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Abstract

Since the end of 2019, scientists and researchers have intensified their efforts to comprehend the within-host dynamics of
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus illness 2019 (COVID-19). The
dynamics and progression of the SARS-CoV-2 inside the body may be understood with the use of mathematical modeling. In
this study, we develop a mathematical model for characterizing the within-host dynamics of SARS-CoV-2 infection under the
effect of ACE2 receptor and cytotoxic T lymphocytes (CTL) response. Latently and actively (productively) epithelial infected cells
are represented in the model as two distinct classes. We take into account three distributed delays, including (i) the formation of
latently infected cells, (ii) the activation of latently infected cells, and (iii) the maturation of newly released virions. We first prove
that the model is well-posed, then find all possible equilibria. To determine if an equilibrium exists and is globally asymptotically
stable, we derive two threshold parameters: the basic reproduction number (<0) and CTL response activation number (<1). We
demonstrate the global asymptotic stability for all equilibria by constructing the relevant Lyapunov functions and employing
LaSalle’s invariance principle. To illustrate the theoretical findings, we run numerical simulations. We do sensitivity analysis
and determine the most vulnerable parameters. It is discussed how CTL response and ACE2 receptors affect the kinetics of the
SARS-CoV-2. Even though <0 is independent of CTL response characteristics, it is shown that significant CTL immune activation
can impede viral replication. Moreover, we found that, <0 is influenced by the rates of ACE2 receptor growth and degradation,
and this may offer valuable guidance for the creation of potential receptor-targeted vaccinations and medications. The impact of
time delays and the latent period on SARS-CoV-2 infection is finally examined.
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1. Introduction

The pathogen of coronavirus disease 2019 (COVID-19), which began a pandemic over the world in
the end of 2019, is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is mostly
spread by contact and airborne pathways. The majority of symptomatic infected people may have a
variety of symptoms, including as fever, a dry cough, diarrhea, muscular soreness, weariness, trouble
swallowing, headache, and nausea [41]. Individuals with severe infections may develop acute respiratory
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distress syndrome (ARDS), which is characterized by breathing problems and low oxygen levels in the
blood [41]. Consequently, the severity of the illness and the patients’ death are determined by the viral
infection and host reactions [41]. The virus infects epithelial (target) cells by attaching its spike protein, S,
to the angiotensin-converting enzyme 2 (ACE2) receptor on the surface of epithelial cells [20, 45]. SARS-
CoV-2 uses the ACE2 receptor to accurately enter host cells, making the host cells more susceptible [11].
Although type II alveolar epithelial cells in the lungs produce ACE2 better and more copiously than other
cell types, these cells are believed to be the main targets of SARS-CoV-2 infection [2, 9]. Following viral
cell entrance, the RNA of the virus is translated and duplicated in the cytoplasm of the infected cells,
after which the replicated viral particles are released to infect further cells [3]. The immune response
is crucial for stopping the spread of the illness and getting rid of the SARS-CoV-2 infection. Cytotoxic
T lymphocyte (CTL) and antibody are the two primary immune responses to viral infections. While
antibodies neutralize the viruses, CTLs are in charge of destroying virus-infected cells.

Mathematical modeling could be a useful approach for identifying the interactions occurring within
the host during COVID-19 infection. Within-host models of SARS-CoV-2 infection dynamics allow for the
evaluation of the benefits of various antiviral treatment options in terms of specific individuals [13]. In
[18, 43], the following target cell-limited model for SARS-CoV-2 infection was presented as:

Ė = −ηES, (1.1)
İ = ηES− δII, (1.2)
Ṡ = δIνI− δSS, (1.3)

where E = E(t), I = I(t) and S = S(t) represent the concentrations of the uninfected epithelial cells,
infected cells, and free SARS-CoV-2 particles at time t, respectively. η denotes the infection rate constant,
and ν represents number of free SARS-CoV-2 particles produced during the course of an average infected
cell’s life. The average lifetime of I is denoted by δI. Parameter δS stand for the clearance rate of viruses.
Several works are devoted for extending the model by dividing the infected cells into two populations,
latently infected cells and actively (productively) infected cells (see e.g., [13, 15, 18, 22, 36–38, 43]). Li et
al. [31] proposed SARS-CoV-2 infection by included the growth and decay of epithelial cells as:

Ė = δE(E(0) − E) − ηES, (1.4)
İ = ηES− δII, (1.5)
Ṡ = δIνI− δSS, (1.6)

where E(0) is the concentration of epithelial cells that are virus-free. The average lifetime of E is denoted
by δE.

Models (1.1)-(1.3) and (1.4)-(1.6) were expanded upon by taking into account the impact of immune
response [4, 11, 12, 14, 17, 22, 30, 34, 38], pharmacological therapy [1, 7, 10, 15] and time delay [12, 21].
When the CTL immune response is considered, model (1.4)-(1.6) becomes

Ė = λE − ηES− δEE,
İ = ηES− δII− γIU,
Ṡ = δIνI− δSS,
U̇ = Υ(I,U) − δUU,

where U = U(t) denotes the concentration of CTLs and λE = δEE(0). The responsiveness and death
rates of the CTLs are denoted by Υ(I,U) and δUU, respectively. The killing rate of infected cells by
CTLs is represented by γIU. The most forms of Υ(I,U) that were considered in the literature are (i) self-
regulating CTL, Υ(I,U) = ρ, [13]; (ii) linear CTL response, Υ(I,U) = ρI, [3]; (iii) predator-prey like CTL,
Υ(I,U) = ρIU, [14, 17]; and (iv) saturated CTL expansion, Υ(I,U) = ρI

I+µ , [34]. Here, ρ and µ denote the
responsiveness and half-saturation constant of CTL, respectively.
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These works mentioned above did not take into account the kinetics of the ACE2 receptor on epithelial
cells. The Middle East respiratory syndrome coronavirus (MERS-CoV) infection was modeled by the
authors of [40]-[25] to see how the dipeptidyl peptidase 4 (DPP4) receptor affects it. Chatterjee and Al
Basir [6] proposed a system of ODEs for SARS-CoV-2 infection with CTL response and ACE2 receptor. The
responsiveness of CTL was given by Υ(I,U) = ρIU

(
1 − U

Umax

)
, where Umax is the maximum concentration

of CTL. Lv and Ma [32] formulated a system of delay differential equations (DDEs) for SARS-CoV-2
infection mediated by ACE2 receptor as:

Ė = λE − ηΨ(A)ES− δEE, (1.7)
İ = e−α1τ1ηΨ(Aτ1)Eτ1Sτ1 − δII, (1.8)
Ṡ = δIνI− δSS, (1.9)
Ȧ = λA − κηΨ(A)AS− δAA, (1.10)

where (Eτ1 ,Sτ1 ,Aτ1) = (E(t− τ1),S(t− τ1),A(t− τ1)). The variable A = A(t) represents the concentration
of per unit volume of ACE2 receptors at time t. Ψ(A) represents the probability of successful entry of the
virion into the epithelial cell mediated by the receptor ACE2. When the concentration of the epithelial cell
receptor ACE2 is lower (higher), there are Ψ(A) ∼ 0(∼ 1) [32]. The term ηΨ(A)ES represents the reduction
rate of epithelial cells by SARS-CoV-2 and ACE2. Here, ηΨ(A)ES represents the decrease in uninfected
epithelial cells (due to free SARS-CoV-2 particles), and the average number of ACE2 receptors carried
by each uninfected epithelial cell is A/E. Therefore, the decrease in ACE2 receptors due to the decrease
in uninfected epithelial cells (caused by free virions) is κηΨ(A)ES = κηΨ(A)ES× (A/E) = κηΨ(A)AS,
where κ is a constant [32]. Here, τ1 represents the amount of time that has passed since SARS-CoV-2
particles had made contact with healthy epithelial cells before those cells become actively infected. The
likelihood that infected cells will survive throughout the delay period is e−α1τ1 . In [6], the reduction rates
of epithelial cells and ACE2 receptors were given by ηAES and κηAES, respectively.

One of the most effective approaches for giving researchers a better knowledge of the dynamical
behavior of the virus inside the host and the immune response is stability analysis of viral infection
models. Some recent research investigated the stability analysis of models depicting the dynamics of the
SARS-CoV-2 infection inside the host. Nath et al. [35] demonstrated the global stability of model (1.4)-
(1.6). Hattaf and Yousfi [17] extended model (1.4)-(1.6) by including cell-to-cell transmission and both
lytic and nonlytic CTL immune responses. They investigated the global stability of the model. A two-
dimensional SARS-CoV-2 infection model with immune response was proposed in [18], and Almocera et
al. [4] investigated its stability. Al-Darabsah et al. [3] investegated the stability of SARS-CoV-2 infection
model with CTL and general infection rate. Stability of SARS-CoV-2 dynamics models with both antibody
and CTL responses was examined in [12, 34]. Stability of SARS-CoV-2 infection models with antibody-
dependent enhancement were studied in [8, 39]. Chatterjee and Al Basir [6] studied the local stability of a
SARS-CoV-2 infection with ACE2 receptor and CTL response. The global stability of model is addressed
by Lv and Ma [32].

Model (1.7)-(1.10) ignores the immune system’s reaction, cells that are latently infected, and the de-
layed maturity of recently released virions. As a result, this article’s goal is to adjust and analyze model
(1.7)-(1.10) while taking into consideration the following aspects.

A1. CTL immune response, which act for killing the actively infected cells.

A2. Latently infected cells, which contain virions, but they are not released until the cells are activated.

A3. Three distributed-time delays; (i) delay in development of latently infected epithelial cells; (ii) delay
in the latently infected epithelium cells’ activation; and (iii) delay in the maturation of recently
released SARS-CoV-2 virions. In comparison to discrete-time delay, distributed-time delay is known
to be more universal. In this case, the time delay is taken as a random variable drawn from the
probability distribution function.
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We first examine the essential properties of the DDEs, find the model’s equilibria and discussing
their existence and global stability. We create suitable Lyapunov functions and employ LaSalle’s invari-
ance principle (LIP) to examine the global asymptotic stability of all equilibria. We show the theoretical
conclusions using numerical simulations. We wrap up by discussing the outcomes.

2. Model formulation

We propose the following SARS-CoV-2 infection model with ACE2 receptors, CTL response, latent
phase, and distributed-time delays:

Ė = λE − ηΨ(A)ES− δEE,
L̇ = η

∫h1
0 f1(τ)e

−α1τΨ(Aτ)EτSτdτ− (a+ δL)L,
İ = a

∫h2
0 f2(τ)e

−α2τLτdτ− δII− γIU,
Ṡ = δIν

∫h3
0 f3(τ)e

−α3τIτdτ− δSS,
Ȧ = λA − κηΨ(A)AS− δAA,
U̇ = ρIU− δUU,

(2.1)

where, (Eτ,Lτ, Iτ,Sτ,Aτ) = (E(t − τ),L(t − τ), I(t − τ),S(t − τ),A(t − τ)). The variables L = L(t) and
U = U(t) represent the concentrations of per unit volume of latently infected cells and CTLs at time t,
respectively. We take τ as a random variable from probability distributed function fi(τ), over the interval
[0,hi] , where hi is the limit superior of the delay period, i = 1, 2, 3. The likelihood that epithelial cells that
were uninfected when the SARS-CoV-2 made contact with them at time t− τ survived for τ time units
and acquired latent infection at time t is represented by f1(τ)e

−α1τ. The factor f2(τ)e
−α2τ represents the

likelihood that latently infected cells will survive throughout the interval [t− τ, t]. The likelihood that an
immature SARS-CoV-2 at time t− τ survives for τ time units to become a mature SARS-CoV-2 at time t
is represented by f3(τ)e

−α3τ. A schematic representation of the model in (2.1) is illustrated in Figure 1.

Figure 1: The schematic diagram of the SARS-CoV-2 infection with CTL immune response and intracel-
lular delay.

Functions fi(τ), i = 1, 2, 3, satisfy the following conditions:

fi(τ) > 0,
∫hi

0
fi(τ)dτ = 1,

∫hi
0
fi(τ)e

`τdτ <∞, where ` > 0.

Let χi(τ) = fi(τ)e−αiτ and ζi =
∫hi

0 χi(τ)dτ, thus 0 < ζi 6 1, i = 1, 2, 3. Usually function Ψ(A) is chosen
as the classic Hill function: Ψ(A) = An

Ans+A
n , where As is the half-saturation constant and n is the Hill

coefficient [5, 32]. The function Ψ(A) is continuously differentiable on [0,+∞) and strictly monotonically
increasing.

The initial conditions for model (2.1) are given by:

E(θ) = φ1(θ), L(θ) = φ2(θ), I(θ) = φ3(θ), S(θ) = φ4(θ),
A(θ) = φ5(θ), U(θ) = φ6(θ), φi(θ) > 0, i = 1, 2, . . . , 6, θ ∈ [−τ∗, 0],

(2.2)
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where, τ∗ = max{h1,h2,h3}, φi ∈ C([−τ∗, 0], R>0) and C is the Banach space of continuous functions
mapping from [−τ∗, 0] to R>0 with the norm ‖φi‖ = sup

−τ∗6θ60
|φi(θ)| for φi ∈ C, i = 1, 2, . . . , 6. We note

that system (2.1) with initial conditions (2.2) has a unique solution [29]. All parameters of model (2.1) are
positive.

3. Basic qualitative properties

This section proves the non-negativity and boundedness of the solutions of system (2.1).

Lemma 3.1. The solutions of model (2.1) with the initial states (2.2) are non-negative and ultimately bounded.

Proof. We have Ė |E=0= λE > 0, Ȧ |A=0= λA > 0 and U̇ |U=0= 0. Hence, E(t) > 0, A(t) > 0 and U(t) > 0,
for all t > 0. From second, third and fourth equations of system (2.1) we have

L(t) = e−(a+δL)tφ2(0) + η
∫t

0

∫h1

0
χ1(τ)Ψ(A(θ− τ))E(θ− τ)S(θ− τ)e

−(a+δL)(t−θ)dτdθ > 0,

I(t) = e−
∫t

0(δI+γU(r))drφ3(0) + a
∫t

0

∫h2

0
χ2(τ)L(θ− τ)e

−
∫t
θ(δI+γU(r))drdτdθ > 0,

S(t) = e−δStφ4(0) + δIν
∫t

0

∫h3

0
χ3(τ)I(θ− τ)e

−δS(t−θ)dτdθ > 0,

for all t ∈ [0, τ∗]. Hence, by recursive argumentation, we obtain that L(t), I(t),S(t) > 0 for all t > 0. Hence,
E,L, I,S,A, and U are non-negative. Now, we prove the ultimately boundedness E, L, I, S, A, and U. From
the first equation of system (2.1) we have, lim

t→∞ supE(t) 6 λE
δE

= ω1. To prove the ultimate boundedness of

L, we define

Π1 =

∫h1

0
χ1(τ)Eτdτ+ L.

Then, we obtain

Π̇1 =

∫h1

0
χ1(τ)Ėτdτ+ L̇

=

∫h1

0
χ1(τ){λE − ηΨ(Aτ)EτSτ − δEEτ}dτ+

∫h1

0
χ1(τ)ηΨ(Aτ)EτSτdτ− (a+ δL)L

= λE

∫h1

0
χ1(τ)dτ− δE

∫h1

0
χ1(τ)Eτdτ− (a+ δL)L

6 λEζ1 − p1

(∫h1

0
χ1(τ)Eτdτ+ L

)

6 λE − p1

(∫h1

0
χ1(τ)Eτdτ+ L

)
,

where, p1 = min{δE, (a+ δL)}, then
Π̇1 6 λE − p1Π1.

It follows that, lim
t→∞ supΠ1(t) 6

λE
p1

= ω2. Since E > 0 and L > 0, then lim
t→∞ supL(t) 6 ω2. Now we define

Π2 = I+
γ

ρ
U.

Then, we obtain

Π̇2 = İ+
γ

ρ
U̇ = a

∫h2

0
χ2(τ)Lτdτ− δII− γIU+

γ

ρ
(ρIU− δUU)
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= a

∫h2

0
χ2(τ)Lτdτ− δII−

γδU
ρ
U

6 aω2ζ2 − p2

(
I+

γ

ρ
U

)
6 aω2 − p2

(
I+

γ

ρ
U

)
,

where, p2 = min{δI, δU}, then
Π̇2 6 aω2 − p2Π2.

Hence, lim
t→∞ supΠ2(t) 6

aω2
p2

= ω3. Since I > 0 and U > 0, then lim
t→∞ sup I(t) 6 ω3 and lim

t→∞ supU(t) 6
ρ
γω3 = ω6. From the fourth equation we have

Ṡ = δIν

∫h3

0
f3(τ)e

−α3τIτdτ− δSS 6 δIνζ3ω3 − δSS 6 δIνω3 − δSS.

Therefore, lim
t→∞ supS(t) 6 δIνω3

δS
= ω4. Finally, from fifth equation of system (2.1) we have, lim

t→∞ supA(t) 6
λA
δA

= ω5.

Based on Lemma 3.1, one can show that

Γ =
{
(E,L, I,S,A,U) ∈ C6

>0 : ‖E‖ 6 ω1, ‖L‖ 6 ω2, ‖I‖ 6 ω3, ‖S‖ 6 ω4, ‖A‖ 6 ω5, ‖U‖ 6 ω6
}

is positively invariant for system (2.1).

4. Equilibria and thresholds

This section identifies all of the model (2.1) equilibria as well as the threshold parameters that guar-
antee their existence. First, by applying the next-generation matrix approach [42], we compute the funda-
mental infection reproduction number <0 for system (2.1). We define the matrices F and V as follows:

F =

 0 0 ηζ1Ψ(A0)E0
0 0 0
0 0 0

 , V =

 a+ δL 0 0
−aζ2 δI 0

0 −ζ3δIν δS

 ,

where E0 = λE/δE and A0 = λA/δA. Then, <0 can be derived as the spectral radius of FV−1, as

<0 =
ηaνζ1ζ2ζ3Ψ(A0)E0

(a+ δL)δS
.

A second step is to define ∆ = (E,L, I,S,A,U) as any equilibrium of system (2.1) that may be solved by
the set of nonlinear equations that follows:

0 = λE − ηΨ(A)ES− δEE, (4.1)
0 = ηζ1Ψ(A)ES− (a+ δL)L, (4.2)
0 = aζ2L− δII− γIU, (4.3)
0 = δIνζ3I− δSS, (4.4)
0 = λA − κηΨ(A)SA− δAA, (4.5)
0 = ρIU− δUU. (4.6)

Eq. (4.6) has two solutions, U = 0 and I = δU
ρ . When U = 0, then from Eq. (4.3) we get

δII = aζ2L. (4.7)
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Substituting Eq. (4.7) into Eq. (4.4), we get

L =
δS

aνζ2ζ3
S. (4.8)

Substituting Eq. (4.8) into Eq. (4.2), we get[
ηζ1Ψ(A)E−

(a+ δL)δS
νaζ2ζ3

]
S = 0,

and then we have

S = 0, or ηζ1Ψ(A)E−
(a+ δL)δS
νaζ2ζ3

= 0.

If S = 0, then from Eqs. (4.1), (4.2), (4.3), and (4.5), we have E = λE/δE, L = 0, I = 0, and A = λA/δA.
Then, we obtain the uninfected equilibrium ∆0 = (E0, 0, 0, 0,A0, 0). If S 6= 0, then L 6= 0 and

ηζ1Ψ(A)E =
(a+ δL)δS
νaζ2ζ3

.

Therefore, we obtain

E =
λE − (a+ δL)ζ

−1
1 L

δE
, S =

νaζ2ζ3

δS
L, I =

aζ2

δI
L, and A =

λA

δA + κζ−1
1 (a+ δL)L/E

. (4.9)

Substituting Eq. (4.9) into Eq. (4.2), we have

ηζ1Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)(
λE − (a+ δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

δS
L

)
− (a+ δL)L = 0.

Since L 6= 0, then

ηζ1Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)(
λE − (a+ δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

δS

)
− (a+ δL) = 0.

We define a function G(L) as:

G(L) = ηζ1Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)(
λE − (a+ δL)ζ

−1
1 L

δE

)(
νaζ2ζ3

(a+ δL)δS

)
− 1 = 0.

We have

G(0) =
ηνaζ1ζ2ζ3

(a+ δL)δS
Ψ

(
λA
δA

)(
λE
δE

)
− 1 = <0 − 1 > 0, if <0 > 1, lim

L→ λEζ1
a+δL

G(L) = −1 < 0,

and

d

dL

[
Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)]
= −

κ(a+ δL)δEλAλEζ
−1
1

[δAλE + (a+ δL)ζ
−1
1 L(κδE − δA)]2

ΨL

(
λA

δA + κζ−1
1 (a+ δL)L/E

)
= Θ < 0.

So, we have

dG(L)

dL
=
ηνaζ1ζ2ζ3

(a+ δL)δS

(
λE − (a+ δL)ζ

−1
1 L

δE

)
Θ−

ηνaζ2ζ3

δSδE
Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)
< 0.
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Then, there exists a unique L1 ∈
(

0, λEζ1
a+δL

)
such that G(L1) = 0.

Therefore, there exists a unique infected equilibrium without CTL response ∆1 = (E1,L1, I1,S1,A1, 0)
when <0 > 1, where

E1 =
λE − (a+ δL)ζ

−1
1 L1

δE
∈
(

0,
λE
δE

)
, I1 =

aζ2

δI
L1 ∈

(
0,
aλEζ1ζ2

(a+ δL)δI

)
,

S1 =
νaζ2ζ3

δS
L1 ∈

(
0,
νaλEζ1ζ2ζ3

(a+ δL)δS

)
, A1 =

λA

δA + κζ−1
1 (a+ δL)L1/E1

∈
(

0,
λA
δA

)
.

If U 6= 0 and I = δU
ρ , therefore, we obtain

E =
λE − (a+ δL)ζ

−1
1 L

δE
, S =

νζ3δIδU
ρδS

, A =
λA

δA + κζ−1
1 (a+ δL)L/E

, and U =
δI
γ

(
aρζ2

δIδU
L− 1

)
. (4.10)

Substituting Eq. (4.10) into Eq. (4.2), we obtain

νηζ1ζ3δIδU
ρδS

Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)(
λE − (a+ δL)ζ

−1
1 L

δE

)
− (a+ δL)L = 0.

Define a function G∗(L) as:

G∗(L) =
νηζ1ζ3δIδU

ρδS
Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)(
λE − (a+ δL)ζ

−1
1 L

δE

)
− (a+ δL)L.

We have

G∗(0) =
νηζ1ζ3δIδU

ρδS
Ψ

(
λA
δA

)(
λE
δE

)
> 0, lim

L→ λEζ1
a+δL

G∗(L) = −λEζ1 < 0.

Moreover,

d

dL

[
Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)]
= −

κ(a+ δL)δEλAλEζ
−1
1

[δAλE + (a+ δL)ζ
−1
1 L(κδE − δA)]2

ΨL

(
λA

δA + κζ−1
1 (a+ δL)L/E

)
= Θ∗ < 0.

So, we have

dG∗(L)

dL
= Θ∗

νηζ1ζ3δIδU
ρδS

(
λE − (a+ δL)ζ

−1
1 L

δE

)
−

(
νηζ3δIδU(a+ δL)

ρδSδE

)
Ψ

(
λA

δA + κζ−1
1 (a+ δL)L/E

)
− (a+ δL) < 0.

Then, there exists a unique L2 ∈
(

0, λEζ1
a+δL

)
such that G∗(L2) = 0. It follows that, there exists a unique in-

fected equilibrium with CTL response ∆2 = (E2,L2, I2,S2,A2,U2), when <1 > 1, where E2 =
λE−(a+δL)ζ

−1
1 L2

δE

∈
(

0, λEδE

)
, I2 = δU

ρ , S2 = νζ3δIδU
ρδS

, A2 = λA
δA+κζ

−1
1 (a+δL)L2/E2

∈
(

0, λAδA

)
, and U2 = δI

γ
(<1 − 1), where

<1 =
aρζ2

δIδU
L2.

Here, <1 represents the CTL response activation number.
We have Ψ(A2) < Ψ(A0) and E2 < E0. Therefore

<1 =
aρζ2L2

δIδU
=
aρζ2

δIδU

ζ1ηΨ(A2)E2S2

a+ δL
=
νaζ1ζ2ζ3ηΨ(A2)E2

δS(a+ δL)
<
νaζ1ζ2ζ3ηΨ(A0)E0

δS(a+ δL)
= <0.

Now we can state the following lemma.
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Lemma 4.1. For system (2.1), there exist two threshold parameters <0 and <1 such that

(i) if <0 6 1, then the uninfected equilibrium ∆0 = (E0, 0, 0, 0,A0, 0) is the unique equilibrium;
(ii) if <1 6 1 < <0, then there exists two equilibria ∆0 and infected equilibrium without CTL response ∆1 =

(E1,L1, I1,S1,A1, 0);
(iii) if <1 > 1, then there exist three equilibria ∆0, ∆1, and infected equilibrium with CTL response ∆2 =

(E2,L2, I2,S2,A2,U2).

5. Global stability

This section formulates Lyapunov function and uses LIP to study the global asymptotic stability of
equilibria. We follow the method presented in [19, 28]. We define a function Φ(x) = x− 1 − ln x. Clearly,
Φ(1) = 0 and Φ(x) > 0 for x > 0. Let Ω̃j be the largest invariant subset of

Ωj = {(E,L, I,S,A,U) :
dΛj

dt
= 0}, j = 0, 1, 2,

where, Λj(E,L, I,S,A,U) is a Lyapunov function candidate.
The following result indicates that, given all initial conditions, SARS-CoV-2 infection is likely to vanish

when <0 6 1.

Theorem 5.1. Consider system (2.1) and suppose that <0 6 1, then ∆0 is globally asymptotically stable (G.A.S)
and it is unstable when <0 > 1.

Proof. Define

Λ0 = ζ1E0Φ

(
E

E0

)
+ L+

a+ δL
aζ2

I+
a+ δL
aνζ2ζ3

S+
ζ1E0

κA0

(
A−A0 −

∫A(t)

A0

Ψ(A0)

Ψ(ξ)
dξ

)

+
γ(a+ δL)

aρζ2
U+ η

∫h1

0
χ1(τ)

∫t
t−τ

Ψ(A(s))E(s)S(s)dsdτ

+
a+ δL
ζ2

∫h2

0
χ2(τ)

∫t
t−τ

L(s)dsdτ+
δI(a+ δL)

aζ2ζ3

∫h3

0
χ3(τ)

∫t
t−τ

I(s)dsdτ.

Clearly, Λ0(E,L, I,S,A,U) > 0 for all E,L, I,S,A,U > 0 and Λ0(E0, 0, 0, 0,A0, 0) = 0. We calculate dΛ0
dt

along the solutions of model (2.1) as:

dΛ0

dt
= ζ1

(
1 −

E0

E

)
Ė+ L̇+

a+ δL
aζ2

İ+
a+ δL
aνζ2ζ3

Ṡ+
ζ1E0

κA0

(
1 −

Ψ(A0)

Ψ(A)

)
Ȧ

+
γ(a+ δL)

aρζ2
U̇+ η

d

dt

∫h1

0
χ1(τ)

∫t
t−τ

Ψ(A(s))E(s)S(s)dsdτ

+
a+ δL
ζ2

d

dt

∫h2

0
χ2(τ)

∫t
t−τ

L(s)dsdτ+
δI(a+ δL)

aζ2ζ3

d

dt

∫h3

0
χ3(τ)

∫t
t−τ

I(s)dsdτ.

Using system (2.1) we get

dΛ0

dt
= ζ1

(
1 −

E0

E

)
[λE − ηΨ(A)ES− δEE] + η

∫h1

0
χ1(τ)Ψ(Aτ)EτSτdτ− (a+ δL)L

+
a+ δL
aζ2

[
a

∫h2

0
χ2(τ)Lτdτ− δII− γIU

]
+
a+ δL
aνζ2ζ3

[
δIν

∫h3

0
χ3(τ)Iτdτ− δSS

]

+
ζ1E0

κA0

(
1 −

Ψ(A0)

Ψ(A)

)
[λA − κηΨ(A)SA− δAA] +

γ(a+ δL)

aρζ2
[ρIU− δUU]
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+ η

∫h1

0
χ1(τ) [Ψ(A)ES−Ψ(Aτ)EτSτ]dτ

+
a+ δL
ζ2

∫h2

0
χ2(τ)[L− Lτ]dτ+

δI(a+ δL)

aζ2ζ3

∫h3

0
χ3(τ)[I− Iτ]dτ.

Collecting terms we get

dΛ0

dt
= ζ1

(
1 −

E0

E

)
[λE − δEE] + ηζ1Ψ(A)E0S−

a+ δL
aνζ2ζ3

δSS+ ηζ1Ψ(A0)E0S− ηζ1Ψ(A0)E0S

+
ζ1E0

κA0

(
1 −

Ψ(A0)

Ψ(A)

)
[λA − δAA] −

ζ1E0

A0
(Ψ(A) −Ψ(A0))ηSA−

γ(a+ δL)δU
aρζ2

U

= ζ1

(
E− E0

E

)
[λE − δEE] +

(
ηζ1Ψ(A0)E0 −

(a+ δL)δS
aνζ2ζ3

)
S+ ηζ1E0S(Ψ(A) −Ψ(A0))

+
ζ1E0

κA0Ψ(A)
(Ψ(A) −Ψ(A0)) [λA − δAA] −

ζ1E0

A0
(Ψ(A) −Ψ(A0))ηSA−

γ(a+ δL)δU
aρζ2

U.

Using the equilibrium condition λE = δEE0 and λA = δAA0, we get:

dΛ0

dt
= −ζ1δE

(E− E0)
2

E
+

(a+ δL)δS
aνζ2ζ3

(
aνζ1ζ2ζ3ηΨ(A0)E0

(a+ δL)δS
− 1
)
S

+ ηζ1E0S(Ψ(A) −Ψ(A0))
A0

A0
+
ζ1δAE0

κA0Ψ(A)
(Ψ(A) −Ψ(A0)) (A0 −A)

−
ηζ1E0

A0
S (Ψ(A) −Ψ(A0))A−

γ(a+ δL)δU
aρζ2

U

= −ζ1δE
(E− E0)

2

E
+

(a+ δL)δS
aνζ2ζ3

(<0 − 1)S

+

(
ηζ1E0S

A0
+
ζ1δAE0

κA0Ψ(A)

)
(Ψ(A) −Ψ(A0)) (A0 −A) −

γ(a+ δL)δU
aρζ2

U.

Since <0 6 1 and (Ψ(A) −Ψ(A0)) (A0 −A) 6 0, then dΛ0
dt 6 0 for all E,S,A,U > 0. In addition dΛ0

dt = 0
when E = E0, A = A0 and S = U = 0. Solutions of system (2.1) converge to Ω̃0, where E = E0, A = A0,
and S = U = 0, [16]. Thus, Ṡ = 0, the fourth equation of system (2.1) gives

0 = Ṡ = δIν

∫h3

0
χ3(τ)Iτdτ =⇒ I = 0, for all t.

Since I = 0, then İ = 0 and from the third equation of system (2.1) we have:

0 = İ = a

∫h2

0
χ2(τ)Lτdτ =⇒ L = 0, for all t.

Therefore, Ω̃0 = {∆0} and applying LIP [26], we obtain that ∆0 is G.A.S.
To show that instability of ∆0 we calculate the characteristic equation of system (2.1) at ∆0 as:

0 = (c+ δE)(c+ δU)
[
c4 + (a+ δL + δI + δS + δA)c

3 + [(a+ δL)(δI + δS + δA) + δSδA + δI(δS + δA)]c
2

+(δIδSδA − ηaζ̄1ζ̄2ζ̄3δIνΨ(A0)E0)c+ (a+ δL)δIδSδA − ηaζ̄1ζ̄2ζ̄3δIνδAΨ(A0)E0
]

.

Define a function where T(c) as:

T(c) = c4 + (a+ δL + δI + δS + δA)c
3 + [(a+ δL)(δI + δS + δA) + δSδA + δI(δS + δA)]c

2

+ (δIδSδA − ηaζ̄1ζ̄2ζ̄3δIνΨ(A0)E0)c+ (a+ δL)δIδSδA − ηaζ̄1ζ̄2ζ̄3δIνδAΨ(A0)E0,
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where ζ̄i =
∫hi

0 fi(τ)e
−(c+αi)τdτ, i = 1, 2, 3, which is continuous on [0,∞). We have

T(0) = (a+ δL)δIδSδA(1 −<0) < 0, when <0 > 1, lim
c→∞T(c) =∞.

Hence, T(c) has a positive real root and thus ∆0 is unstable.
In order to validate the dynamics of ∆1 results, we need to make an additional hypothesis [44]:

I1 6
δU
ρ

. (H)

The following result suggests that when <1 6 1 < <0 and I1 6 δU
ρ , the SARSCoV-2 infection is always

formed without a CTL immunological response, independent of the initial conditions.

Theorem 5.2. Suppose that hypothesis (H) is satisfied and <1 6 1 < <0, then ∆1 is G.A.S.

Proof. Define Λ1 as:

Λ1 = ζ1E1Φ

(
E

E1

)
+ L1Φ

(
L

L1

)
+
a+ δL
aζ2

I1Φ

(
I

I1

)
+
a+ δL
aνζ2ζ3

S1Φ

(
S

S1

)
+
ζ1E1

κA1

(
A−A1 −

∫A
A1

Ψ(A1)

Ψ(ξ)
dξ

)
+
γ(a+ δL)

ρaζ2
U

+ ηΨ(A1)E1S1

∫h1

0
χ1(τ)

∫t
t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A1)E1S1

)
dsdτ

+
a+ δL
ζ2

L1

∫h2

0
χ2(τ)

∫t
t−τ

Φ

(
L(s)

L1

)
dsdτ+

(a+ δL)δI
aζ2ζ3

I1

∫h3

0
χ3(τ)

∫t
t−τ

Φ

(
I(s)

I1

)
dsdτ.

We note that, Λ1(E,L, I,S,A,U) > 0 for all E,L, I,S,A,U > 0 and Λ1(E1,L1, I1,S1,A1, 0) = 0. Calculate dΛ1
dt

as

dΛ1

dt
= ζ1

(
1 −

E1

E

)
Ė+

(
1 −

L1

L

)
L̇+

a+ δL
aζ2

(
1 −

I1
I

)
İ

+
a+ δL
aνζ2ζ3

(
1 −

S1

S

)
Ṡ+

ζ1E1

κA1

(
1 −

Ψ(A1)

Ψ(A)

)
Ȧ+

γ(a+ δL)

ρaζ2
U̇

+ ηΨ(A1)E1S1
d

dt

∫h1

0
χ1(τ)

∫t
t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A1)E1S1

)
dsdτ

+
a+ δL
ζ2

L1
d

dt

∫h2

0
χ2(τ)

∫t
t−τ

Φ

(
L(s)

L1

)
dsdτ+

(a+ δL)δI
aζ2ζ3

I1
d

dt

∫h3

0
χ3(τ)

∫t
t−τ

Φ

(
I(s)

I1

)
dsdτ.

Using system (2.1) we get

dΛ1

dt
= ζ1

(
1 −

E1

E

)
[λE − ηΨ(A)ES− δEE] +

(
1 −

L1

L

)[
η

∫h1

0
χ1(τ)Ψ(Aτ)EτSτdτ− (a+ δL)L

]

+
a+ δL
aζ2

(
1 −

I1
I

)[
a

∫h2

0
χ2(τ)Lτdτ− δII− γIU

]
+
a+ δL
aνζ2ζ3

(
1 −

S1

S

)[
δIν

∫h3

0
χ3(τ)Iτdτ− δSS

]

+
ζ1E1

κA1

(
1 −

Ψ(A1)

Ψ(A)

)
[λA − κηΨ(A)SA− δAA] +

γ(a+ δL)

ρaζ2
[ρIU− δUU]

+ ηΨ(A1)E1S1

∫h1

0
χ1(τ)

[
Ψ(A)ES

Ψ(A1)E1S1
−
Ψ(Aτ)EτSτ
Ψ(A1)E1S1

ln
(
Ψ(Aτ)EτSτ
Ψ(A)ES

)]
dτ
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+
a+ δL
ζ2

L1

∫h2

0
χ2(τ)

[
L

L1
−
Lτ

L1
+ ln

(
Lτ

L

)]
dτ+

(a+ δL)δI
aζ2ζ3

I1

∫h3

0
χ3(τ)

[
I

I1
−
Iτ

I1
+ ln

(
Iτ

I

)]
dτ.

Collecting terms we get

dΛ1

dt
= ζ1

(
1 −

E1

E

)
[λE − δEE] + ζ1ηΨ(A)E1S− η

∫h1

0
χ1(τ)Ψ(Aτ)EτSτ

L1

L
dτ+ (a+ δL)L1

−
a+ δL
ζ2

∫h2

0
χ2(τ)Lτ

I1
I
dτ+

a+ δL
aζ2

δII1 +
a+ δL
aζ2

γI1U−
a+ δL
aνζ2ζ3

δSS−
a+ δL
aζ2ζ3

δI

∫h3

0
χ3(τ)Iτ

S1

S
dτ

+
a+ δL
aνζ2ζ3

δSS1 +
ζ1E1

κA1

(
1 −

Ψ(A1)

Ψ(A)

)
[λA − δAA] −

ζ1E1

A1
ηSA (Ψ(A) −Ψ(A1)) −

γ(a+ δL)δU
ρaζ2

U

+ ηΨ(A1)E1S1

∫h1

0
χ1(τ) ln

(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ

+
a+ δL
ζ2

L1

∫h2

0
χ2(τ) ln

(
Lτ

L

)
dτ+

(a+ δL)δI
aζ2ζ3

I1

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.

Using the equilibrium condition for ∆1:

λE = ηΨ(A1)E1S1 + δEE1, (a+ δL)L1 = ηζ1Ψ(A1)E1S1,
δII1 = aζ2L1, δSS1 = δIνζ3I1, λA = κηΨ(A1)S1A1 + δAA1,

we obtain

dΛ1

dt
= −ζ1δE

(E− E1)
2

E
+ 5(a+ δL)L1 − (a+ δL)L1

E1

E
+ ζ1ηΨ(A)E1S

−
a+ δL
ζ1

L1

∫h1

0
χ1(τ)

Ψ(Aτ)EτSτL1

Ψ(A1)E1S1L
dτ−

a+ δL
ζ2

L1

∫h2

0
χ2(τ)

LτI1
L1I

dτ

− ζ1ηΨ(A1)E1S−
a+ δL
ζ3

L1

∫h3

0
χ3(τ)

IτS1

I1S
dτ+

(
(a+ δL)γ

aζ2
I1 −

(a+ δL)γδU
aρζ2

)
U

+
ζ1δAE1

κA1Ψ(A)
(Ψ(A) −Ψ(A1)) (A1 −A) − (a+ δL)L1

Ψ(A1)

Ψ(A)

−
ηζ1E1

A1
(Ψ(A) −Ψ(A1))SA+

a+ δL
ζ1

L1

∫h1

0
χ1(τ) ln

(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ

+
a+ δL
ζ2

L1

∫h2

0
χ2(τ) ln

(
Lτ

L

)
dτ+

a+ δL
ζ3

L1

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ

= −ζ1δE
(E− E1)

2

E
+ 5(a+ δL)L1 − (a+ δL)L1

E1

E
+ ηζ1E1S(Ψ(A) −Ψ(A1))

−
a+ δL
ζ1

L1

∫h1

0
χ1(τ)

Ψ(Aτ)EτSτL1

Ψ(A1)E1S1L
dτ−

a+ δL
ζ2

L1

∫h2

0
χ2(τ)

LτI1
L1I

dτ

−
a+ δL
ζ3

L1

∫h3

0
χ3(τ)

IτS1

I1S
dτ+

(a+ δL)γ

aζ2

(
I1 −

δU
ρ

)
U

+
ζ1δAE1

κA1Ψ(A)
(Ψ(A) −Ψ(A1)) (A1 −A) − (a+ δL)L1

Ψ(A1)

Ψ(A)

−
ηζ1E1

A1
(Ψ(A) −Ψ(A1))SA+

a+ δL
ζ1

L1

∫h1

0
χ1(τ) ln

(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ

+
a+ δL
ζ2

L1

∫h2

0
χ2(τ) ln

(
Lτ

L

)
dτ+

a+ δL
ζ3

L1

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.
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Using equalities

ln
(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
= ln

(
Ψ(Aτ)EτSτL1

Ψ(A1)E1S1L

)
+ ln

(
Ψ(A1)

Ψ(A)

)
+ ln

(
LS1

L1S

)
+ ln

(
E1

E

)
,

ln
(
Lτ

L

)
= ln

(
LτI1
L1I

)
+ ln

(
L1I

LI1

)
,

ln
(
Iτ

I

)
= ln

(
IτS1

I1S

)
+ ln

(
I1S

IS1

)
,

we obtain

dΛ1

dt
= −ζ1δE

(E− E1)
2

E
− (a+ δL)L1

[
Φ

(
E1

E

)
+

1
ζ1

∫h1

0
χ1(τ)Φ

(
Ψ(Aτ)EτSτL1

Ψ(A1)E1S1L

)
dτ

+
1
ζ2

∫h2

0
χ2(τ)Φ

(
LτI1
L1I

)
dτ+

1
ζ3

∫h3

0
χ3(τ)Φ

(
IτS1

I1S

)
dτ+Φ

(
Ψ(A1)

Ψ(A)

)]

+
(a+ δL)γ

aζ2

(
I1 −

δU
ρ

)
U+

[
ζ1δAE1

κA1Ψ(A)
+
ηζ1E1S

A1

]
(Ψ(A) −Ψ(A1))(A1 −A).

We have (Ψ(A) −Ψ(A1))(A1 −A) 6 0 and from hypothesis (H) we have I1 − δU
ρ 6 0, then dΛ1

dt 6 0 for all
E,L, I,S,A,U > 0. In addition, dΛ1

dt = 0 when E = E1, A = A1, U = 0, and

LτI1
L1I

=
IτS1

I1S
=
Ψ(Aτ)EτSτL1

Ψ(A1)E1S1L
= 1, for almost τ ∈ [0, τ∗]. (5.1)

Solutions of model (2.1) are attracted to Ω̃1. Since Ω̃1 is invariant w.r.t (2.1), on Ω̃1, we have

0 = Ė = λE − ηΨ(A1)E1S− δEE1 =⇒ S(t) = S1, for any t,

and from Eq. (5.1) we get I(t) = Iτ = I1 and L(t) = Lτ = L1 for any t. Therefore, Ω̃1 = {∆1} and applying
LIP, we obtain that ∆1 is G.A.S.

The following finding suggests that when <1 > 1, the SARS-CoV-2 infection is always formed with a
CTL immunological response, independent of the initial conditions.

Theorem 5.3. For system (2.1), let <1 > 1, then ∆2 is G.A.S.

Proof. Consider

Λ2 = ζ1E2Φ

(
E

E2

)
+ L2Φ

(
L

L2

)
+
a+ δL
aζ2

I2Φ

(
I

I2

)
+

(
a+ δL
aνζ2ζ3

+
γ(a+ δL)U2

aνζ2ζ3δI

)
S2Φ

(
S

S2

)
+
ζ1E2

κA2

(
A−A2 −

∫A
A2

Ψ(A2)

Ψ(ξ)
dξ

)

+
γ(a+ δL)

ρaζ2
U2Φ

(
U

U2

)
+ ηΨ(A2)E2S2

∫h1

0
χ1(τ)

∫t
t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A2)E2S2

)
dsdτ

+
a+ δL
ζ2

L2

∫h2

0
χ2(τ)

∫t
t−τ

Φ

(
L(s)

L2

)
dsdτ+

(
(a+ δL)δI
aζ2ζ3

+
γ(a+ δL)U2

aζ2ζ3

)
I2

×
∫h3

0
χ3(τ)

∫t
t−τ

Φ

(
I(s)

I2

)
dsdτ.
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We note that, Λ2(E,L, I,S,A,U) > 0 for all E,L, I,S,A,U > 0 and Λ2(E2,L2, I2,S2,A2,U2) = 0. We calculate
dΛ2
dt as:

dΛ2

dt
= ζ1

(
1 −

E2

E

)
Ė+

(
1 −

L2

L

)
L̇+

a+ δL
aζ2

(
1 −

I2

I

)
İ

+

(
a+ δL
aνζ2ζ3

+
γ(a+ δL)U2

aνζ2ζ3δI

)(
1 −

S2

S

)
Ṡ+

ζ1E2

κA2

(
1 −

Ψ(A2)

Ψ(A)

)
Ȧ

+
γ(a+ δL)

ρaζ2

(
1 −

U2

U

)
U̇+ ηΨ(A2)E2S2

d

dt

∫h1

0
χ1(τ)

×
∫t
t−τ

Φ

(
Ψ(A(s))E(s)S(s)

Ψ(A2)E2S2

)
dsdτ+

a+ δL
ζ2

L2
d

dt

∫h2

0
χ2(τ)

∫t
t−τ

Φ

(
L(s)

L2

)
dsdτ

+

(
(a+ δL)δI
aζ2ζ3

+
γ(a+ δL)U2

aζ2ζ3

)
I2
d

dt

∫h3

0
χ3(τ)

∫t
t−τ

Φ

(
I(s)

I2

)
dsdτ.

From system (2.1) we get

dΛ2

dt
= ζ1

(
1 −

E2

E

)
[λE − ηΨ(A)ES− δEE] +

(
1 −

L2

L

)[
η

∫h1

0
χ1(τ)Ψ(Aτ)EτSτdτ− (a+ δL)L

]

+
a+ δL
aζ2

(
1 −

I2

I

)[
a

∫h2

0
χ2(τ)Lτdτ− δII− γUI

]

+

(
a+ δL
aνζ2ζ3

+
γ(a+ δL)U2

aνζ2ζ3δI

)(
1 −

S2

S

)[
δIν

∫h3

0
χ3(τ)Iτdτ− δSS

]

+
ζ1E2

κA2

(
1 −

Ψ(A2)

Ψ(A)

)
[λA − κηΨ(A)SA− δAA]

+
γ(a+ δL)

ρaζ2

(
1 −

U2

U

)
[ρIU− δUU] + ηΨ(A2)E2S2

∫h1

0
χ1(τ)

[
Ψ(A)ES

Ψ(A2)E2S2

−
Ψ(Aτ)EτSτ
Ψ(A2)E2S2

+ ln
(
Ψ(Aτ)EτSτ
Ψ(A)ES

)]
dτ+

a+ δL
ζ2

L2

∫h2

0
χ2(τ)

[
L

L2
−
Lτ

L2
+ ln

(
Lτ

L

)]
dτ

+

(
(a+ δL)δI
aζ2ζ3

+
γ(a+ δL)U2

aζ2ζ3

)
I2

∫h3

0
χ3(τ)

[
I

I2
−
Iτ

I2
+ ln

(
Iτ

I

)]
dτ.

Collecting terms we get

dΛ2

dt
= ζ1

(
1 −

E2

E

)
[λE − δEE] + ηζ1Ψ(A)E2S− η

∫h1

0
χ1(τ)Ψ(Aτ)EτSτ

L2

L
dτ+ (a+ δL)L2

−
a+ δL
ζ2

∫h2

0
χ2(τ)Lτ

I2

I
dτ+

(a+ δL)δI
aζ2

I2 +
γ(a+ δL)

aζ2
I2U

−

(
a+ δL
aνζ2ζ3

+
γ(a+ δL)U2

aνζ2ζ3δI

)
δSS−

(
(a+ δL)δI
aζ2ζ3

+
γ(a+ δL)U2

aζ2ζ3

) ∫h3

0
χ3(τ)Iτ

S2

S
dτ

+

(
a+ δL
aνζ2ζ3

+
γ(a+ δL)U2

aνζ2ζ3δI

)
δSS2 +

ζ1E2

κA2

(
1 −

Ψ(A2)

Ψ(A)

)
[λA − δAA]

−
ζ1E2

A2
(Ψ(A) −Ψ(A2))ηSA−

γ(a+ δL)

ρaζ2
δUU+

γ(a+ δL)δU
ρaζ2

U2

+ ηΨ(A2)E2S2

∫h1

0
χ1(τ) ln

(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ+

a+ δL
ζ2

L2

∫h2

0
χ2(τ)

× ln
(
Lτ

L

)
dτ+

(
(a+ δL)δI
aζ2ζ3

+
γ(a+ δL)U2

aζ2ζ3

)
I2

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.
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Using the equilibrium condition for ∆2:

λE = ηΨ(A2)E2S2 + δEE2, (a+ δL)L2 = ηζ1Ψ(A2)E2S2,

aζ2L2 = δII2 + γI2U2, δSS2 = δIνζ3I2, λA = κηΨ(A2)S2A2 + δAA2, I2 =
δU
ρ

,

we obtain

dΛ2

dt
= −δEζ1

(E− E2)
2

E
+ 5(a+ δL)L2 − (a+ δL)L2

E2

E
+ ζ1ηΨ(A)E2S

−
a+ δL
ζ1

L2

∫h1

0
χ1(τ)

Ψ(Aτ)EτSτL2

Ψ(A2)E2S2L
dτ−

a+ δL
ζ2

L2

∫h2

0
χ2(τ)

LτI2

L2I
dτ

− ηζ1Ψ(A2)E2S−
a+ δL
ζ3

L2

∫h3

0
χ3(τ)

IτS2

I2S
dτ+

ζ1δAE2

κA2Ψ(A)
(Ψ(A) −Ψ(A2)) (A2 −A)

− (a+ δL)L2
Ψ(A2)

Ψ(A)
−
ζ1E2

A2
ηSA (Ψ(A) −Ψ(A2))

+
a+ δL
ζ1

L2

∫h1

0
χ1(τ) ln

(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ+

a+ δL
ζ2

L2

∫h2

0
χ2(τ) ln

(
Lτ

L

)
dτ

+
a+ δL
ζ3

L2

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ

= −δEζ1
(E− E2)

2

E
+ 5(a+ δL)L2 − (a+ δL)L2

E2

E
+ ζ1ηE2S(Ψ(A) −Ψ(A2))

−
a+ δL
ζ1

L2

∫h1

0
χ1(τ)

Ψ(Aτ)EτSτL2

Ψ(A2)E2S2L
dτ−

a+ δL
ζ2

L2

∫h2

0
χ2(τ)

LτI2

L2I
dτ

−
a+ δL
ζ3

L2

∫h3

0
χ3(τ)

IτS2

I2S
dτ+

ζ1δAE2

κA2Ψ(A)
(Ψ(A) −Ψ(A2)) (A2 −A)

− (a+ δL)L2
Ψ(A2)

Ψ(A)
−
ζ1E2

A2
ηSA (Ψ(A) −Ψ(A2)) +

a+ δL
ζ1

L2

∫h1

0
χ1(τ)

× ln
(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
dτ+

a+ δL
ζ2

L2

∫h2

0
χ2(τ) ln

(
Lτ

L

)
dτ+

a+ δL
ζ3

L2

∫h3

0
χ3(τ) ln

(
Iτ

I

)
dτ.

Using equalities

ln
(
Ψ(Aτ)EτSτ
Ψ(A)ES

)
= ln

(
Ψ(Aτ)EτSτL2

Ψ(A2)E2S2L

)
+ ln

(
Ψ(A2)

Ψ(A)

)
+ ln

(
LS2

L2S

)
+ ln

(
E2

E

)
,

ln
(
Lτ

L

)
= ln

(
LτI2

L2I

)
+ ln

(
L2I

LI2

)
,

ln
(
Iτ

I

)
= ln

(
IτS2

I2S

)
+ ln

(
I2S

IS2

)
,

we obtain

dΛ2

dt
= −δEζ1

(E− E2)
2

E
− (a+ δL)L2

[
Φ

(
E2

E

)
+

1
ζ1

∫h1

0
χ1(τ)Φ

(
Ψ(Aτ)EτSτL2

Ψ(A2)E2S2L

)
dτ

+
1
ζ2

∫h2

0
χ2(τ)Φ

(
LτI2

L2I

)
dτ+

1
ζ3

∫h3

0
χ3(τ)Φ

(
IτS2

I2S

)
dτ+Φ

(
Ψ(A2)

Ψ(A)

)]

+

[
ζ1δAE2

κA2Ψ(A)
+
ζ1ηSE2

A2

]
(Ψ(A) −Ψ(A2)) (A2 −A).
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If <1 > 1, we get dΛ2
dt 6 0 for all E,L, I,S,A > 0. Further, dΛ2

dt = 0, when E = E2, A = A2, and

LτI2

L2I
=
IτS2

I2S
=
Ψ(Aτ)EτSτL2

Ψ(A2)E2S2L
= 1, for almost τ ∈ [0, τ∗]. (5.2)

Trajectories of system (2.1) converge to Ω̃2 which has E = E2 and A = A2. Then

0 = Ė = λE − ηΨ(A2)E2S− δEE2 =⇒ S(t) = S2, for any t,

and from Eq. (5.2) we get I(t) = Iτ = I1 and L(t) = Lτ = L1 for any t. The fourth equation of system (2.1)
provides

0 = Ṡ = δIνζ3I2 − δSS2 − γS2U =⇒ U = U2, for all t.

Therefore, Ω̃2 = {∆2}. Applying LIP, we get ∆2 is G.A.S.

5.1. Comparison results

In order to illustrate the significance of incorporating latently infected cells and CTL response in
our proposed model, we use model (2.1) under the impact of protease inhibitor (PI) drug therapy as an
example: 

Ė = λE − ηΨ(A)ES− δEE,
L̇ = η

∫h1
0 f1(τ)e

−α1τΨ(Aτ)EτSτdτ− (a+ δL)L,
İ = a

∫h2
0 f2(τ)e

−α2τLτdτ− δII− γIU,
Ṡ = (1 − ε)δIν

∫h3
0 f3(τ)e

−α3τIτdτ− δSS,
Ȧ = λA − κηΨ(A)AS− δAA,
U̇ = ρIU− δUU,

(5.3)

where ε ∈ [0, 1] is the efficacy of PI drug therapy. The basic reproduction number of system (5.3) is:

<ε0 =
(1 − ε)ηaνζ1ζ2ζ3Ψ(A0)E0

(a+ δL)δS
= (1 − ε)<0.

Now, we calculate the drug efficacy ε that makes <ε0 6 1 and stabilizes ∆0 of system (5.3) as:

1 > ε > ε̃min = max
{

0, 1 −
1
<0

}
. (5.4)

When we ignore the latent phase in model (5.3) we obtain

Ė = λE − ηΨ(A)ES− δEE,
İ = η

∫h1
0 f1(τ)e

−α1τΨ(Aτ)EτSτdτ− δII− γIU,
Ṡ = (1 − ε)δIν

∫h3
0 f3(τ)e

−α3τIτdτ− δSS,
Ȧ = λA − κηΨ(A)AS− δAA,
U̇ = ρIU− δUU,

(5.5)

and the basic reproduction number of model (5.5) is given by

<̂ε0 =
(1 − ε)ηνζ1ζ3Ψ(A0)E0

δS
= (1 − ε)<̂0.

We determine the drug efficacy ε that makes <̂ε0 6 1 and stabilizes ∆0 of system (5.5) as:

1 > ε > ε̂min = max
{

0, 1 −
1
<̂0

}
. (5.6)
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Since 0 < ζ2 6 1, then

<0 =
ηaνζ1ζ2ζ3Ψ(A0)E0

(a+ δL)δS
6
ηaνζ1ζ3Ψ(A0)E0

(a+ δL)δS
<
ηνζ1ζ3Ψ(A0)E0

δS
= <̂0.

In the SARS-CoV-2 dynamical model, excluding the latently infected cells would result in an overesti-
mation of the basic reproduction number. By comparing Eqs. (5.4) and (5.6) we get that ε̂min > ε̃min.
As a result, when using a model with latent phase, less anti-SARS-CoV-2 medication will be required to
maintain the system at the uninfected equilibrium and eradicate SARS-CoV-2 from the body.

In the absence of CTL immune response, system (2.1) becomes:

Ė = λE − ηΨ(A)ES− δEE,
L̇ = η

∫h1
0 f1(τ)e

−α1τΨ(Aτ)EτSτdτ− (a+ δL)L,
İ = a

∫h2
0 f2(τ)e

−α2τLτdτ− δII,
Ṡ = δIν

∫h3
0 f3(τ)e

−α3τIτdτ− δSS,
Ȧ = λA − κηΨ(A)AS− δAA.

This model has only two equilibria:

(i) uninfected equilibrium, ∆̄0 = (E0, 0, 0, 0,A0), where the SARS-CoV-2 infection is cleared;
(ii) infected equilibrium ∆̄1 = (E1,L1, I1,S1,A1), where the SARS-CoV-2 infection is present.

As a result, the SARS-CoV-2 infection model may not effectively represent SARS-CoV-2 infection if CTL
response is ignored. Therefore, our proposed model are more relevant in describing the SARS-CoV-2
dynamics than the model presented in [32].

6. Numerical simulations

In this section, we conduct numerical simulation for model (2.1) to illustrate the theoretical findings.
We perform sensitivity analysis for the model. We demonstrate the effect of CTL response and time delays
on the SARS-CoV-2 dynamics. Let us take a particular form of the probability distributed functions as

fi(τ) = F(τ− τi), i = 1, 2, 3,

where F(.) is the Dirac delta function. When hi →∞, i = 1, 2, 3, we have∫∞
0
fi(τ)dτ = 1 and

∫∞
0
F(τ− τi)e

−αiτdτ = e−αiτi , i = 1, 2, 3.

Moreover ∫∞
0
F(τ− τ1)e

−α1τΨ(Aτ)EτSτdτ = e
−α1τ1Ψ(Aτ1)Eτ1Sτ1 ,∫∞

0
F(τ− τ2)e

−α2τLτdτ = e
−α2τ2Lτ2 ,∫∞

0
F(τ− τ3)e

−α3τIτdτ = e
−α3τ3Iτ3 .

Then, model (2.1) becomes

Ė = λE − ηΨ(A)ES− δEE,
L̇ = ηe−α1τ1Ψ(Aτ1)Eτ1Sτ1 − (a+ δL)L,
İ = e−α2τ2aLτ2 − δII− γIU,
Ṡ = δIνe

−α3τ3Iτ3 − δSS,
Ȧ = λA − κηΨ(A)AS− δAA,
U̇ = ρUI− δUU.

(6.1)
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MATLAB’s dde23 solver will be used to numerically solve the DDEs system (6.1). Table 1 contains the
values of the parameters of model (6.1). We choose the function Ψ as Ψ(A) = An

Ans+A
n . For n = 1, we have

<0 =
ηaνe−α1τ1−α2τ2−α3τ3Ψ(A0)E0

(a+ δL)δS
=

ηaνe−α1τ1−α2τ2−α3τ3λEλA
(a+ δL)δS(AsδEδA + λAδE)

. (6.2)

Table 1: Model parameters.

Parameter Value Parameter Value
λE 5 ρ Varied
δE 0.1 δI 0.1
η Varied As 50
δS 0.1 α1 1
ν 20 α2 1
δL 0.1 α3 1
γ 0.04 τ1 Varied
λA 1 τ2 Varied
κ 0.3 τ3 Varied
a 0.2 δU 0.1
n 1 δA 0.1

6.1. Stability of the equilibria

To show the global stability of the equilibria of system (6.1) we take three initials as:

C1 : (E(θ),L(θ), I(θ),S(θ),A(θ),U(θ)) = (28, 2.5, 2.4, 21, 8, 0.09),
C2 : (E(θ),L(θ), I(θ),S(θ),A(θ),U(θ)) = (35, 3, 3.2, 24, 8.7, 0.15),
C3 : (E(θ),L(θ), I(θ),S(θ),A(θ),U(θ)) = (42, 3.5, 4, 27, 9.4, 0.21),

where θ ∈ [−max{τ1, τ2, τ3}, 0]. Here, we set τi = 0.8, i = 1, 2, 3 and select the values of η and ρ as follows.

State 1 (Stability of ∆0)): η = 0.009 and ρ = 0.009. These values give <0 = 0.90718 < 1 . Figure 2
demonstrates that for all starting values, the trajectories lead to the equilibrium ∆0 = (50, 0, 0, 0, 10, 0).
This demonstrates that Theorem 5.1’s statement that ∆0 is G.A.S. In this state, the viruses are eventually
cleared.

State 2 (Stability of ∆1)): η = 0.02 and ρ = 0.009. With such selection we obtain <1 = 0.72305 <

1 < 2.01595 = <0 and I1 = 2.79776 < δU
ρ = 0.1

0.009 = 11.1111. The equilibrium point ∆1 exists with
∆1 = (29.2139, 3.11326, 2.79776, 25.1423, 8.24094, 0). Figure 3 clearly demonstrates that the trajectories
eventually trend to ∆1 for all initials, which is consistent with Theorem 5.2. This is the situation of an
infected person when CTL response is not engaged.

State 3 (Stability of ∆2): η = 0.02 and ρ = 0.04. This gives <1 = 1.05541 > 1. The numerical results show
that, ∆2 = (30.3969, 2.93608, 2.5, 22.4664, 8.37892, 0.138535) exists. Figure 4 shows that, for all initials, the
trajectories eventually converge to ∆2, which is consistent with Theorem 5.3. This case depicts a person
who has SARS-CoV-2 infection and active CTL response.
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Figure 2: Solutions of model (6.1) with initials C1-C3 converge to ∆0 = (50, 0, 0, 0, 10, 0) when <0 6 1
(state 1).
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Figure 3: Solutions of model (6.1) with initials C1-C3 converge to ∆1 = (29.2139, 3.11326, 2.79776,
25.1423, 8.24094, 0) when <0 > 1 and <1 6 1 (state 2).
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Figure 4: Solutions of model (6.1) with initials C1-C3 converge to ∆2 = (30.3969, 2.93608, 2.5,
22.4664, 8.37892, 0.138535) when <1 > 1 (state 3).
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6.2. Impact of the time delay on the SARS-CoV-2 dynamics

We show the impact of time delays τ1, τ2, and τ3 on solutions of the system as well as stability of
∆0. We can see from Eq. (6.2) that the parameter <0 is decreasing by increasing of the delay parameters
τ1, τ2, and τ3 when all other parameters are fixed. Therefore, stability of ∆0 can significantly be changed
based on τ1, τ2, and τ3. Let us fix η = 0.004, ρ = 0.01, and vary τ1, τ2, and τ3 as:

D1: τ1 = τ2 = τ3 = 0;
D2: τ1 = τ2 = τ3 = 0.2;
D3: τ1 = τ2 = τ3 = 0.6;
D4: τ1 = τ2 = τ3 = 1.

Further, we consider the initial condition:

C4 : (E(θ),L(θ), I(θ),S(θ),A(θ),U(θ)) = (30, 5, 10, 200, 8, 1),

where θ ∈ [−max{τ1, τ2, τ3}, 0]. Assume that τ = τ1 = τ2 = τ3, then <0 is given by

<0 =
ηaνe−(α1+α2+α3)τλEλA

(a+ δL)δS(AsδEδA + λAδE)
.

We see that <0 is a decreasing function of τ. Let τcr be such that <0(τcr) = 1. Consequently,

<0 6 1 for all τ > τcr.

Hence, ∆0 is G.A.S when τ > τcr. Using the values of the parameters we obtain, τcr = 0.497218. Therefore,
we have the following cases.

(i) If τ > τcr, then <0 6 1 and thus ∆0 is G.A.S. Therefore, when τ is large enough, then ∆0 can be
stabilized.

(ii) If τ < τcr, then <0 > 1 and thus ∆0 will be unstable.

The impact of time delay on the system’s trajectories is depicted in Figure 5. It is evident that as
τ increases, the proportions of uninfected epithelial cells and ACE2 receptor increase, whereas those of
latently and actively infected cells, SARS-CoV-2 particles, and CTLs decrease.

6.3. Impact of CTL response on the SARS-CoV-2 infection

This subsection addresses the effect of stimulated rate constant ρ on the dynamics of system (6.1). We
fix the parameters η = 0.02 and τ1 = τ2 = τ3 = 0.8 and vary the parameter ρ as ρ = 0.009, ρ = 0.025,
ρ = 0.04, and ρ = 0.07. Further, we consider the initial condition:

C5 : (E(θ),L(θ), I(θ),S(θ),A(θ),U(θ)) = (35, 2, 3, 15, 9, 2), θ ∈ [−0.8, 0].

The impact of CTL response can be seen in Figure 6. We observe that, as ρ is increased, the concentrations
of uninfected epithelial cells, CTLs and ACE2 receptors are increased, while concentrations of latently
infected cells, actively infected cells and SARS-CoV-2 particles are decreased. Therefore, CTL response
can control the SARS-CoV-2 infection. Note that, <0 dose not depend on ρ, therefore ∆0 can not be
reached by increasing ρ. This might contribute to the development of treatments for SARS-CoV-2 with
the potential to boost CTL response.
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Figure 5: Solutions of model (6.1) under the impact of the time delays τ.
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Figure 6: Solutions of model (6.1) under the impact of CTL immunity parameter ρ.

6.4. Sensitivity analysis
Sensitivity analysis is crucial in pathology and epidemiology when modeling complex interactions

[33]. Sensitivity analysis can help us assess how well we are able to prevent the progression of the disease
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between-hosts and within-host. Three techniques may be used to determine sensitivity indices: directly
by direct differentiation, with the use of a Latin hypercube sampling technique, or by linearizing the
system and resolving the resultant equations [27, 33]. With the use of direct differentiation, the indices
in this study may be stated analytically. When variables fluctuate dependent on parameters, you may
get the sensitivity index by using partial derivatives. The normalized forward sensitivity index of <0 is
written in terms of the parameter m:

Sm =
m

<0

∂<0

∂m
.

Using the values given in Table 1 and η = 0.02, ρ = 0.009, and τ1 = τ2 = τ3 = 0.8, we present the
sensitivity index Sm in Table 2 and Figure 7. Obviously, λE, η, λA, a, and ν have positive indices. Clearly,
λE, η, and ν, have the most positive sensitivity index. In this state, there is a positive relationship between
the progression of COVID-19 and the parameters λE, η, λA, a, and ν, when all other parameters are fixed.
Parameters δE, δS, δA, δL, τ1, τ2, τ3, α1, α2 α3, As, and n have negative indices, meaning that when the
values of these parameters rise, the value of <0 declines. Obviously, n has the most negative sensitivity
index.

Table 2: Sensitivity index of <0.

m Sm m Sm m Sm
λE 1 δA −0.833 α1 −0.8
η 1 τ1 −0.8 ν 1
δE −1 λA 0.833 α2 −0.8
δS −1 τ2 −0.8 α3 −0.8
As −0.833 τ3 −0.8 a 0.333
δL −0.333 n −1.3412

Figure 7: Forward sensitivity analysis of the parameters on <0.

7. Conclusion and discussions

In order to understand the dynamics of SARS-CoV-2 in the host, we developed a SARS-CoV-2 infec-
tion model in this study that considers the role of the ACE2 receptor. It was taken into account how CTL
response and the latent phase impacted the SARS-CoV-2 infection. We toke into account three distributed
delays, including (i) the formation of latently infected epithelial cells; (ii) the activation of latently infected
epithelial cells; and (iii) the maturation of newly released SARS-CoV-2 virions. We began by displaying
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the fundamental properties of the solutions, nonnegativity and boundedness. The model’s three equi-
libria were then determined to be uninfected equilibrium (∆0), infected without CTL response (∆1), and
infection with CTL response (∆2). We derived two threshold parameters: the basic reproduction number
(<0) and CTL response activation number (<1). The existence and global stability of the equilibria were
demonstrated using <0 and <1. To illustrate the three equilibria’s global asymptotic stability, we made
the necessary Lyapunov functions and employed LIP. We proved the following.

• If <0 6 1, then ∆0 is the only equilibrium and it is G.A.S. In this state, the number of SARS-
CoV-2 particles eventually converges to 0 and the COVID-19 patient will recover. Different control
strategies can be applied to make

<0 =
ηaνe−α1τ1−α2τ2−α3τ3λEλA
(a+ δL)δS(AsδEδA + λAδE)

6 1.

Examples of these strategies are as follows

(i) employing reverse transcriptase inhibitor (RTI) medications with drug efficacy εRTI ∈ [0, 1] to
lower the parameter η as (1 − εRTI)η [1];

(ii) employing protease inhibitor (PI) medications with drug efficacy εPI ∈ [0, 1] to lower the pa-
rameter ν as (1 − εPI)ν [1];

(iii) employing antiviral remdesivir (RDV) with drug efficacy εRDV ∈ [0, 1] to lower the parameter
a as (1 − εRDV)a [10];

(iv) enlarging the length of delay periods τ1, τ2, and τ3 [19];
(v) inhibiting the proliferation rate of ACE2 receptors λA [32];

(vi) increasing the degradation rate of ACE2 receptors δA [32].

We note that <0 is independent of CTL response parameters; as a result, CTL response only func-
tions to regulate infection rather than to eradicate it.

• If <1 6 1 < <0, then there exist two equilibria ∆0 and ∆1, where ∆0 is unstable and ∆1 is G.A.S.
In this case, the infection is there, but the immune system is not responding. The reason for this is
because when the infected cell concentration decreases (i.e., I 6 δU/ρ), it may not be high enough
to trigger an immune response.

• If <1 > 1, then in addition to ∆0 and ∆1, there exists ∆2 and it is G.A.S. For this case, the body has
enough infected cells (i.e., I > δU/ρ) to trigger the immune system’s response.

The model was numerically solved, and the outcomes were graphically displayed and found to be
consistent with our theoretical conclusions. We looked into the sensitivity analysis to determine how the
parameter <0 is impacted by the parameters’ values in the model. We looked into how the SARS-CoV-2
infection was affected by ACE2 receptors, CTL response, time delay, and latent phase. We demonstrated
that the proliferation and degradation rates of ACE2 receptors affect <0, which may be important knowl-
edge for the development of potentially receptor-targeted vaccines and drugs. We proved that while CTL
response does contribute to the control of infections, SARS-CoV-2 particles are not eventually eliminated
by it. Furthermore, extending the time delay can significantly lower <0 and inhibit the development
of COVID-19. This enables the development of numerous medicines that will lengthen the delay pe-
riod. Finally, we demonstrated that the model would overestimate <0 if the latently infected cells were
excluded.

Our inability to determine the values of the model’s parameters using actual data from COVID-19
patients is the primary drawback of our study. The explanations are as follows: (i) real data from infected
individuals are still scarce; (ii) our results may not be very accurate when compared to a small number of
real studies; (iii) it is difficult to gather real data from patients who have SARS-CoV-2 infection; and (iv)
doing experiments to get real data is outside the purview of this study.
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There are several methods to extend our proposed model, such as by adding the effect of antibody
immune response:

Ė = λE − ηΨ(A)ES− δEE,

L̇ = η

∫h1

0
f1(τ)e

−α1τΨ(Aτ)EτSτdτ− (a+ δL)L,

İ = a

∫h2

0
f2(τ)e

−α2τLτdτ− δII− γUIU,

Ṡ = δIν

∫h3

0
f3(τ)e

−α3τIτdτ− δSS− γBSB,

Ȧ = λA − κηΨ(A)AS− δAA,
Ḃ = ρBSB− δBB,
U̇ = ρUIU− δUU,

where B = B(t) is the concentration of the antibodies. The antibodies are stimulated at rate ρBSB, die at
rate δBB and neutralize the SARS-CoV-2 particles at rate γBSB. Other extentions can also be considered
by including reaction diffusion and immunologic memory. It is feasible to aim future research towards
integrating the influence of immunizations and antiviral drugs into the model. Additionally, we wish to
compare the results with patient data from SARS-CoV-2 affected individuals.
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