—N) (X, 11 (X)) dX
1 (¢ 5—1 1 (¢ 51
+ iy |, (@) s(x,m(x))dx_ch (€= R)F19(%, (%))
1 rC N 1 c r‘C
e ), (¢—x)%1 le(ﬁ,x,ﬂl(X))dédNer . ((—x)°1 le(i,x,m(x))dédx
=) PCO(C‘*”H (e i) azax - PCO(c—x)H " Za(e, %, my (%)) dzax
) Je, Jy SHE o) Je, | 2E"m
1 rC rb 1 C b
ey ) ETRTT | Zale Xm(R)aEAR — o | (C-X)TTH] Z(, X, ma(()) d2AX
JCo JN Jeo Jx

1

1 C 4
< m(C)—no—L (¢ — X)5 o(X)my (R)dX — J (C— )P 19 (X, my (%)) dxe

r(s) Ir(s)
1 ¢ 5—1 ¢ 1 5—1
NI Lzl(a,x,m( JAEAN — (sz (C—x) Jzz(a,x,m(x))aadx\
1 ¢ o5—1 1 ¢ o5—1
gy ), €0 000 m(%) o ”dN*r(@)J (= XS TR(R, my (X) — D(K, my(%)[dX
L st [ e sm [ 2008, m () — Z4 (8, 5, (X)) dEdX
+ﬁ6)dco - JCO - J'x 116, 8N, M1 )_ 1{g, &\, 12
L st [ emst [ 1208, Xma(R)) — Za(E, X, ma()) dEdX
+muc0 - JCO - J'x 206, 8,1 — £Lo0G, N, T2 7
lollo+A5 (A +A%)b]
=l < 5+ ol s ey ool
||T11 _T]ZH < ( ) + e”nl TIZH;
€ 1
||T]1 —T]ZH < ﬁ = EM, where M = m

Hence, we can conclude that the problem (3.1)-(3.2) exhibits Ulam-Hyers stability. This concludes the
proof of the theorem. O

Example 3.6. We investigate the CF Volterra-Fredholm IDE (3.1)-(3.2) under the following parameters:
6=05b=05A5 =02,A7 =03,A%, =03, and [[¢] e = 0.1. It now follows that,

oo + A3 (7‘§1+7‘§z)b]b5
TG 4D
01402 . (0.3+0.3)(0.5)
“lrd T deurd ](0'5)
(03, (06)05)] .1 [ 03 030
S rd) - 3rd) ](0'5) N [0.886+(1.5)(1.772)

Nl—=

(0.707) = 0.318 < 1.



Th. Gunasekar, et al., ]. Math. Computer Sci., 33 (2024), 390407 399

If we set ¢ = 0.5, then the value of M can be computed as

1 1 1

re+1)(1—e) T(3)(1-0.318) 0604 1.6%5.

Now, when we multiply ¢ by M, we get eM = 0.5 x 1.655 = 0.8275. Since all the conditions of Theorem
3.2 are satisfied, 3 a unique and stable solution to the provided equation.

4. Neutral Volterra-Fredholm integro-differential equation

In this section, we delve into the investigation of both the existence and uniqueness of solutions,
as well as the Ulam stability results for neutral Volterra-Fredholm IDE. This exploration offers valuable
insights for theoretical foundations, and we will demonstrate the significance of our findings through
solved examples.

4.1. Existence and uniqueness results

In this subsection, we explore into the CF neutral Volterra-Fredholm IDE, given by:

4 b
°D8 [n(2) - 91(¢,n(0)) —cp(an(a+az(c,n(C))+L zl(c,x,n(x))dmL Zo((, ¥, n(X))dX.  (41)

This equation is accompanied by the initial condition:

(%) =no. (4.2)

In the above expressions, ¢D?® denotes CF derivative with 0 < § < 1, and 1 : E — R, where E = [{, b],
represents the continuous function under consideration. Additionally, 9, : ExR — Rand Z, : E X E x
R — R, where n = 1,2, are continuous functions. Before commencing our main results and their proofs,
we present the following lemma along with some essential hypotheses.

(B1) Consider continuous functions Z; and Z; : E X E Xx R — R defined on the set D = {({,X) : 0 < {p <
N < ¢ < b}. They satisfy the following conditions:

1Z1(T, N, M1 (X)) — Z1 (7, X, 12(X))|

1Z2(7, X,m1(R)) — Za(7, K, m2(X))|

Az M1 (R) —m2(N)]],

<
<AL M (N) =2 (X

(B2) The functions 9; and ¥, : E x R — R are continuous, and they satisfy the conditions

P1(6m1) —91(Cm2)l < Ag [ —m2ll,  P2(Cm1) —D2(¢m2)l < AG,[In1 —mz2f|-

(B3) The function ¢ : E — R is continuous, and the constants A} , A%

2s AL, Ay, and A are all positive.

Lemma 4.1. Ifno(¢) € C(E,R), then n({) € C(E,R™) constitutes a solution to problem (4.1)-(4.2) if and only if
it complies with the following conditions:

n(¢) =no —H1(Co,Mo) +91(,M(0))

C C
4 1J (C— R)*T(X)n(X)dX + 1j (¢ — K)S19,(X, 1 (X)) dX

r(s) Je, r(s) Je, (4.3)
1r (c—x)“JC Zi(T, X (x))demlr (—wx)%1 Jbz (1, ¥, n(X))dtdX
F(é) & . 1T, 8,1 F(é) % < 20T, 0, T ’

for C € E.



Th. Gunasekar, et al., ]. Math. Computer Sci., 33 (2024), 390407 400

Proof. This can be readily demonstrated by utilizing the integral operator (2.1) on both sides of equation
(4.1), resulting in the integral equation (4.3). O

To establish the foundation of our investigation, we now present the following theorem that addresses
the uniqueness of solutions in the context of Volterra-Fredholm IDE, as described in equations (4.1)-(4.2).

Theorem 4.2. Assuming that conditions (B1)-(B3) are fulfilled, and given two positive real numbers 3 and y with
0 < B < 1, if they satisfy the following equations:

Ay, +
re+1) (04 1)r(s)
0 (zf +23)b
Fe+1)  (5+1)r(d)

]bézﬁ,

]bé — (1— By,

Mol + 91 (Co,mo)l +97 + {

then, the IVP (4.1)-(4.2) possesses a unique continuous solution over the interval [Co, b], where 97 = max{|91 (X, 0)] :
N € E}, 95 = max{[%2(X,0)| : X € E}, z{ = max{|Z;(t,X,0)|: (1, X) € D}, and z5 = max{|Z,(7, X, 0)| : (T, X) €
DL

Proof. Define the operator T: C(E, R) — C(E, R) as follows:

4
(TR)(Q) =10 — 91(Lo,m0) +91(L, () + 1J (- K)* T (X)n(X)dX

r(é) Co
1 4
+F(5)L (€~ K)319,(, (X)) dX
n 1JC (C_x)zm(r Z1(1, X n(x))d't—i—Jb Zo(t, X n(x))m) dX.
rs) Je, x x

Furthermore, let’s define @, as the set of functions n € C(E, R) such that ||n|x < y for some vy >
0. Our objective is to demonstrate the existence of a fixed point for the operator T within the subset
@, C C(E, R). The fixed point is essentially the one and only solution to the IVP described in equations
(4.1)-(4.2). To prove this, we’ll divide the process into two separate steps.

Step 1. Our aim is to demonstrate that the operator T preserves functions within the set @.,. Based on
the previously stated hypotheses, for any function n belonging to the set ®,, and for all C in the interval
E, we can establish the following;:

C C
(TR < ol + 91 (Co,mo) 4 191(&,n(0))] + r(15) L (C— XS () In(R)dX  + FE&J ((— xS

Co
axxxlcxf’*lczxx bzxxx
X 192(%, 1(X))ld +F(5)LO(C— ) (L| (%, X, ))|dr+L0| (%, X, de)d
4
< ol + 191 (Co,m0)| + 91 (&, m(©)) — 91(C, 0)] + 191(¢, 0)| + r(lé)L (0= X))@ ool o0 dX
C
+r(15)L (= R)5 (192(X, (X)) — 02(K, 0)] + 95X, 0)])dx

(¢ ))8-1 C|z X, (X)) —Zi(7, ¥, 0)|+1Z1(t, X, O))d
+]—WJCO(C_ ) <JZ{( 1(T/ /ﬂ( ))_ 1T, ’ + 1T, ’ )T

b
+J (1Z2(t, }, n(X)) — Za(7, X, 0)|+1Z2(T, X, 0))dT> dN
Co

lolb®y | b° b+

< , « 9 A% 9 -
ol + D1(Co,mo)l + A5, +97 + M6 +1) +F(6+1)( 9, Y+ 2)+(5+1)F(6)

(A2, Y +2)
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b(6+1)

A* *
* Grre MY T2)
||(pHoob5y bZS bé b[5+1) .

fo+10 T Torn Y T e 02 Grore =Y

< Mol +®1(Co,mo)l + Ay, +97 +

b(6+1] b(5+1) b(5+1)
* }\* *
Terre R T erore) =Y T rre) 2

3 (z§ +23)b . [ollo +A5 (A7, +AZ,)b]
r(5+1)+(5+1)r(5)]+y(A31+{ ro+1) (5+1)r(z‘>)]b>

< Mol + 191(Zo, o)l + 97 +b°
=[I=Bly+By =Y.

Hence, we can conclude that || Th|| < vy, which implies that Th € @, thereby establishing that T®., is a
subset of @,

Step 2. Our objective is to demonstrate that T is a contraction mapping. Consider 1n; and n; both belong-
ing to ©,,.

[(Th1)(C) — (Th2) (C)]

14
<PLm(D) sl(c,nz(cmr(l&L (€ — %) ()l (X) — na(%)]dX

C
i r(16) LO(C— N)* 102, 11 (X)) — D2(X, ma(X)) X

1CCN5_1 CIZNxexd
+F(6)LO( =)0 ([ 12403 30) = Za(r a0

b
+L 1Za(t, X, (X)) — Za(x, N,nz(N)JIdT> dx

[@flocb® Ap,b° Az b A b
<A, I —mall + 5 gy I —mall + +— :
5, Im1 —m2|l I [m1 —m2| (5+ 1 —mn2| (6+1)T ()

| @llos + A% ()\* +A%)
e )\* 2 _ _ .
[f’l ( re+1  (+1T ) ]Hm 2|l = efn1 —m2||

Hnl —112H

T(6+1) E+1T(3)
T qualifies as a contraction mapping. Consequently, in accordance with Theorem 2.7, 3 a fixed point
denoted as 1 € C(E, R) such that Th = n. This fixed point represents the only solution to the IVP
outlined in equations (4.1) through (4.2). This concludes the proof of the theorem. O]

[loo+AS AL +AL )b . .
As e = {)\;‘;1 + ('l(p °2 3y 125 ) bé] < 1, we get ||Thy — Thy|| < €|[n1 —mn2||. This establishes that

To set the groundwork for our investigation, we now present the following theorem that addresses the
existence of solutions in the context of Volterra-Fredholm IDE, as described in equations (4.1)-(4.2).

Theorem 4.3. Assume that

(B4) [[1(¢m)| € w(Q), V(M) € Exx, [920¢)]| < V(Gm) € Exx [1Z1(¢ X)) < o(Q), V(¢ N,n) €
E X Exyx and ||Z(C, X, )| < p(0),VY((,X,n) € E X E x x, where w, u, o, and p € C(E,R™).

Let
}\gzbé AzlbéJrl +7\;2b5+1
r6+1) 6+ 1))

This implies that there is at least one solution to the problem described in (4.1)-(4.2) over the interval (g, b].

P:=Aj, + <1
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T(6+1) To+1) T B+ (d) © B+ (5)

and define the set @, = {n € C;|[n||co < v}. Within this context, we introduce the operators ©® and ¥ on
@y as follows:

> > d+1 5+1
Proof. Choose a fixed T > [‘TIOH 1910, (0] + [|w|lc + b2 @ loolInlso 4 0b el + b ol 4+ b Hllellc

C
(ON)(0) = =01 (Co,mo) + 91 (&m(0)) + 1J (€ — %)¥ 19, (X, n (X)) AN
r(é) Co

4 C 4 b
+ J (—w)21 L Z1(7, X, n(X))dtdX + L (—w)°1 L Z5(T, X, n(X))dtdX,

C
(W) (Q) = o + 1[ (C—R)* T (X)n(X)dX.

When considering n; and 1, from the set @.,, we observe that:

C
s+ ¥zl < iy 81(Gom) + 91(E (@) + g5 | (%0 T p(n()ax

4
n 1J (C— )19, (X, 1(X))dX

r(s) Co
1 (¢ s 1/ [C b
) LO(C— N) <L Zy(t, X, n(N))dt + L ZZ(T,x,n(x))dT> dxH

b°fl@lloolmlloo | BlIllc | B**Hlollc | b*Hlpllc

< ol + 1191 (Zo,mo) || + |w]|c + F5+ D) r6r0 T GaLre) T Gryre ST

Next, we establish that (©n) exhibits contraction properties.

c
[©n1 —Ona|| < [[D1(G,M1(Q) =D (G M2(Q))]| + F(lé)L (C—R)°H92(X, 17 (X)) —92(X, M2 (X))||dX

L% et ([T 1zate, % m () — Za(, %, ma()) |
a7 | (€30 { [ e % mi = 2 i

b
+JN HZZ(T/ xrnl(x)) - ZZ(T/ N/nZ(N))‘dT> dX

Aj,b° Az b4 AL Ot
<AS, Im —m2ll + == I — 2| + = = m1 —n2|
r(6+1) (5+1)T(5)
A5,0% Az b4z pOH
< A* 2 zZ1 Zo o < P o )

Therefore, © is a contraction. The continuity of ¢ implies that the operator ¥ is also continuous. Further-
more, ¥ is uniformly bounded on @, as

1 5—1 b° @[y
IO < ol + gy | (€30 @m0 < ol + L5

In order to establish the compactness of the operator ¥, it is imperative to illustrate its property of
equicontinuity. To do so, let’s define @ as the supremum of |@(N)n(X)|. Now, for any pair of points {3
and (, within the interval [(y, b], where (; > (», and for any function 1 belonging to the class ®,, we can
observe the following:

[|(¥n)(C1) — (Wn) (&) ||
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< [ = x5 T eomax — -1 [ (g - x5 (xR
o) o, M)

Co

1o 5—1 1 (@ 51
< HF(ZS)L (2 —NX) (p(N)T](N)dN—i—r(é)L (¢ — W) 1o(R)n(X)dAR

- 2

_WL (Cz—x)f’*l(p(x)n(x)dxﬂ

<1ch (G2 —X)* (¢ —R)P Y @(R) (x)dxH+1rl(C )5 () () A X
\r(é) %o 2 1 P n ) . 1 @(X)n

G G° 2(¢1 — )°®
) {rmn ) r(6+1)] lellolinlle + =gy e lo
< ﬁu(cl B YL CLI LIPS r(zsqin'Cl 5P 50 as G G

Thus, V¥ is equicontinuous. By Arzela-Ascoli Theorem, ¥ is compact. All the conditions outlined in
Theorem 2.9 are satisfied. Therefore, the conclusion of Theorem 2.9 applies, indicating that the problem
(4.1)-(4.2) has at least one solution. This concludes the proof of the theorem. O

4.2. Ulam stability results

In this subsection, we will investigate the Ulam stability of the problem (4.1)-(4.2). Let’s examine the
following inequality:

4 b
“D* [1(0) - B EN(0)] - @O~ 2lE (D) ~ | ZiEXENAK | Za(C K n(¥)aN] <. (1)

Co

To establish the foundation of our investigation, we now present the following theorem that addresses the
Ulam stability results in the context of the Volterra-Fredholm IDE (4.1)-(4.2).

Theorem 4.4. Given that (B1) and (B2) hold true, problem (4.1)-(4.2) exhibits Ulam-Hyers stability when e < 1.

Proof. Consider ¢ > 0, and let v € C(E,R) satisfy inequality (4.4). Also, let T € C(E,R) be the unique
solution to the following problem. In this context, we recall that

_ 1 (¢ 51 1 (¢ 51
n(C)—no—ﬁl(Co,noHﬁl(C/n(C))+r(é)LO(C—N) @(x)n(x)dmcho(c—x) 9,(%, (X))

b

+1r(c—x)“<rzhx (N))dT+J Zo(T, X (x))dT)dx
I'(8) Je, xllln xz”n ’

By integrating inequality (4.4) and incorporating the initial condition of problem (4.2), we obtain:

C C
(@) 0+ 91(Gom0) ~ 9@ N(D) — iy | (X0 QMR MRIAN s | (€% aa(86m() s

1 4 51 4 1 4
—F((S)LO(C—N) Jx Zl(T,N,n(N))deN—r(S)J

b5
rs+1)

b
(C—N)‘S_lj Z>(T, N,n(x))d’tdx‘ <e

Co N

Additionally, let’s examine this

m1(¢) —n2(Q)

¢
< fml0) ~ o+ 01 G, m0) = 81(EmaE)) ~ s | (6= 30° om0
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L N5 =19, (%, 10 (X)) AN — CC xéflcz ()4
1 (¢ b
_W)L ((—N)31 L ZZ(T,N,nZ(N))deN‘

< M1(Q) —mo +91(Co,Mo) —D1(¢,M1 () +91(CM1 () —91(¢M2(0))

LM s tormoas+ b [ e 08 tpnom e
T, " ) +r(5)J — N e (X)m
1 (¢ 51 1 (¢ 51
_W ¢ ((—N)°@(N)n2(N)dN — I“(éS)J (¢ — )19, (W, (X)) dX
1 rCO 1 C
+W . (C—N)f’_lﬁz(x,m(x))dx—wL (¢ — X219, (X, 1p(X))dX
1 PCO s—1 [© 0 1 (¢ 51 (°
“F ), (C—X) xZ1(T,Nﬂ]1(><))d¢dxer . (C—NX) le(T,N,m(N))dex
1 B 5 (G 1 rC 51 rb
~T) ), ((—x)°1 NZl(T,N,nz(bC))debC—W . (C—N)°~ NZZ(T,N,m(N))deN
LT ¢— N1 "bz N, 11(X))dtdX 1 "C(C K )81 “bz( X, 1y(X))ded
+®uco( X Jx 2(T, X, m(X))dr TT0) o, Jw 2(T, N,m2 T
4
< M1(Q) —mo +D1(Co,mo) =1 (M1 (0) — (16)J (¢ =X)L (NN (X)dX
1 (¢ 1 (¢ ¢
TR . (C— )39y (X, 1y (X ))dN—r(&J (C—N){’lL( Z1(t, X, M1 (X))dtdX
rC b
_r(lgg) ; (C—x)*! L ZZ(TIN,m(N))deN‘+|191(C,T11(C))—ﬁz(C,ﬂz(C)N
b [ (e 0 () (%) (x)|dx+1r(c_x)al|ﬁ (.m0 ()]
r(é)dco ® ™ 2 r(s) % 208, M1

1 C C C
ﬁz(x,nz(x))|dN+J (cx)é—lj (cx)f’—lj 1Z1 (T, X, 11 (X)) — Z3 (T, X, 1m2(X))|dTd R
r(s) Co Co N

4 1JC (=)o JC ((— x5! jb 12207, %, m (X)) — Za (1, X, my(%))dede
(8) Je, % X T T ’

3 . [@lloo +A5, (A7, +AL,)b
M1 —m2fl < + [)\el + ( 2 2 ) bé] M1 —m2ll,

ro+1) rd+1) (d+1)I'(d)
€
||T]1_n2|| ( + ) ‘|‘€”Tl1—T12”
I | < < —¢M;; where, M; = 1
MRS T na—eo ~ Y T T Do)
Hence, we can conclude that the problem (4.1)-(4.2) exhibits Ulam-Hyers stability. This concludes the
proof of the theorem. O

Example 4.5. We investigate the CF Volterra-Fredholm IDE (4.1)-(4.2) under the following parameters:
6=0.5,b=05A;5 =02 A5 =04, A, =03,A;, =03, and |®llco = 0.3. It follows that

T (el A, L HALIBY
‘[A‘”( Mo+ 1) +(zs+1)r(5))b}
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1
2

- 03+04 (03+03)(05)

- [O'H ra+n T I+ }(O' )
0.7 (0.6)(05)
TORNERE

Since all the conditions of Theorem 4.2 are satisfied, 3 a unique and stable solution to the provided
equation.

0.7 0.30
— |o. 707) = 0.7791 < 1.
[02+ 0886 T 15772 | (0707 = 07791 <1

Nl—=

= [0.2 + } (0.5)

5. Conclusion

In this paper, a comprehensive investigation into Volterra-Fredholm IDEs with CF derivatives has
been presented, emphasizing their significance in modeling real-world phenomena with fractional-order
behaviors. Employing the principles of the Banach and Krasnoselskii fixed-point theorems, the existence
and uniqueness of solutions have been firmly established, enhancing the robustness of the findings. The
exploration of Ulam stability within the context of fractional calculus has illuminated the long-term be-
havior of fractional-order systems, a pivotal consideration for understanding the dynamics of complex
phenomena. Additionally, the extension to Volterra-Fredholm neutral IDEs has broadened the relevance
of the research to a wide range of systems and practical challenges, further demonstrated by a practical
illustrative example. This work offers a valuable contribution to the field, advancing both the theoretical
foundations and practical tools for modeling and analyzing complex systems in the domain of fractional
calculus and integro-differential equations. It is anticipated that these insights will find utility among
researchers and practitioners, further stimulating exploration in this evolving field.
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