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Abstract

This article concerns with an improved interpolation method based on Newton scheme with high
dimensional data. It obtains the interpolation function when the nodes are arranged in a spatial
grid. The spatial interpolation method is systematic and very useful in engineering field. As an
example of application, we use the method to simulate the 3-D temperature field nearby a motor by
27 nodal temperature values. The results show that the interpolation function is quickly obtained
within a limited cube space which realized data visualization. This demonstrates the effectiveness of
the proposed method. c©2016 All rights reserved.
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1. Introduction

Because of the restriction by measuring tools and working environment and other factors in
engineering, it is difficult to get sampling information completely in the process of measurement.
Only the countable sampling values is not enough to depict the spatial data field. Interpolation
method is an effective method for data reconstruction. By interpolation calculation, inaccessible data
is estimated, which improves the data density. At present, the research of interpolation method based
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on two-dimensional space has been intensive. With the quick development of computer technology,
and appearance of 3-D data processing tools, interpolation-based data visualization of space becomes
faster and easier to realize [6, 11, 12].

Spatial data interpolation is described as: given a set of known space discrete point data, trying
to find a function relationship from these data to calculate the value of any other point in the region
[6]. It has been widely used in meteorology, geological exploration, petroleum industry, hydrology
and other fields. However, most of the spatial interpolation methods require a lot of point data
to obtain an accurate solution. In contrast, the polynomial based interpolation method performs
well with a few points. We also studied and referred some related interpolation methods. Refs.
[1, 3, 4, 7, 13, 15] mainly researched the polynomial interpolation method of two variables, in which
[13] deducted the polynomial interpolation with nodes in triangular arrangement and has a similar
idea with this article. Refs. [2, 8] and [10] provided some algorithms for multivariate polynomial
interpolation. Refs. [5, 9] and [14] studied the multivariate Birkhoff interpolation method which can
be used in three-dimensional interpolation.

Newton interpolation is an important part of polynomial interpolation. It inherited the Lagrange
interpolation, and inspired the Hermite interpolation. So the Newton interpolation method is usually
considered to make a simple uniform to polynomial interpolation. The advantage lies in that while
each basis function of Lagrange interpolation polynomial changes along with the increase or decrease
of nodes, the difference quotients (also known as Newton’s quotients) of Newton interpolation do not.
By calculating difference quotient of each order as Newton’s method, we can obtain the interpolation
polynomial with systematic and orderly form step by step. Therefore, it has been widely used
in scientific computing and engineering [16]. However, as polynomial interpolation methods, their
common drawback is that they cannot keep stable in the infinite domain. That is the problem which
should be solved.

Normally the Newton interpolation method is only used in one-dimensional interpolation of a
single variable. However, by extending the form of difference quotient, the interpolation function in
two-dimensional and three-dimensional cases is derived by relative properties. To solve this problem,
we study the extension of Newton interpolation method in spatial space. First, we introduce the basic
Newton interpolation method and its principle in Section 2. After that, in Section 3 we put forward an
improved method to make sure the interpolation function converges to constant value when x→∞.
In Section 4, we define the 2-D (two-dimensional) and 3-D (three-dimensional) difference quotients,
respectively, and we obtain the corresponding interpolation formula using Newton’s method. Finally,
in Section 5, we use the improved spatial Newton interpolation method to simulate the temperature
field nearby a motor by 27 nodal temperature values and drew the contour plot. The proposed spatial
interpolation method can be widely used in engineering simulation and data fitting. The focus of this
article is to introduce the Newton interpolation as a spatial interpolation method. Systemic, scientific,
convenient and quick, this kind of method can compute the approximate function accurately with
few nodes.

2. Newton interpolation [16] and its improvement

2.1. Difference quotient

Suppose the values of function f (x) at different nodes x0, x1, ... , xn (not have to be put in order
of size) on x-axis are f (x0), f (x1), ... , f (xn). Define the mathematical form as (2.1).

Df (x)

Dx

∣∣
x=xi,xi+1

= f [xi, xi+1] =
f (xi+1)− f (xi)

xi+1 − xi
, (2.1)
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where {i, (i+ 1)} ∈ {0, 1, . . . , n}. Dnf(x)
Dxn (n = 1) denotes the difference function as a discrete function

of xi, xi+1. f [xi, xj] is called the 1st order difference quotient of f (x) on nodes xi, xi+1. Similarly,
the 2nd order difference quotient is seen as the “difference quotient” of f [xi, xi+1] as (2.2).

D2f (x)

Dx2
∣∣
x=xi,xi+1,xi+2

= f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
, (2.2)

where {i, (i+ 1) , (i+ 2)} ∈ {0, 1, . . . , n}.f [xi, xi+1, xi+2] is defined as the 2nd order difference quo-
tient of f (x) on nodes xi, xi+1, xi+2. By continuing this process, we can deduce the rest by such
iterative format as (2.3). In general, we call such mathematical form (2.3) the r -th order difference
quotient of f (x) on nodes xi, xi+1, ... , xi+r.

Drf (x)

Dxr
∣∣
x=xi,...,xi+r

= f [xi, xi+1, . . . , xi+r] =
f [xi+1, . . . , xi+r]− f [xi, . . . , xi+r−1]

xi+r − xi
. (2.3)

In particular, the 0th order difference quotient of f (x) at nodes xi is defined as f (xi).

D0f (x)

Dx0
|x=xi

= f [xi] = f (xi) .

2.2. Properties of difference quotient

(1) The r -th order difference quotient of f (x) as f [x0, x1, . . . , xr] is expressed as the linear combi-
nation of f (x0), f (x1), ... , f (xr),

f [x0, x1, . . . , xr] =
r∑

i=0

f (xi)
dωr+1(x)

dx
|x=xi

,

where

ωr+1 (x) =
r∏

i=0

(x− xi) .

(2) The difference quotient is independent of the order of nodes. For any xi1 , xi2 ,

f [x0, . . . , xi1 , . . . , xi2 , . . . , xr] = f [x0, . . . , xi2 , . . . , xi1 , . . . , xr] .

(3) A new difference quotient can be constructed with a new node x added.

f [x0, . . . , xr, x] =
f [x0, . . . , xr−1, x]− f [x0, . . . , xr−1, xr]

x− xr
.

(4) If f (x) is polynomial of degree n, f [x0, x1, . . . , xr−1, x] is polynomial of degree (n− r) when
r ≤ n, and f [x0, x1, . . . , xr−1, x] ≡ 0 when r > n.

(5) The order of the difference quotient is no more than the number of nodes minus 1.

2.3. Newton’s interpolation formula

By property (3) in Subsection 2.2,

f [x0, . . . , xr−1, x] = f [x0, . . . , xr−1, xr] + f [x0, . . . , xr−1, xr, x] (x− xr) ,

such relation is obtained as

f (x) =
n∑

r=0

(f [x0, . . . , xr]ωr (x)) + f [x0, . . . , xn, x]ωn+1 (x) ,

where ωr (x) = ωr+1(x)
x−xr

=
∏r

i=0(x−xi)

x−xr
, the same below. Define
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Nn (x) =
n∑

r=0

(f [x0, . . . , xr]ωr (x)) . (2.4)

In (2.4), Nn (x) denotes the Newton interpolation polynomial of degree n, and Nn(xi) = f(xi) (i =
0, 1, 2, . . . , n). Specially,

N0 (x) = f (x0) .

It can be concluded that the Newton interpolation method uses the difference quotient as a tool
to approach the actual function. The result is a linear function of a single variable of degree n. With
new nodal values added to the original data, we are able to obtain the new interpolation function by
extending the original function with basis functions.

3. Improvement on Newton’s interpolation

3.1. Construct the base-function to improve the convergence

Apparently the Newton interpolation with (n+ 1) nodes is to get the n-th degree function of
variable x. When x → ∞, Nn (x) diverges to infinity, and that is contrary to normal conditions.
Here we introduce a method for improving Newton’s method, it will make the curve converge.

Construct function Mn (x),
Mn (x) = O (xn) , (3.1)

Mn (x) is described by the “Big O Notation”, if

f (x) = O (g (x)) as x→∞,

there exists a positive real number C and xc.

|f (x)| ≤ |C · (g (x))| for all x ≥ xc

and {
|Mn (x)| ≤ L,
Mn (x) 6= 0,

for all x ∈ (−∞,∞) , (3.2)

where L is a positive real number. On each node, the values of Mn (x) are Mn (x0), Mn (x1),...,
Mn (xn). Then change the values of each node into

f ∗ (xi) = f (xi)Mn (xi) .

Reuse the Newton’s method to construct interpolating function, by (2.4), such as

N∗
n (x) =

n∑
r=0

(f ∗ [x0, . . . , xr]ωr (x)) ,

where

f ∗ [xi, xi+1] =
f ∗ (xi+1)− f ∗ (xi)

xi+1 − xi
,

f ∗ [xi, xi+1, . . . , xi+r] =
f ∗ [xi+1, . . . , xi+r]− f ∗ [xi, . . . , xi+r−1]

xi+r − xi
.

Such the final interpolating function F (x) for f (x) should be

Fn (x) =
N∗

n (x)

Mn (x)
.

Fn (x) converges when x→∞. And for i = 0, 1, . . . , n, F (xi) = f (xi).
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Example 3.1. Suppose a function f (x) in real field with unknown expression. We define three
nodes as x0 = −1, x1 = 0, x2 = 1, with f (x0) = f (−1) = 1, f (x1) = f (0) = 0.5, f (x2) = f (1) = 2.
Firstly, we use traditional Newton interpolation method.

f [x0, x1] = f [−1, 0] =
0.5− 1

0− (−1)
= −0.5,

f [x0, x1, x2] = f [−1, 0, 1] =
1.5− (−0.5)

1− (−1)
= 1.

Then

N2 (x) = f (−1) + f [−1, 0] (x+ 1) + f [−1, 0, 1]x (x+ 1)

= 1− 0.5 (x+ 1) + x (x+ 1)

= x2 + 0.5x+ 0.5.

After that, we use the improved new method to fit f (x). Construct M2 (x) which satisfies (3.1)
and (3.2). Set

M2 (x) = 1 + x2, x ∈ (−∞,∞) .

Such M2 (x0) = M2 (−1) = 2, M2 (x1) = M2 (0) = 1, M2 (x2) = M2 (1) = 2, and f ∗ (x0) =
f (−1)M2 (−1) = 2, f ∗ (x1) = f (0)M2 (0) = 0.5, f ∗ (x2) = f (1)M2 (1) = 4. Then

N∗
2 (x) = f ∗ (−1) + f ∗ [−1, 0] (x+ 1) + f ∗ [−1, 0, 1]x (x+ 1)

= 2− 1.5 (x+ 1) + 2.5x (x+ 1)

= 2.5x2 + x+ 0.5.

Finally, we get

F2 (x) =
N∗

2 (x)

M2 (x)
=

2.5x2 + x+ 0.5

1 + x2
.

Figure 1: Comparison of curves N2 (x) and F2 (x) in the example.

Figure 1 shows that when |x| increases, F2 (x) tends to constant value while N2 (x) tends to
infinity. M2 (x) is to reduce the degree of N2 (x).
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4. Extension in the high dimensions

4.1. Definition of 2-D difference quotient

Suppose f (x, y) is a 2-D function in the x -y coordinate system. Take (n1 + 1) nodes x0, x1, ..., xn1

on the x axis and extend them in the direction of y axis to form (n1 + 1) parallel lines. Take (n2 + 1)
nodes y0, y1, ..., yn2 on the y axis and extend them in the direction of x axis to form (n2 + 1) parallel
lines. The two groups of parallel lines structure an (n1 + 1) × (n2 + 1) grid with (n1 + 1) (n2 + 1)
nodes, and the corresponding value of f (x, y) should be f (x0, y0), f (x1, y0), ... , f (xn1 , yn2). Define
the mathematical form

Df (x, y)

Dx

∣∣∣∣∣∣∣∣ x = xi, xi+1

y = yj

= f ([xi, xi+1] , yj) =
f (xi+1, yj)− f (xi, yj)

xi+1 − xi
, (4.1)

where {i, (i+ 1)} ∈ {0, 1, . . . , n1}, j ∈ {0, 1, . . . , n2}.
In the formula (4.1), f ([xi, xi+1] , yj) is defined as difference quotient of 1st order of x at x =

xi, xi+1 and y = yj. In the same way,

Df (x, y)

Dy

∣∣∣∣∣∣∣∣ x = xi
y = yj, yj+1

= f (xi, [yj, yj+1]) =
f (xi, yj+1)− f (xi, yj)

yj+1 − yj
,

where i ∈ {0, 1, . . . , n1}, {j, j + 1} ∈ {0, 1, . . . , n2}. And f (xi, [yj, yj+1]) is defined as the difference
quotient of 1st order of y at x = xi and y = yj, yj+1.

D2f (x, y)

DxDy

∣∣∣∣∣∣∣∣ x = xi, xi+1

y = yj, yj+1

= f ([xi, xi+1] , [yj, yj+1])

=
f (xi+1, [yj, yj+1])− f (xi, [yj, yj+1])

xi+1 − xi

=
f ([xi, xi+1] , yj+1)− f ([xi, xi+1] , yj)

yj+1 − yj
,

where {i, i+ 1} ∈ {0, 1, . . . , n1}, {j, j + 1} ∈ {0, 1, . . . , n2}. And f ([xi, xi+1] , [yj, yj+1]) is defined
as the difference quotient of 1st order of x and 1st order of y (later expressed as the x -y difference
quotient) at x = xi, xi+1 and y = yj, yj+1. Generally,

Dr+sf (x, y)

DxrDys

∣∣∣∣∣∣ x = xi, . . . , xi+r

y = yj , . . . , yj+s

= f ([xi, xi+1, . . . , xi+r] , [yj, yj+1, . . . , yj+s])

=
f ([xi+1, . . . , xi+r] , [yj, . . . , yj+s])− f ([xi, . . . , xi+r−1] , [yj, . . . , yj+s])

xi+r − xi

=
f ([xi, . . . , xi+r] , [yj+1, . . . , yj+s])− f ([xi, . . . , xi+r] , [yj, . . . , yj+s−1])

yj+s − yj
,

(4.2)
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where {i, . . . , i+ r} ∈ {0, 1, . . . , n1}, {j, j + s} ∈ {0, 1, . . . , n2}.
In (4.2), f ([xi, xi+1, . . . , xi+r] , [yj, yj+1, . . . , yj+s]) denotes the 2-D xr-ys difference quotient of r -th

order of x and s-th order of y at x = xi, xi+1, . . . , xi+r, y = yj, yj+1, . . . , yj+s.
Specially, when r or s are equal to zero, it turns into the normal difference quotient as

Drf(x,y)
Dxr

∣∣∣∣∣∣∣∣ x = xi, . . . , xi+r

y = yj

= f ([xi, xi+1, . . . , xi+r] , yj) ,

Dsf(x,y)
Dys

∣∣∣∣∣∣∣∣ x = xi
y = yj, . . . , yj+s

= f (xi, [yj, yj+1, . . . , yj+s]) .

The xr-ys difference quotient is expressed by the ‘violet’ vector in Fig. 2, and the vectors in ‘red’
and ‘blue’ express the r -th and s-th order difference quotient of x, y, respectively.

4.2. Properties of 2-D difference quotient

Think of the 2-D difference quotient as the difference quotient of 1-D traditional difference quo-
tient. It has the following properties.

Figure 2: The xr-ys difference quotient diagram in vector form.

(1) The difference quotient of each variable is independently calculated, and that of each variable
meets the properties (1)-(5) in Subsection 2.2.

(2) If the nodes construct a grid (here defined as the matrix of interpolation nodes) as Fig. 2
shows, the xr-ys difference quotient exists as shown in (4.2). The xr-ys difference quotient with
r -th order of x and s-th order of y can be obtained by calculating the difference quotient along
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the x direction for order r and along the y direction for order s. The sequence of derivation
from x or y does not affect the result.

Dr+sf (x, y)

DxrDys
=
Dr
(

Dsf(x,y)
Dys

)
Dxr

=
Ds
(

Drf(x,y)
Dxr

)
Dys

.

(3) If the nodes (xi, yi) (i = 0, 1, 2, . . . , n) construct an (n+ 1) × (n+ 1) matrix in the x -y plane,
g (x) is a function of real domain and each node on y axis satisfies yi = g (xi) ({xi} belongs to
the domain of function g (x), {xi} → {g (xi)} is a bijection). The relation (4.3) can transform
2-D difference quotient into traditional difference quotient.

Drf (x, g (x))

Dxr
|x=x0,...,xr

=
n∑

i=0

n∑
j=0

Di+jf (x, y)

DxiDyj

∣∣∣∣∣∣∣∣ x = x0, . . . , xi
y = y0, . . . , yj

· D
r−iωj (g (x))

Dxr−i
|x=xi,...,xr

 ,
(4.3)

where, r ≥ n, ωj (g (x)) =
∏j−1

i=0 (g (x)− g (xi)).

Figure 3: Distribution of nodes (xi, yi) (i = 0, 1, 2, 3) through y = g (x).

4.3. Newton interpolation formula in 2-D space
According to property (1) of the above and property (3) of Subsection 2.2,

f ([x0, . . . , xr−1, x] , [y0, . . . , ys−1, y])
= f ([x0, . . . , xr] , [y0, . . . , ys−1, y]) + f ([x0, . . . , xr, x] , [y0, . . . , ys−1, y]) (x− xr)
= f ([x0, . . . , xr−1, x] , [y0, . . . , ys]) + f ([x0, . . . , xr−1, x] , [y0, . . . , ys, y]) (y − ys) .

(4.4)

Furthermore, by (4.4),

f ([x0, . . . , xr−1, x] , [y0, . . . , ys−1, y])

= f ([x0, . . . , xr] , [y0, . . . , ys]) + f ([x0, . . . , xr, x] , [y0, . . . , ys]) (x− xr)
+ f ([x0, . . . , xr] , [y0, . . . , ys, y]) (y − ys)
+ f ([x0, . . . , xr, x] , [y0, . . . , ys, y]) (x− xr) (y − ys) .
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Similar to the derivation process of traditional interpolation formula, we can obtain the general
2-D Newton interpolation function as

Nn1,n2 (x, y) =

n1∑
r=0

n2∑
s=0

(f ([x0, . . . , xr] , [y0, . . . , ys])ωr (x)ωs (y))

and the remainder

En1,n2 (x, y) =

n2∑
s=0

(f ([x0, . . . , xn1 , x] , [y0, . . . , ys])ωs (y))ωn1+1 (x)

+

n1∑
r=0

(f ([x0, . . . , xr] , [y0, . . . , yn2 , y])ωr (x))ωn2+1 (y)

+ f ([x0, . . . , xn1 , x] , [y0, . . . , yn2 , y])ωn1+1 (x)ωn2+1 (y) .

(4.5)

Also we noticed that in (4.5),

n2∑
s=0

(f ([x0, . . . , xn1 , x] , [y0, . . . , ys])ωs (y)) =
Dn1+1N0,n2 (x, y)

Dxn1+1

∣∣∣x=x0,...,xn1
,x ,

n1∑
r=0

(f ([x0, . . . , xr] , [y0, . . . , yn2 , y])ωr (x)) =
Dn2+1Nn1,0 (x, y)

Dyn2+1

∣∣∣y=y0,...,yn2
,y ,

where, N0,n2 (x, y) (x = x0, x1, . . . , xn1) is the y Newton interpolation function, which is an x discrete
function and Nn1,0 (x, y) (y = y0, y1, . . . , yn2) is the x Newton interpolation function, which is an y
discrete function. Equal to (4.5),

En1,n2 (x, y) = ωn1+1 (x)
Dn1+1N0,n2 (x, y)

Dxn1+1

∣∣∣x=x0,...,xn1
,x

+ ωn2+1 (y)
Dn2+1Nn1,0 (x, y)

Dyn2+1

∣∣∣y=y0,...,yn2
,y

+ ωn1+1 (x)ωn2+1 (y)
Dn1+n2+2f (x, y)

Dxn1+1Dyn2+1

∣∣∣∣∣ x = x0, . . . , xn1
, x

y = y0, . . . , yn2
, y

.

Thusf (x, y) = Nn1,n2 (x, y) + En1,n2 (x, y), where Nn1,n2 (x, y) is the 2-D Newton interpolation poly-
nomial of degree (n1 + n2) (degree n1 of x and degree n2 of y), and Nn1,n2(xi, yj) = f(xi, yj) (i =
0, 1, 2, . . . , n1; j = 0, 1, 2, . . . , n2); En1,n2 (x, y) is the remainder of interpolation. The basis function
of Nn1,n2 (x, y) is

N(r,s) (x, y) = f ([x0, x1, . . . , xr] , [y0, y1, . . . , ys])ωr (x)ωs (y) ,

where r = 0, 1, . . . , n1 and s = 0, 1, . . . , n2. Thus,

Nn1,n2 (x, y) =

n1∑
r=0

n2∑
s=0

N(r,s) (x, y) .

Specially, when n1 = n2 = 0,

N0,0 (x, y) = N(0,0) (x, y) = f (x0, y0) .
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The 2-D Newton interpolation function is a polynomial of x -degree n1 and y-degree n2 with
n1 × n2 series. It can be regarded as the interpolation for interpolation functions of x on the y
direction. Also, we are able to extend the 2-D function by adding new basis functions in the same
with normal Newton interpolation.

For example, take 4 nodes (0, 0), (2, 0), (0, 1), (2, 1), with f (0, 0) = 0.5, f (2, 0) = 1, f (0, 1) =
0.75, f (2, 1) = 0.25. By (4.2), we get

f (0, [0, 1]) =
f (0, 1)− f (0, 0)

1− 0
= 0.25,

f ([0, 2] , 0) =
f (2, 0)− f (0, 0)

2− 0
= 0.25,

f ([0, 2] , 1) =
f (2, 1)− f (0, 1)

2− 0
= −0.25,

f ([0, 2] , [0, 1]) =
f ([0, 2] , 1)− f ([0, 2] , 0)

1− 0
= −0.5,

N1,1 (x, y) = f (0, 0) + f ([0, 2] , 0)x+ f (0, [0, 1]) y + f ([0, 2] , [0, 1])xy

= 0.5 + 0.25x+ 0.25y − 0.5xy.

4.4. Newton interpolation formula in 3-D space

Suppose f (x, y, z) is a 3-D function in the x -y-z coordinate system. The nodes {xi, yj, zk} (where
i = 0, 1, 2, . . . , n1; j = 0, 1, 2, . . . , n2; k = 0, 1, 2, . . . , n3) construct a 3-D (n1 + 1)× (n2 + 1)× (n3 + 1)
matrix. The derivation to 3-D xr-ys-zt difference quotient is similar to (2.3) and (4.2).

Figure 4: The xr-ys-zt difference quotient diagram in vector form.

The xr-ys-zt difference quotient is expressed by the ‘dark gray’ vector in Fig. 4, and the vectors in
‘red’, ‘blue’ and ‘green’ express the r -th, s-th and t-th order difference quotient of x, y, z, respectively.
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We used this kind of diagram to point out that 3-D difference quotient can be regarded as the
combination of difference quotients in each direction.

Specially, when r, s, or t are equal to zero, it turns into 2-D difference quotient.

Dr+sf(x,y,z)
DxrDys

∣∣∣∣∣∣∣∣∣∣∣∣
x = xi, . . . , xi+r

y = yj, . . . , yj+s

z = zk

= f ([xi, . . . , xi+r] , [yj, . . . , yj+s] , zk) ,

Dr+tf(x,y,z)
DxrDzt

∣∣∣∣∣∣∣∣∣∣∣∣
x = xi, . . . , xi+r

y = yj
z = zk, . . . , zk+t

= f ([xi, . . . , xi+r] , yj, [zk, . . . , zk+t]) ,

Ds+tf(x,y,z)
DysDzt

∣∣∣∣∣∣∣∣∣∣∣∣
x = xi
y = yj, . . . , yj+s

z = zk, . . . , zk+t

= f (xi, [yj, . . . , yj+s] , [zk, . . . , zk+t]) .

Also, the general 3-D Newton interpolation function is

Nn1,n2,n3 (x, y, z) =

n1∑
r=0

n2∑
s=0

n3∑
t=0

(f ([x0, . . . , xr] , [y0, . . . , ys] , [z0, . . . , zt])ωr (x)ωs (y)ωt (z)) .

Define the basis function

N(r,s,t) (x, y, z) = f ([x0, . . . , xr] , [y0, . . . , ys] , [z0, . . . , zt])ωr (x)ωs (y)ωt (z) .

Thus

Nn1,n2,n3 (x, y, z) =

n1∑
r=0

n2∑
s=0

n3∑
t=0

N(r,s,t) (x, y, z) . (4.6)

Specially, when n1 = n2 = n3 = 0,

N0,0,0 (x, y, z) = N(0,0,0) (x, y, z) = f (x0, y0, z0) . (4.7)

In (4.6), n1, n2, n3 are the orders of interpolation in all directions. If only one of n1, n2, n3 is zero,
the interpolation function is equal to the 2-D form; if two of n1, n2, n3 are zero, the interpolation
function is equal to the basic form (1-D interpolation). They can be regarded as the special cases of
3-D interpolation.

5. Application for temperature field

Heat source and temperature field around always has a subtle and inevitable effect on the me-
chanical structure. Usually because of the material coefficient of thermal expansion is limited, a
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small deformation caused by temperature changes is usually neglected. But for scanning probe mi-
croscopy (SPM), deformation due to the temperature can influence measurement results to a relative
great extent, which has become a major source of measurement error. Therefore, the corresponding
compensation based on real-time observation of the spatial distribution of temperature is the key to
eliminate errors. In this chapter, we used the Newton interpolation method to deal with 27 nodes
data and the purpose was to simulate the temperature distribution and realize data visualization.

As an obvious character of Newton interpolation method, the expanded interpolation function
can be obtained on the original basis with node expansion. The process is similar to basic Newton
interpolation, but the form is a bit more complicated. In this chapter, we discussed the interpolation
of 27 nodes by the method mentioned above.

5.1. Measurement on given nodes

The SPM system used in experiments mainly includes SPM, CCD monitor system, PSD, data
acquisition card, computer, step motor, step motor driver and micro displacement platform, shown
as Fig. 5 (a). The whole set of instruments is placed in a thermostat, in which the constant
temperature was set to be 27◦. The temperature value on each node was measured by thermistor
sensors distributed equidistantly, and the data was collected when it was stabilized. The axes and
the coordinate of each node have been defined, shown as Fig. 5 (b), in which the x and z axes were
set to be parallel to the plane of backboard, and the temperature on each node was measured at the
same time. The relative position of the 3× 3× 3 matrix constituted by nodes is shown in Fig. 5 (c).

5.2. Computing process

First of all, we need to investigate the properties of the temperature field. For spacial tempera-
ture function T (x, y, z) created by constant heat source, when x, y, z → ∞, the difference between
T (x, y, z) and ambient temperature T0 varies inversely with distance.

Figure 5: Temperature data collected and site environmental conditions.
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T (x, y, z)− T0 = O

(
1√

x2 + y2 + z2

)
as x, y, z →∞.

By (4.7), the Newton interpolation function with 27 nodes has the highest order term x2y2z2.
The M3,3,3 (x, y, z) that satisfies the conditions is

M (x, y, z) = O
(
x2y2z2

√
x2 + y2 + z2

)
as x, y, z →∞.

According to actual situation, the heat source focuses nearby point (0, 9, 2), so we define

M (x, y, z) =
(
1 + αx2 (y − 9)2 (z − 2)2

)(
1 + β

√
x2 + (y − 9)2 + (z − 2)2

)
,

where we set α=10−6, β=0.01 to make sure the M3,3,3 (x, y, z) does not vary too much during the
given nodes. The values of M3,3,3 (xi, yj, zk) on each node are listed as Table 1. By conversion formula
(3.1),

∆T ∗ (xi, yj, zk) = ∆T (xi, yj, zk)M3,3,3 (xi, yj, zk) ,

where ∆T (xi, yj, zk) =T (xi, yj, zk)− T0, T0 = 27.

Table 1: M (xi, yj , zk) on each node.

M xi yj zk M xi yj zk
1.092 0 0 0 1.205 0 -5 5

1.114 5 0 0 1.236 5 0 -5

1.045 0 5 0 1.081 0 5 -5

1.095 0 0 5 1.075 -5 5 5

1.069 5 5 0 1.202 5 -5 5

1.127 5 0 5 1.116 5 5 -5

1.05 0 5 5 1.173 -5 -5 0

1.075 5 5 5 1.236 -5 0 -5

1.114 -5 0 0 1.157 0 -5 -5

1.141 0 -5 0 1.202 -5 -5 5

1.114 0 0 -5 1.116 -5 5 -5

1.069 -5 5 0 1.444 5 -5 -5

1.127 -5 0 5 1.444 -5 -5 -5

1.173 5 -5 0
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Figure 6: Interpolation on the line.

Figure 7: Interpolation on the plane.

Figure 8: Interpolation on the cube.

Using the Newton interpolation in (4.6) for ∆T ∗ (xi, yj, zk), finally we get

T̂ (x, y, z) = T0 +
N∗

2,2,2 (x, y, z)

M (x, y, z)
,

where N∗
2,2,2 (x, y, z) is the linear Newton interpolation function for the temperature distribution.

Fig. 9 is the image of T̂ (x, y, z) plotted by MATLAB. T̂ (x, y, z) is the simulation to temperature
distribution function.



Y. Jiang, et al., J. Math. Computer Sci. 16 (2016), 419–434 433

Figure 9: Contour plot of T̂ (x, y, z) by slices.

Fig. 9 (a) shows the 3-D image of T̂ (x, y, z) (T̂ (x, y, z) is the simulation on T (x, y, z), where
x, y, z ∈ [−5, 5]) with slices (x = 0, 5), (y = 0, 5), (z = −5, 0). Fig. 9 (b) is the image on slice
(x = 0). Fig. 9 (c) is the image on slice (y = 5). Fig. 9 (d) is the image on slice (z = 0). From the
contour picture we saw that simulated temperature on the side near the motor (where y = 5) was
obviously higher than the further side, which was consistent with the empirical facts.
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