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Abstract

This paper investigates a differential-difference equation with a variable coefficient of exponential order in the formφ ′(t) =
αφ(t) + βeσtφ (−t). In literature, periodic solution has been obtained at the special case σ = 0. In this paper, an effective
approach is developed to determine the exact solution in terms of exponential and trigonometric functions. In addition, the
exact solution is expressed in terms of exponential and hyperbolic functions under specific conditions of the involved parameters.
Exact solutions of several special cases are derived and found in full agreement with the corresponding results in the relevant
literature. Some theoretical results are presented and proved which can be generalized to include other complex models. The
behavior of the obtained shows periodicity in the absence of σ while the damped oscillations are shown graphically when σ is
assigned to negative values.

Keywords: Ansatz method, differential-difference equation, exact solution.

2020 MSC: 34A99, 34A30.

©2024 All rights reserved.

1. Introduction

This paper focuses on solving the functional equation:

φ ′(t) = αφ(t) +βeσtφ (−t) , φ(0) = λ, (1.1)

where α, β, σ, and λ are real constants. At σ = 0 and γ = −1, the present model is a special case of
the pantograph equation φ ′(t) = αφ(t) +βφ (γt). The pantograph equation is of practical interest when
studying the collected current in electric trains [1, 10, 14, 27–30, 34]. Another particular application is in
astronomy, know as Ambartusmian-equation [3–6, 9, 12, 22, 26, 31, 32, 35], when α = −1, β = γ = 1/ξ
(ξ > 1) and σ = 0.

∗Corresponding author
Email address: l.morad@psau.edu.sa (Laila F. Seddek)

doi: 10.22436/jmcs.033.04.05

Received: 2023-10-25 Revised: 2023-11-18 Accepted: 2023-12-19

http://dx.doi.org/10.22436/jmcs.033.04.05
http://dx.doi.org/10.22436/jmcs.033.04.05
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.033.04.05&domain=pdf


L. F. Seddek, A. Ebaid, E. R. El-Zahar, J. Math. Computer Sci., 33 (2024), 381–389 382

In the literature [2, 13, 16–18, 24, 36], the Adomian decomposition method (ADM) was widely applied
to investigate several physical problems. The ADM needs to calculate the Adomian polynomials if the
problem being solved is nonlinear. Beside, the homotopy perturbation method (HPM) [11, 20, 33] is also
an effective tool to solve ODEs/PDEs. However, the HPM implements an auxiliary parameter. These
methods, probably under certain canonical forms, lead to the same series solution when applying the
standard series method (SSM) [23]. Although the ADM and the HPM can be applied to solve the current
model, we prefer to develop a direct ansatz method to obtain the exact solution of in a straightforward
manner.

The proposed ansatz method is based on expressing the solution in the form of an exponential function
multiplied by the sum of two trigonometric functions. The coefficients of the trigonometric functions
in addition to the exponent of the exponential function are to be determined in terms of the model’s
parameters λ, α, β, and σ. Furthermore, the solutions of several special cases are to be established in
exact forms. These exact forms are valid at certain relationships between the parameters α, β, and σ. The
advantage of this is that it generalizes previous results in the relevant literature.

2. Method of solution

This section proposes a direct ansatz method to exactly solve the model (1.1). The ansatz, to be
developed, is assumed in the form:

φ(t) = eγt [µ1 cos(θ1t) + µ2 sin(θ2t)] , (2.1)

where γ, µi, θi (i = 1, 2) are unknowns, to be determined later. Eq. (2.1) gives

φ ′(t) = eγt[−µ1θ1 sin(θ1t) + µ2θ2 cos(θ2t)] + γe
γt [µ1 cos(θ1t) + µ2 sin(θ2t)] ,

= eγt[(−µ1θ1 + γµ2) sin(θ1t) + (µ2θ2 + γµ1) cos(θ2t)], (2.2)

φ(−t) = e−γt [µ1 cos(θ1t) − µ2 sin(θ2t)] . (2.3)

Employing Eqs. (2.1)-(2.3) into Eq. (1.1), then

eγt[(−µ1θ1 + γµ2) sin(θ1t) + (µ2θ2 + γµ1) cos(θ2t)] =αe
γt [µ1 cos(θ1t) + µ2 sin(θ2t)]

+βe(σ−γ)t [µ1 cos(θ1t) − µ2 sin(θ2t)] ,

or

(−µ1θ1 + γµ2) sin(θ1t) + (µ2θ2 + γµ1) cos(θ2t) =αµ1 cos(θ1t) +αµ2 sin(θ2t)

+βe(σ−2γ)t [µ1 cos(θ1t) − µ2 sin(θ2t)] .

Setting σ− 2γ = 0, then γ = σ/2 and hence

(−µ1θ1 + γµ2) sin(θ1t) + (µ2θ2 + γµ1) cos(θ2t) = (α+β)µ1 cos(θ1t) + (α−β)µ2 sin(θ2t). (2.4)

Eq. (2.4) implies trivial solution for µi and θi, i = 1, 2. In order to avoid such situation, one can consider
θ1 = θ2 = θ. Accordingly, Eq. (2.4) becomes

(−µ1θ+ γµ2) sin(θt) + (µ2θ+ γµ1) cos(θt) =(α+β)µ1 cos(θt)
+ (α−β)µ2 sin(θt).

Comparing both sides, we obtain the system:

µ1θ+ µ2(α−β− γ) = 0, (2.5)
µ1(α+β− γ) − µ2θ = 0. (2.6)
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The system (2.5)-(2.6) contains three unknowns µ1, µ2, and θ. However, µ1 can be directly obtained by
applying the given condition φ(0) = λ on the ansatz (2.1), this gives µ1 = λ. Therefore, the system
(2.5)-(2.6) reduces to

λθ+ µ2(α−β− γ) = 0,
λ(α+β− γ) − µ2θ = 0.

Solving this system for µ2 and θ, we obtain

µ2
2 = λ2

(
α+β− γ

γ−α+β

)
,

i.e.,

µ2 = |λ|

√
α+β− γ

γ−α+β
=

λ
√
α+β−γ
γ−α+β , λ > 0,

−λ
√
α+β−γ
γ−α+β , λ < 0,

(2.7)

and

θ =
γ−α+β

λ
µ2 =

(
γ−α+β

λ

)
|λ|

√
α+β− γ

γ−α+β
,

which gives

θ =

{√
β2 − (α− γ)2, λ > 0,

−
√
β2 − (α− γ)2, λ < 0.

(2.8)

Inserting (2.7) and (2.8) into Eq. (2.1), then the solution reads

φ(t) = λ eγt

[
cos
(√

β2 − (α− γ)2 t

)
+

√
β+α− γ

β−α+ γ
sin
(√

β2 − (α− γ)2 t

)]
,
∣∣∣∣α− γ

β

∣∣∣∣ < 1. (2.9)

Here, it is noted that the choice of the +ve or the −ve sign in (2.7) and (2.8) gives the same expression in
(2.9). Using γ = σ/2, consequently

φ(t) = λ e
1
2σt

[
cos

(√
β2 −

(
α−

σ

2

)2
t

)
+

√
β+α− σ

2
β−α+ σ

2
sin

(√
β2 −

(
α−

σ

2

)2
t

)]
,
∣∣∣∣α− σ

2
β

∣∣∣∣ < 1. (2.10)

It is clear that the exact solution (2.10) satisfies the initial condition. Moreover, the solution (2.10) can be
easily verified by direct substitution into the governing equation (1.1).

Remark 2.1. In the absence of σ, i.e., at σ = 0, the model (1.1) takes the form:

φ ′(t) = αφ(t) +βφ (−t) , φ(0) = λ, (2.11)

which has been studied in Ref. [23]. In this case, the solution (2.10) reduces to

φ(t) = λ

[
cos
(√

β2 −α2 t
)
+

√
β+α

β−α
sin
(√

β2 −α2 t
)]

,
∣∣∣∣αβ
∣∣∣∣ < 1, (2.12)

which is the same result obtained in Ref. [23], note that the solution (2.12) is periodic.
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3. Behavior of the solution

To explore the behavior of the solution (2.10), we plotted in Figure 1 the curves of φ(t) at different
values of σ (σ = −3,−2,−1, 0) when λ = 1, α = 1 and β = 3. This figure shows the periodic property
at σ = 0 and it also indicates the damped oscillations of φ(t) when σ 6= 0. The variation of the exact
solution (2.10) at different values of α (α = −1/3,−1/4, 1/4, 1/3) is depicted in Figure 2 when λ = 1,
β = 1, and σ = −1. Figure 3 displays the curves of φ(t) at different values of β (β = −3,−2, 2, 3) when
λ = 1, α = 1, and σ = −1. The damped oscillations of φ(t) can be observed in Figures 2 and 3. Such
behavior of damped oscillations is associated with the negative values of σ in these figures. However,
another different behavior can be occurred if σ is assigned to positive values, where exponential growth
or decay may be observed in this case.
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Figure 1: Plots of the exact solution φ(t), Eq. (2.10), when λ = 1, α = 1, and β = 3 at different values of σ, σ = −3,−2,−1, 0.
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Figure 2: Plots of the exact solution φ(t), Eq. (2.10), when λ = 1, β = 1, and σ = −1 at different values of α,
α = −1/3,−1/4, 1/4, 1/3.

2 4 6 8 10
t

-1.0

-0.5

0.5

1.0

1.5

2.0

ΦHtL

Β=+3

Β=+2

Β=-2

Β=-3

Figure 3: Plots of the exact solution φ(t), Eq. (2.10), when λ = 1, α = 1, and σ = −1 at different values of β, β = −3,−2, 2, 3.
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4. The solution in exponential/trigonometric compact form

A compact form for the exact solution (2.10) is to be derived in this section in terms of exponential
and trigonometric functions. The theorem below discusses this issue and such compact form shall be
compared, later, with the corresponding results in the literature at several cases.

Theorem 4.1. A compact form for the exact solution (2.10) is

φ(t) = λ

√
2β

β−α+ σ
2
e

1
2σt sin

(√
β2 −

(
α−

σ

2

)2
t+ tan−1

(√
β−α+ σ

2
β+α− σ

2

))
,

provided that
∣∣∣α−σ

2
β

∣∣∣ < 1, β−α+ σ
2 6= 0.

Proof. Suppose that

φ(t) = ω e
1
2σt sin

(√
β2 −

(
α−

σ

2

)2
t+ τ

)
, (4.1)

where ω and τ are to be determined. Expanding (4.1) gives

φ(t) = ω e
1
2σt

[
sin

(√
β2 −

(
α−

σ

2

)2
t

)
cos τ+ cos

(√
β2 −

(
α−

σ

2

)2
t

)
sin τ

]
. (4.2)

Comparing (4.2) with (2.10), we get the system:

ω cos τ = λ

√
β+α− σ

2
β−α+ σ

2
,

ω sin τ = λ.

Solving this for τ and ω, we obtain

ω = λ

√
2β

β−α+ σ
2

, τ = tan−1

(√
β−α+ σ

2
β+α− σ

2

)
. (4.3)

Inserting (4.3) into (4.1) completes the proof.

5. Special cases

This section addresses the exact solutions at some special relationships of the parameters α, σ, and β.

5.1. σ = 2α
In this case, Eq. (1.1) becomes

φ ′(t) = αφ(t) +βe2αtφ(−t), φ(0) = λ. (5.1)

The solution is determined from Theorem 4.1 as

φ(t) =
√

2λeαt sin
(
βt+ tan−1 1

)
,

i.e.,
φ(t) =

√
2λeαt sin

(
βt+

π

4

)
= λeαt (cosβt+ sinβt) .

Remark 5.1. When α = 0, Eq. (5.1) reduces to φ ′(t) = βφ(−t). The last solution becomes φ(t) =
λ (cosβt+ sinβt) which coincides with the same result in Ref. [23].
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5.2. σ = 2(α+β)

Eq. (1.1) becomes
φ ′(t) = αφ(t) +βe2(α+β)tφ(−t), φ(0) = λ. (5.2)

In this case, the solution is given by

φ(t) = λe(α+β)t sin
(
tan−1∞) = λe(α+β)t, (5.3)

Remark 5.2. For β = −α, Eq. (5.2) becomes φ ′(t) = α[φ(t) −φ(−t)]. The solution (5.3) transforms to the
constant function φ(t) = λ whatever the value of α, which agrees with Ref. [23].

5.3. σ = 2(α−β)

Setting σ = 2(α−β) into Eq. (1.1) gives

φ ′(t) = αφ(t) +βe2(α−β)tφ(−t), φ(0) = λ. (5.4)

In this case, the solution given by Theorem 4.1 becomes undetermined. Thus, the solution can be obtained
via calculating as σ → 2(α− β). To achieve this target, we assume that δ = σ− 2(α− β). So, δ → 0 as
σ→ 2(α−β). From Theorem 1, one can substitute σ = δ+ 2(α−β) and then calculate the limit as δ→ 0,
hence

φ(t) = λ lim
δ→0

√
4β
δ
e(α−β+δ/2)t sin

(√
βδ− δ2/4 t+ tan−1

√
δ/2

2β− δ/2

)
,

or

φ(t) = 2λ
√
β e(α−β)t lim

δ→0

sin
(√

βδ− δ2/4 t+ tan−1
√

δ/2
2β−δ/2

)
√
δ

,

i.e.,

φ(t) = 2λ
√
β e(α−β)t lim

δ→0

cos
(√

βδ− δ2/4 t+ tan−1
√

δ/2
2β−δ/2

)
d
dδ

[√
βδ− δ2/4 t+ tan−1

√
δ/2

2β−δ/2

]
1/(2
√
δ)

.

The limit of the cosine term tends to one, then

φ(t) = 2λ
√
β e(α−β)t lim

δ→0

d
dδ

[√
βδ− δ2/4 t+ tan−1

√
δ/2

2β−δ/2

]
1/(2
√
δ)

. (5.5)

Eq. (5.5) is equivalent to

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ
d

dδ

[√
βδ− δ2/4 t+ tan−1

√
δ/2

2β− δ/2

]
.

Hence

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ
d

dδ

[√
βδ− δ2/4 t+ tan−1

√
δ/2

2β− δ/2

]
.

Thus

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ

 (β− δ/2)t
2
√
βδ− δ2/4

+
1

1 +
δ/2

2β−δ/2

d

dδ

[√
δ/2

2β− δ/2

] ,

or

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ

(
(β− δ/2)t

2
√
βδ− δ2/4

+
2β− δ/2

2β
× 1

2

√
2β− δ/2
δ/2

d

dδ

[
δ/2

2β− δ/2

])
,
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which is

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ

(
(β− δ/2)t

2
√
βδ− δ2/4

+

√
2(2β− δ/2)

4β
×
√

2β− δ/2
δ

[
β

(2β− δ/2)2

])
.

Simplifying the last equation leads to

φ(t) = 4λ
√
β e(α−β)t lim

δ→0

√
δ

(
(β− δ/2)t

2
√
βδ− δ2/4

+

√
2

4
√
δ(2β− δ/2)1/2

)
,

which finally gives
φ(t) = λ e(α−β)t (2βt+ 1) .

This is the exact solution of the model (5.4) which can be easily verified by direct substitution. Moreover,
the case β = α implies φ(t) = λ (2αt+ 1) which has been derived in Ref. [23] for the corresponding
equation: φ ′(t) = α [φ(t) +φ(−t)].

6. The solution in exponential/hyperbolic form

This section finds an explicit form for the exact solution in terms of exponential and hyperbolic func-
tions.

Theorem 6.1. For 0 < β < α− σ
2 , the solution takes the form:

φ(t) = λ e
1
2σt

[
cosh

(√(
α−

σ

2

)2
−β2 t

)
+

√
β+α− σ

2
α−β− σ

2
sinh

(√(
α−

σ

2

)2
−β2 t

)]
,

provided that α−β− σ
2 6= 0.

Proof. The assumption 0 < β < α− σ
2 implies that β2 −

(
α− σ

2

)2
< 0, β+ α− σ

2 > 0, and β− α+ σ
2 < 0.

This yields
√
β2 −

(
α− σ

2

)2
= i

√(
α− σ

2

)2
−β2 and

√
β+α−σ

2
β−α+σ

2
= −i

√
β+α−σ

2
α−β−σ

2
, where i =

√
−1. Hence,

one can rewrite Eq. (2.10) as

φ(t) = λ e
1
2σt

[
cos

(
i

√(
α−

σ

2

)2
−β2 t

)
− i

√
β+α− σ

2
α−β− σ

2
sin

(
i

√(
α−

σ

2

)2
−β2 t

)]
.

On applying the identities cos(ix) = cosh(x) and sin(ix) = i sinh(x), then

φ(t) = λ e
1
2σt

[
cosh

(√(
α−

σ

2

)2
−β2 t

)
+

√
β+α− σ

2
α−β− σ

2
sinh

(√(
α−

σ

2

)2
−β2 t

)]
,

which completes the proof.

Lemma 6.2. For 0 < β < σ
2 −α, the solution takes the form:

φ(t) = λ e
1
2σt

[
cosh

(√(σ
2
−α

)2
−β2 t

)
−

√
σ
2 −α−β
σ
2 −α+β

sinh

(√(σ
2
−α

)2
−β2 t

)]
,

provided that σ2 −α+β 6= 0.
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Proof. Let 0 < β < σ
2 − α, then β2 −

(
σ
2 −α

)2
< 0, β + α − σ

2 < 0, and β − α + σ
2 > 0. This yields√

β2 −
(
α− σ

2

)2
= i

√(
α− σ

2

)2
−β2 = i

√(
σ
2 −α

)2
−β2 and

√
β+α−σ

2
β−α+σ

2
= i

√
σ
2 −α−β
σ
2 −α+β

. Therefore, Eq. (2.10)

gives

φ(t) = λ e
1
2σt

[
cos

(
i

√(σ
2
−α

)2
−β2 t

)
+ i

√
σ
2 −α−β
σ
2 −α+β

sin

(
i

√(σ
2
−α

)2
−β2 t

)]
.

which directly gives the result of this lemma.

Remark 6.3. Applying Theorem 6.1 when σ = 0, we obtain

φ(t) = λ

[
cosh

(√
α2 −β2t

)
+

√
β+α

α−β
sinh

(√
α2 −β2t

)]
, β < α,

which is the same hyperbolic form obtained in Ref. [23].

7. Conclusions

In this work, the differential-difference equation with a variable coefficient in the form φ ′(t) =
αφ(t) +βeσtφ (−t) was solved utilizing a developed effective approach. The exact solution was obtained
in terms of exponential and trigonometric functions which was also re-expressed in terms of exponential
and hyperbolic functions under specific conditions of the involved parameters. In absence of the expo-
nential term, i.e., at σ = 0, the periodic solution in the literature was recovered as a special case of the
present results. Moreover, the solutions of several special cases in the relevant literature were derived
through the current analysis. Theoretical theorems were proved which describes the nature of the ob-
tained exact solutions. Damped oscillations are shown graphically when σ is assigned to negative values.
The simplicity of our approach allows possible generalization to include other complex models. Finally,
the proposed method is applicable to other kinds of differential difference equations that follow the same
structure of the present equation.
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