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Abstract
In this paper, we hybridize the bipolar fuzzy set (BFS) theory with T-rough sets (T-RSs) and initiate the novel idea of T-rough

BFSs (T-RBFSs). The concept presented in this article has never been discussed earlier. Moreover, we investigate the axiomatic
systems of T-RBFSs in detail. Meanwhile, we address a decision-making (DM) problem having data endowed with fuzziness
and bipolarity in the framework of the T-RBFSs. We also propose an algorithm for this application. This algorithm facilitates
tackling the case when there is a team of decision-makers instead of a single decision-maker and when the objects of one set
need to be approximated by grading the objects of some other set. Moreover, a practical application of T-RBFSs in DM problems
is given, accompanied by a practical example, which provides the optimal and the worst decision between some objects. Finally,
a comparative analysis of the recommended study with several prevailing approaches is given to endorse the advantages of the
suggested research.
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1. Introduction

We frequently deal with ambiguous and uncertain data while simulating real-world issues in several
domains. The complexity and dimensions of this uncertainty are growing. Researchers and scientists
present several tools to address these uncertainties, like fuzzy set (FS) theory [7, 10, 11, 50] and rough set
(RS) theory [3, 37, 38]. Data analysis in various sciences also requires multiple problems associated with
DM. Many intersecting applications of several hybrid fuzzy structures in DM problems are discussed in
[8, 18, 30, 51]. But, in all these applications, there is only one decision-maker looking at only one side of
the information.

Pawlak first created the RS theory [37, 38] as a practical mathematical strategy to navigate uncertain
data. It has gotten broad attention in the research domains in both real-life dilemmas and the theory itself

∗Corresponding author
Email address: muradshhada@gmail.com (Murad Arar)

doi: 10.22436/jmcs.033.03.06

Received: 2023-11-27 Revised: 2023-12-11 Accepted: 2023-12-13

http://dx.doi.org/10.22436/jmcs.033.03.06
http://dx.doi.org/10.22436/jmcs.033.03.06
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.033.03.06&domain=pdf


N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, J. Math. Computer Sci., 33 (2024), 275–289 276

[4, 6, 9, 23]. It has found practical uses in several disciplines, including knowledge discovery, data analysis,
machine learning, conflict analysis, approximate classification, etc. Meanwhile, in the current databases,
the attribute values might be both symbolic and real-valued, and the RS theory has trouble coping with
such matters. To eliminate this issue, Dubois and Prade [15] conceived the notion of rough FS (RFS).
Various models generated by combined RS with FS theories have been explored [24, 34, 35, 40, 44, 59].

Two main questions may arise here. First, “What is the need for bipolarity?” and second, “Why do we
study T -roughness in the BFSs?”. As a matter of fact, bipolarity is a vital feature in many problems of data
analysis and mathematical modeling; it means observing the positive as well as the negative aspects of the
data. The positive side depicts possible or feasible information, while the negative side depicts impossible
or adverse information. The FSs successfully approximate the presence of an uncertain property in some
objects. Still, they cannot measure the presence of its counter property in the same objects. For instance,
let an FS ω approximating the sweetness of food, give the membership value ω(a) = 0.3 to a particular
food item “a”. But the sourness in “a” might not be equal to 0.7. In ceratin situations, it might be less
than 0.7 or even zero. So, the complement of an FS may not work in all situations. To fix this issue,
Zhang [53] introduced the BFSs, which are characterized by a positive MF (PMF) ranging in [0, 1], which
demonstrates the degree of fulfillment of the elements for some property, and a negative MF (NMF)
ranging in [−1, 0], which quantifies the degree of fulfillment of those elements to the counter property.
The BFSs have the potential to tackle the bipolarity and fuzziness of the data.

Studying such bipolarity is because human decisions are customarily dependent on bipolar thinking.
For instance, the hardness and softness of rocks, sweetness and sourness of food, sympathy and hostility
are the counter characteristics of the information in the DM process. Lee [27] pioneered several funda-
mental operations on BFSs. Also, Lee [28] conduct a comparative analysis of the BFSs with several other
extensions of FSs. Dubois and Prade [16] offered three types of bipolarity.

BFS theory has not only been employed in bipolar logical reasoning but also used in other application
domains like computational psychiatry [56], medical science [29, 58], bipolar quantum logic-based com-
puting [54, 57], physics and philosophy [55]. Additionally, several initiatives have been made to integrate
RS theory with BFS theory [22, 47, 48].

The second question is, “Why do we study T -roughness in the BFSs?”. We know that the membership
values of an FS or a BFS are just the upshots of estimation and are not exact. By describing the lower
and upper rough approximations, we become closer to these membership values’ certain and uncertain
parts. Knowing about the definite part of these values will help us to refine the results and decisions.
Pawlak used the equivalence relation (ER) to collect objects for the rough approximations. But, in many
real-world problems, having an ER between the objects to be studied becomes very difficult. Davvaz
[13] initiated the concept of T -roughness using a more generalized relationship between the objects. The
T -rough approximations magically work to estimate the values of one set with the help of BFS in some
other set. Thus, the decisions based on the T-RSs are more effective and consistent. Numerous studies on
fuzzy and bipolar fuzzy frameworks have been undertaken. For instance, different kinds of fuzzy ideals
in semigroups were studied in [41–43]. Akram and Dudek [1] offered the idea of regular bipolar fuzzy
graphs. RSs are hybridized with FSs in [12, 15, 17]. Malik and Shabir [33] established the idea of roughness
in fuzzy bipolar soft sets DM applications. Yao [49] discussed the decision analysis using probabilistic
RSs. In [19], authors have interpreted the roughness of a set based on (α,β)-indiscernibility. Kim et
al. [26] devised various characteristics in bipolar fuzzy topological spaces. Mahmood and Rehman [32]
pioneered the concept of bipolar complex FSs and their applications in generalized similarity measures.
Yang et al. [47] projected the transformation method of bipolar fuzzy RSs. Wei et al. [46] pioneered
bipolar fuzzy Hamacher aggregation operators with applications in DM. Stanujkic et al. [36] expanded
the MULTIMOORA approach in a bipolar fuzzy environment. Han et al. [21] offered a comprehensive
TOPSIS strategy for improving the accuracy of bipolar disorder. The notion of complex BFS was given by
Gulistan et al. [20]. Mahmood et al. [31] fostered a multiple criteria DM using BFSs. Riaz and Tehrim
[39] analyzed the VIKOR strategy for BFSs via connection numbers of SPA theory-based metric spaces.
Discussing the three-way decision approach via some environments of FSs was the goal of some articles
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[14, 45, 52]. Recently, Al-shami [5] has investigated the relationships between objects and a bipolar soft
set, which opened the door for novel theoretical applications via bipolar topological structures.

1.1. Motivation and research gap

BFS theory has become a popular framework among researchers to deal with the ambiguity and
bipolarity in information. Based on the aforementioned research survey, the knowledge gap, uniqueness,
and motives of this script are outlined as follows.

� Theories of RSs and FSs have grown in popularity in recent eras. They offer an innovative theo-
retical paradigm for solving challenging issues in an uncertain scenario. However, in the process
of DM under the FS and RS environment, only one decision-maker looks at only one side of the
information. We address a broader situation in which a team of decision-makers (experts) wishes to
decide on a specific object, considering the positivity and negativity observed in the objects.

� In the existing approaches to the roughness of BFSs, bipolar fuzzy relations have been used to
construct approximations of a BFS. This strategy restricts their effectiveness as the construction of
bipolar fuzzy relations is not an easy task. As a result, instead of using bipolar fuzzy relations, in the
present article, we employ a set-valued map (SVM) T and introduce a novel model termed T-RBFS.
The SVM T provides the opportunity to classify the alternatives according to their characteristics
into bunches (image set of T) in the context of the given scenario.

� Another limitation of all the existing algorithms is that they decide between the objects based on
the values assigned to the same objects. Sometimes, it is also necessary to decide between the
objects of one set, using the values assigned to the objects of some other set. This case has not been
addressed till now in the bipolar fuzzy environment. Thus, we will establish the notions of the T-
RBFS model by hybridizing BFSs and T-RSs in this study. The T-RBFS model can solve the uncertain
and incomplete problems in the RS theory, and handle the bipolarity and fuzziness. Moreover,
we propose an efficient computational algorithm to address the DM problem in the framework of
T-RBFSs.

1.2. Aim and contribution

The main contributions in this article are listed as follows.

• By combining T-RSs with BFS theory, a novel concept of T-RBFSs is proposed.
• Several significant structural properties of the T-RBFSs model are thoroughly investigated.
• A comprehensive DM approach under the framework of T-RBFSs has been developed. The DM

methodology and the algorithm of the proposed technique are given.
• Practical case study also verifies the validity of the designed approach.

1.3. Framework of the paper

The rest of this script is organized as follows. Section 2 recalls some concepts necessary for under-
standing our research work. Section 3 studies the novel idea of T-RBFSs and their essential structural
properties. Section 4 offers a novel DM framework based on the T-RBFS theory and verifies the DM strat-
egy’s main steps with a legitimate example. The comparative analysis is conducted in Section 5. Section
6 concludes our results and suggestions for more research directions.

2. Background Knowledge

In the current part, we will revise several key ideas related with RSs, T-RSs, FSs, and BFSs.
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Definition 2.1 ([37, 38]). Assume that ∅ 6= Ũ is a finite universe, and σ ⊆ Ũ× Ũ is an ER. For W ⊆ Ũ,
lower and upper rough approximations w.r.t. σ are described as:

Wσ =
{
κ ∈ Ũ : [κ]σ ⊆W

}
, W

σ
=
{
κ ∈ Ũ : [κ]σ ∩W 6= ∅

}
.

The pair
(
Wσ,Wσ) is called a RS of W in Ũ.

Pawlak’s RS theory was initially offered using an ER. But, in real-world problems, the ER between the
objects is often difficult to obtain because of the vagueness and inadequacy of human knowledge. For
this reason, Davvaz [13] considered a generalized situation and presented the concept of T-RSs.

Definition 2.2 ([13]). Let Ũ and Ṽ be two non-empty universes and Q ⊆ Ṽ. Let T : Ũ −→ 2Ṽ be a SVM,
where 2Ṽ represents the set of all non-empty subsets of Ṽ. The lower and upper inverses of Q under T
are respectively characterized as:

(Q)
T
=
{
κ ∈ Ũ : T(κ) ⊆ Q

}
, (Q)

T
=
{
κ ∈ Ũ : T(κ)∩Q 6= ∅

}
.

If (Q)
T
= (Q)

T
, then, Q is T -definable, otherwise Q is said to be a T -RS.

These lower and upper inverses of the set Q are called the T -rough approximations of Q under T and
the triplet (Ũ, Ṽ, T) is the approximation space.

Example 2.3. Assume that Ũ = {x, y, z} and Ṽ = {a, b}. Consider a SVM T : Ũ −→ 2Ṽ defined by T(x) = {a},
T(y) = {b}, T(z) = {a, b}. Then the lower and upper inverses of non-empty subsets of Ṽ under T are given
as

({a})
T
= {x}, ({a})

T
= {x, z}, ({b})

T
= {y}, ({b})

T
= {y, z}, ({a, b})

T
= {x, y, z}, ({a, b})

T
= {x, y, z}.

Definition 2.4 ([50]). An FS ξ over Ũ is described through a function ξ : Ũ −→ [0, 1], where ξ(κ) signifies
the degree to which κ belongs to ξ.

Definition 2.5 ([50]). Let ξ1 and ξ2 be two FSs over Ũ. Then
1. ξ1 = ξ2 ⇐⇒ ξ1(κ) = ξ2(κ), ∀ κ ∈ Ũ;
2. ξ1 ⊆ ξ2 ⇐⇒ ξ1(κ) 6 ξ2(κ), ∀ κ ∈ Ũ;
3. ξ1 ∪ ξ2 = ξ1(κ)∨ ξ2(κ);
4. ξ1 ∩ ξ2 = ξ1(κ)∧ ξ2(κ);
5. ξc1 = 1 − ξ1(κ).

Definition 2.6 ([53]). A BFS µ over Ũ is a mathematical object having the form:

µ =
{(

κ,µ+(κ),µ−(κ)
)
: κ ∈ Ũ

}
,

where µ+ : Ũ −→ [0, 1] and µ− : Ũ −→ [−1, 0] signifies the PMF and the NMF, respectively.

The collection of all BFSs in Ũ is symbolized by BF(Ũ).

Definition 2.7 ([27]). Let µ,ν ∈ BF(Ũ). Then µ is contained in ν, that is µ ⊆ ν, if µ+(κ) 6 ν+(κ) and
µ−(κ) > ν−(κ) for all κ ∈ Ũ. Clearly, µ = ν if µ ⊆ ν and ν ⊆ µ.

Definition 2.8 ([27]). The whole BFS over Ũ is expressed as I
Ũ
=
(
I+, I−

)
, where I+(κ) = 1 and I−(κ) = 0,

∀ κ ∈ Ũ. The null BFS in Ũ is symbolized as O
Ũ

=
(
O+,O−

)
, where O+(κ) = 0 and O−(κ) = −1, ∀

κ ∈ Ũ. Hence, I
Ũ
(κ) = (1, 0) and O

Ũ
(κ) = (0,−1), ∀ κ ∈ Ũ.

Definition 2.9 ([27]). Let µ,ν ∈ BF(Ũ). Then

µ∪ ν =
{(

κ,µ+(κ)∨ ν+(κ),µ−(κ)∧ ν−(κ)
)
: κ ∈ Ũ

}
,

µ∩ ν =
{(

κ,µ+(κ)∧ ν+(κ),µ−(κ)∨ ν−(κ)
)
: κ ∈ Ũ

}
,

µc =
{(

κ, 1 − µ+(κ),−1 − µ−(κ)
)
: κ ∈ Ũ

}
.
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3. T-rough bipolar fuzzy sets (T-RBFSs)

In this segment, we propose the idea of T-RBFSs by characterizing the lower and upper inverses of the
BFSs. Also, we investigate several significant structural characteristics of T-RBFSs in-depth with various
concrete examples.

Definition 3.1. Assume that Ũ and Ṽ are two non-empty universes, T : Ũ −→ 2Ṽ is a SVM, and µ ∈ BF(Ṽ).
The T-rough approximations of µ are the lower and upper inverses of µ under T , which are the BFSs T(µ)
and T(µ) in Ũ, respectively, are described as:

T(µ) =
{(
x,

∧
y∈T(x)

µ+(y),
∨

y∈T(x)

µ−(y)
)
: x ∈ Ũ

}
, T(µ) =

{(
x,

∨
y∈T(x)

µ+(y),
∧

y∈T(x)

µ−(y)
)
: x ∈ Ũ

}
.

If T(µ) = T(µ), then µ is stated to be T - bipolar fuzzy definable; else, µ is a T-RBFS in Ṽ.

Let T(µ)(x) and T(µ)(x) be denoted by
(
T(µ+)(x), T(µ−)(x)

)
and

(
T(µ+)(x), T(µ−)(x)

)
, respectively

and let T(x) contain the objects linked with x. Then, the knowledge concerning the object x ∈ Ũ interpreted
by these inverses are as follows.

1. T(µ+)(x) provides the degree of definite fulfillment of the property of µ in the objects of T(x).
2. T(µ−)(x) gives the degree of definite fulfillment of the counter property of µ in the objects of T(x).
3. T(µ+)(x) demonstrates the degree of possible fulfillment of the property of µ in the objects of T(x).
4. T(µ−)(x) signifies the degree of possible fulfillment of the counter property of µ in the objects of
T(x).

Following are a few cardinal structural properties of the T-RBFSs.

Theorem 3.2. Assume that Ũ and Ṽ be two non-empty universes, T : Ũ −→ 2Ṽ be a SVM and µ,ν ∈ BF(Ṽ).
Then, the following assertions hold:

1. T(I
Ṽ
) = I

Ũ
= T(I

Ṽ
);

2. T(O
Ṽ
) = O

Ũ
= T(O

Ṽ
);

3. T(µ) ⊆ T(µ);
4. T(µc) =

(
T(µ)

)c;
5. T(µc) =

(
T(µ)

)c;
6. T(µ∩ ν) = T(µ)∩ T(ν);
7. T(µ∪ ν) ⊇ T(µ)∪ T(ν);
8. T(µ∪ ν) = T(µ)∪ T(ν);
9. T(µ∩ ν) ⊆ T(µ)∩ T(ν);

10. µ ⊆ ν =⇒ T(µ) ⊆ T(ν) and T(µ) ⊆ T(ν).

Proof.

(1) We have I+(y) = 1 and I−(y) = 0 for all y ∈ Ũ, which yields (T(I
Ṽ
))+(x) =

∧
y∈T(x)

I+(y) = 1 and

(T(I
Ṽ
))−(x) =

∨
y∈T(x)

I−(y) = 0 for all x ∈ Ũ. Thus, T(I
Ṽ
)(x) =

(
(T(I

Ṽ
))+(x), (T(I

Ṽ
))−(x)

)
= (1, 0) = I

Ũ
(x)

for all x ∈ Ũ. This gives T(I
Ṽ
) = I

Ũ
. Similarly, one can show that T(I

Ṽ
) = I

Ũ
. Hence, T(I

Ṽ
) = I

Ũ
= T(I

Ṽ
).

(2) This is similar to the proof of (1).

(3) Straightforward.
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(4) We have (µc)+(y) = 1 − µ+(y) and (µc)−(y) = −1 − µ−(y) for all y ∈ Ũ, by Definition 2.9, which
yields

T(µc)(x) =
(
T(µc)+(x), T(µc)−(x)

)
=
( ∨
y∈T(x)

(µc)+(y),
∧

y∈T(x)

(µc)−(y)
)

=
( ∨
y∈T(x)

(
1 − µ+(y)

)
,
∧

y∈T(x)

(
− 1 − µ−(y)

))
=
(

1 −
∧

y∈T(x)

µ+(y),−1 −
∨

y∈T(x)

µ−(y)
)
=
(
T(µ)

)c
(x)

for all x ∈ Ũ. Hence, T(µc) =
(
T(µ)

)c.

(5) Similar to the proof of (4).

(6) By Definition 2.9, we have (µ ∩ ν)+(y) = µ+(y)∧ ν+(y) for all y ∈ Ũ. According to Definition 3.1 it
implies that

T(µ∩ ν)+(x) =
∧

y∈T(x)

(
µ+(y)∧ ν+(y)

)
=
( ∧
y∈T(x)

µ+(y)
)
∧
( ∧
y∈T(x)

ν+(y)
)
=
(
T(µ)+(x)∧ (T(ν)−(x)

)
=
(
T(µ)∩ T(ν)

)+
(x)

for all x ∈ Ũ. Similarly, we can show that T(µ∩ ν)−(x) =
(
T(µ)∩ T(ν)

)−
(x) for all x ∈ Ũ.

Therefore, in the light of Definition 2.7, we get T(µ∩ ν) = T(µ)∩ T(ν).

(7) In the view of Definition 2.9, we have (µ ∪ ν)+(y) = µ+(y)∨ ν+(y) for all y ∈ Ũ, which yields using
Definition 3.1 that

T(µ∪ ν)+(x) =
∧

y∈T(x)

(
µ+(y)∨ ν+(y)

)
>
( ∧
y∈T(x)

µ+(y)
)
∨
( ∧
y∈T(x)

ν+(y)
)
=
(
T(µ)+(x)∨ (T(ν)−(x)

)
=
(
T(µ)∪ T(ν)

)+
(x)

for all x ∈ Ũ. Similarly, we can show that T(µ ∪ ν)−(x) 6
(
T(µ) ∪ T(ν)

)−
(x) for all x ∈ Ũ. Thus, in the

light of Definition 2.7, we obtain T(µ∪ ν) ⊇ T(µ)∪ T(ν).
(8) Analogous to the proof of (6).

(9) Analogous to the proof of (7).

(10) Let µ ⊆ ν. According to Definitions 2.7 and 3.1, it follows that

T(µ) =
{(
x,

∧
y∈T(x)

µ+(y),
∨

y∈T(x)

µ−(y)
)
: x ∈ Ũ

}
⊆
{(
x,

∧
y∈T(x)

ν+(y),
∨

y∈T(x)

ν−(y)
)
: x ∈ Ũ

}
= T(ν).

Thus, T(µ) ⊆ T(ν). Similarly, one can show T(µ) ⊆ T(ν).

We present a simple example for the illustration.

Example 3.3. Let Ũ = {κ1, κ2, κ3} and Ṽ = {ν1,ν2,ν3,ν4}. Construct a SVM T : Ũ −→ 2Ṽ as:

T(κ) =


{ν1,ν2}, if κ = κ1,
{ν1,ν3,ν4}, if κ = κ2,
{ν2,ν4}, if κ = κ3.
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Let µ ∈ BF(Ṽ) be defined as:

µ =
{
(ν1, 0.6,−0.3), (ν2, 0.3,−0.5), (ν3, 0.5,−0.4), (ν4, 0.8,−0.1)

}
.

The lower inverse of µ under T is calculated as follows:

T(µ) =
{(
κi,

∧
ν∈T(κi)

µ+(ν),
∨

ν∈T(κi)

µ−(ν)
)
: i = 1, 2, 3

}
=
{
(κ1, 0.3,−0.3), (κ2, 0.5,−0.1), (κ3, 0.3,−0.1)

}
.

Similarly, the upper inverse of µ under T is calculated as follows:

T(µ) =
{(
κi,

∨
ν∈T(κi)

µ+(ν),
∧

ν∈T(κi)

µ−(ν)
)
: i = 1, 2, 3

}
=
{
(κ1, 0.6,−0.5), (κ2, 0.8,−0.4), (κ3, 0.8,−0.5)

}
.

Now, we verify the inclusion in part (7) of Theorem 3.2. For this, take another BFS ν in Ṽ, defined as:

ν =
{
(ν1, 0.4,−0.4), (ν2, 0.7,−0.3), (ν3, 0.7,−0.1), (ν4, 0.6,−0.5)

}
.

Now, we evaluate the following quantities:

T(ν) =
{
(κ1, 0.4,−0.3), (κ2, 0.4,−0.1), (κ3, 0.6,−0.3)

}
,

µ∪ ν =
{
(ν1, 0.6,−0.4), (ν2, 0.7,−0.5), (ν3, 0.7,−0.4), (ν4, 0.8,−0.5)

}
,

T(µ∪ ν) =
{
(κ1, 0.6,−0.4), (κ2, 0.6,−0.4), (κ3, 0.7,−0.5)

}
,

T(µ)∪ T(ν) =
{
(κ1, 0.4,−0.3), (κ2, 0.5,−0.1), (κ3, 0.6,−0.3)

}
.

From the above calculations and Definition 2.7, it can be observed that T(µ∪ ν) ⊇ T(µ)∪ T(ν). Similarly,
the inequality (9) of the same theorem can also be observed.

It is important to note that in the approximation space (Ũ, Ṽ, T) if we substitute the SVM T : Ũ −→ 2Ṽ

by another SVM T1 : Ũ −→ 2Ṽ, such that T1(x) contains T(x) for all x ∈ Ũ. Then, the upper inverse of
µ ∈ BF(Ṽ) under T1 also contains the upper inverse of µ under T . However, this containment is reversed
in lower inverses, as highlighted in the subsequent result.

Proposition 3.4. Let Ũ and Ṽ be two non-empty universes and T , T1 : Ũ −→ 2Ṽ be SVMs, such that T(x) ⊆ T1(x)

for all x ∈ Ũ. Then, T(µ) ⊆ T1(µ) and T(µ) ⊇ T1(µ) for all µ ∈ BF(Ṽ).

Proof. Take any µ ∈ BF(Ṽ). For all x ∈ Ũ, we have
∨

y∈T(x)
µ+(y) 6

∨
y∈T1(x)

µ+(y) and
∧

y∈T(x)
µ−(y) >∧

y∈T1(x)

µ−(y), since T(x) ⊆ T1(x). So, Definition 2.7 gives T(µ) ⊆ T1(µ). Similarly, one can verify that

T1(µ) ⊆ T1(µ).

Proposition 3.5. Let Ũ and Ṽ be two non-empty universes and T : Ũ −→ 2Ṽ be a SVM, such that T(x) is a
singleton subset of Ṽ, for all x ∈ Ũ. Then, T(µ) = T(µ) for all µ ∈ BF(Ṽ).

Proof. Straightforward.

For every ordered pair (a,b), where a ∈ [0, 1] and b ∈ [−1, 0], we can construct a BFS µab =
(
µ+ab,µ−ab

)
in Ṽ, such that µ+ab and µ−ab are constant maps defined by µ+ab(x) = a and µ−ab(x) = b for all x ∈ Ṽ. Such
a BFS µab will be termed as a constant BFS in Ṽ.
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Proposition 3.6. Assume that Ũ and Ṽ be two non-empty universes and T : Ũ −→ 2Ṽ be a SVM. If µ is a constant
BFS in Ṽ, then T(µ) = T(µ).

Proof. Since µ is a constant BFS in Ṽ, we can take µ = µab ∈ BF(Ṽ) for some a ∈ [0, 1] and b ∈ [−1, 0].
That is, µ+ab(y) = a and µ−ab(y) = b for all y ∈ Ṽ. Then,

∧
y∈T(x)

µ+ab(y) = a =
∨

y∈T(x)
µ+ab(y) and∧

y∈T(x)
µ−ab(y) = b =

∨
y∈T(x)

µ−ab(y) for any x ∈ Ũ. Thus,

T(µab) =
{(
x,

∧
y∈T(x)

µ+ab(y),
∨

y∈T(x)

µ−ab(y)
)
: x ∈ Ũ

}
=
{(
x,

∨
y∈T(x)

µ+ab(y),
∧

y∈T(x)

µ−ab(y)
)
: x ∈ Ũ

}
= T(µab).

Hence, T(µ) = T(µ).

The converse of Proposition 3.6 does not hold, in general, but it may hold by imposing a further
condition on the map T . This can be seen in the following result.

Proposition 3.7. Let Ũ and Ṽ be two non-empty universes, µ ∈ BF(Ṽ) and T : Ũ −→ 2Ṽ be a SVM, such that
T(x) = Ṽ for all x ∈ Ũ. Then, T(µ) = T(µ) if and only if µ is a constant BFS in Ṽ.

Proof. For a constant BFS µ in Ṽ, we have T(µ) = T(µ) by Proposition 3.6. To prove the converse statement,
take a BFS µ in Ṽ, such that T(µ) = T(µ). This gives{(

x,
∧

y∈T(x)

µ+(y),
∨

y∈T(x)

µ−(y)
)
: x ∈ Ũ

}
=
{(
x,

∨
y∈T(x)

µ+(y),
∧

y∈T(x)

µ−(y)
)
: x ∈ Ũ

}
.

Using T(x) = Ṽ for all x ∈ Ũ, the above equation gives∧
y∈Ṽ

µ+(y) =
∨
y∈Ṽ

µP(y) and
∧
y∈Ṽ

µ−(y) =
∨
y∈Ṽ

µ−(y)

for all y ∈ Ṽ. This clearly indicates that µ is a constant BFS µab in Ṽ, where a =
∨
y∈Ṽ

µ+(y) and b =∨
y∈Ṽ

µ−(y).

Using the lower and upper inverses, we define a binary relation ≈ on BF(Ṽ) as follows.

Definition 3.8. Assume that Ũ and Ṽ are two non-empty universes, T : Ũ −→ 2Ṽ be a SVM and µ,ν ∈
BF(Ṽ). Then, µ and ν are T -roughly similar if and only if T(µ) = T(ν) and T(µ) = T(ν).

We denote two T -roughly similar BFSs µ and ν by µ ≈ ν. This binary relation on BF(Ṽ) can be called
the T -rough similarity relation on BF(Ṽ). The relation ≈ is surely an ER that induces a partition BF(Ṽ)/ ≈
of BF(Ṽ). An equivalence class of ≈ is a family of all BFSs in Ṽ with the same lower and upper inverses.
Some of the characteristics of the T -rough similarity relation ≈ are given in the following result.

Theorem 3.9. Let Ũ and Ṽ be two non-empty universes and T : Ũ −→ 2Ṽ be a SVM. Then, the following assertions
hold for all µ,ν ∈ BF(Ṽ):

1. µ ⊆ ν and ν ≈ O
Ṽ

imply that µ ≈ O
Ṽ

;
2. µ ⊆ ν and µ ≈ I

Ṽ
imply that ν ≈ I

Ṽ
;
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3. if (µ∪ ν) ≈ O
Ṽ

then µ ≈ O
Ṽ

and ν ≈ O
Ṽ

;
4. if (µ∩ ν) ≈ I

Ṽ
then µ ≈ I

Ṽ
and ν ≈ I

Ṽ
.

Proof.

(1) ν ≈ O
Ṽ

implies that T(ν) = T(O
Ṽ
) and T(ν) = T(O

Ṽ
). Also µ ⊆ ν and Theorem 3.2 imply that

T(µ) ⊆ T(ν) = T(O
Ṽ
) ⊆ T(µ). Thus, T(µ) = T(O

Ṽ
). Similarly, T(µ) = T(O

Ṽ
). This shows that µ ≈ O

Ṽ
.

(2) µ ≈ I
Ṽ

implies that T(µ) = T(I
Ṽ
) and T(µ) = T(I

Ṽ
). Also µ ⊆ ν and Theorem 3.2 imply that

T(ν) ⊇ T(µ) = T(I
Ṽ
) ⊇ T(ν). Thus, T(ν) = T(I

Ṽ
). Similarly, T(ν) = T(I

Ṽ
). This indicates that ν ≈ I

Ṽ
.

(3) This follows from (1).

(4) This follows from (2).

4. Applications of T-RBFSs in DM problems

DM is choosing among several objects using the available knowledge and assets. It includes analyz-
ing and evaluating data, considering numerous viewpoints, and making informed and effective choices
compatible with an individual’s or organization’s goals and values. DM is a necessary skill for both
personal and professional level. It is a vital problem-solving component and assists individuals and orga-
nizations navigate challenges and progress. Effective DM necessitates good judgment and the ability to
communicate and collaborate with others to gather additional information and seek input and feedback.
The researchers employ their expertise to develop algorithms to decide the optimal alternative from a
collection Ũ of alternatives. In many situations, a team of decision-makers wishes to choose an optimal
object. There may also be situations when the decision is to be taken among the objects of one set by
grading the objects of some other set. By using the lower and upper inverses of the BFSs, we can estimate
the definite and indefinite parts in the membership values of the objects. So, the decision made with the
help of the T -rough approximations of BFSs are more refined and reliable than the decision made by just
adding these membership values. The algorithm presented in this paper has three main advantages.

• It accommodates the opinions of more than one decision-maker.

• It gives approximations of the objects of one set by grading the objects of some other set.

• T -rough approximations of BFSs make the decision more refined and reliable.

Let Ũ = {xi : 1 6 i 6 n1} be the collection of objects among which the decision is to be made and let
Ṽ = {yj : 1 6 j 6 n2} be the collection of objects used to asses the objects of Ũ. The objects of Ũ and Ṽ are
linked by a SVM T : Ũ −→ 2Ṽ. The collection of the BFSs in Ṽ expresses the opinions of n3 independent
decision-makers about the objects of Ṽ are denoted by ð = {µk : 1 6 k 6 n3}. The knowledge about the
objects yj of Ṽ, given by ð, is denoted through a table with µk(yj) as its (j,k)th entry. These µk are the
BFSs in Ṽ, while the lower inverse T(µk) and the upper inverse T(µk) of µk are the BFSs in Ũ. Recall that
we write T(µk)(xi) =

(
T(µ+k )(xi), T(µ

−
k )(xi)

)
and T(µk)(xi) =

(
T(µ+k )(xi), T(µ

−
k )(xi)

)
for xi ∈ Ũ.

Definition 4.1. The decision coefficient D has the values di w.r.t. each object xi ∈ Ũ, given by:

di =

n3∑
k=1

(
T(µ+k )(xi) + T(µ

−
k )(xi) + T(µ

+
k )(xi) + T(µ

−
k )(xi)

)
. (11)
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4.1. Proposed DM algorithm

To choose the best object among the available ones, here we offer a DM algorithm in the framework of
the T-RBFS model. The relevant steps are outlined as follows.

1. Input Ũ and Ṽ.

2. Input the SVM T : Ũ −→ 2Ṽ.
3. Input the BFSs µk.
4. Evaluate T(µk)(xi) and T(µk)(xi) for each µk ∈ ð and for each xi ∈ Ũ.
5. Find the decision values di for each object xi ∈ Ũ, according to Definition 4.1.
6. Construct the decision table by rearranging the table obtained in Step 5 in the descending order of

values of di. Choose m, so that, dm = max
i
di. Then xm is the optimal object to be decided.

A flowchart representation of the above algorithm is shown in Figure 1.

Figure 1: The method of the proposed DM algorithm.

4.2. Case study

To illustrate the feasibility, validity, and necessity of the designed idea and method, consider the
following example.

Example 4.2. Assume that Ũ = {x1, x2, x3, x4, x5, x6} be a group of six teams from six different colleges
participating in a science competition, such that each college has to prepare three different science models,
which are being displayed in the competition without the title of the college (for the sake of unbiasedness).
Let ð = {µ1,µ2,µ3} be a collection of BFSs in Ṽ, describing the opinions of three independent judges about
the science models. Table 1 shows the models prepared and presented by team xi.

1. Input Ũ = {x1, x2, x3, x4, x5, x6} and Ṽ = {y1,y2, . . . ,y18}.



N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, J. Math. Computer Sci., 33 (2024), 275–289 285

2. The SVM T : Ũ −→ 2Ṽ may be defined by using Table 1 as T(xi) =
{
y3i−2,y3i−1,y3

}
for all xi ∈ Ũ.

3. The BFSs µk of ð showing the opinions of judges about the science models being displayed are given
in Table 2.

Table 1: Models prepared by the team xi.

Team Models
x1 y1,y2,y3
x2 y4,y5,y6
x3 y7,y8,y9
x4 y10,y11,y12
x5 y13,y14,y15
x6 y16,y17,y18

Table 2: Tabular representation of ð.

Ṽ µ1 µ2 µ3

y1 (0.7,−0.2) (0.6,−0.2) (0.6,−0.3)
y2 (0.5,−0.3) (0.6,−0.2) (0.6,−0.3)
y3 (0.9,−0.1) (0.7, 0) (0.8,−0.2)
y4 (0.6,−0.3) (0.6,−0.2) (0.6,−0.3)
y5 (0.9, 0) (0.8, 0) (0.8,−0.1)
y6 (0.8,−0.1) (0.6,−0.2) (0.6, 0)
y7 (0.7,−0.2) (0.7, 0) (0.6,−0.1)
y8 (0.9,−0.1) (0.8, 0) (0.8,−0.1)
y9 (0.8,−0.2) (0.7,−0.2) (0.7, 0)
y10 (0.8,−0.1) (0.7,−0.1) (0.7,−0.2)
y11 (0.8,−0.1) (0.9, 0) (0.9, 0)
y12 (0.7,−0.1) (0.8,−0.2) (0.8,−0.1)
y13 (0.8,−0.2) (0.7,−0.1) (0.7,−0.2)
y14 (0.6,−0.2) (0.5,−0.3) (0.6,−0.2)
y15 (0.7,−0.3) (0.6,−0.1) (0.7,−0.3)
y16 (0.5,−0.3) (0.6,−0.2) (0.6,−0.1)
y17 (0.6,−0.3) (0.5,−0.2) (0.6,−0.2)
y18 (0.7,−0.1) (0.7,−0.2) (0.8,−0.1)

4. T(µk)(xi) and T(µk)(xi) are calculated for each µk ∈ ð and xi ∈ Ũ, in Table 3.

Table 3: Calculations of T(µk)(xi) and T(µk)(xi).

Ũ T(µ1)(xi) T(µ2)(xi) T(µ3)(xi) T(µ1)(xi) T(µ2)(xi) T(µ3)(xi) di
x1 (0.5,−0.1) (0.6, 0) (0.6,−0.2) (0.9,−0.3) (0.7,−0.2) (0.8,−0.3) 3.0
x2 (0.6, 0) (0.6, 0) (0.6, 0) (0.9,−0.3) (0.8,−0.2) (0.8,−0.3) 3.5
x3 (0.7,−0.1) (0.7, 0) (0.6, 0) (0.9,−0.2) (0.8,−0.2) (0.8,−0.1) 3.9
x4 (0.7,−0.1) (0.7, 0) (0.7, 0) (0.8,−0.1) (0.9,−0.2) (0.9,−0.2) 4.1
x5 (0.6,−0.2) (0.5,−0.1) (0.6,−0.2) (0.8,−0.3) (0.7,−0.3) (0.7,−0.3) 2.5
x6 (0.5,−0.1) (0.5,−0.2) (0.6,−0.1) (0.7,−0.3) (0.7,−0.2) (0.8,−0.2) 2.7

5. The decision values di for each xi ∈ Ũ are calculated in the last column of Table 3.
6. Table 4 is the decision table.

Table 4: Decision table.

xi di
x4 4.1
x3 3.9
x2 3.5
x1 3.0
x6 2.7
x5 2.5
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From Table 4, we can see that max
i
di = d4 = 4.1. Thus, x4 is the winning team. Moreover, the ranking

among the teams is given as:
x4 � x3 � x2 � x1 � x6 � x5.

The graphic interpretation of the ranking order of the teams is depicted in Figure 2.
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Figure 2: Ranking of teams.

5. Comparative study and discussion

According to the best of our knowledge, there does not exist any strategy or DM algorithm of T-RSs
via BFSs environment in the literature. However, if we compare our devised strategy with the approaches
discussed in [12, 13, 49, 50], we explore the following points.

1. These methods are unable to address the bipolarity in the DM process, which is a critical feature
of human cognition and behavior. Therefore, the proposed DM approach in this article has wider
practicability and stronger effectiveness.

2. The suggested approach is more efficient because it is capable of situations involving multiple ex-
perts.

3. The proposed DM technique is easy to understand and can be applied to real-life problems.
4. A characteristic comparative analysis of our proposed DM technique with different approaches

is recapitulated in Table 5. The comparison is evaluated with features: membership function (MF),
non-membership function (NMF), computational complexity, number of decision-makers, and rank-
ing of alternatives.

Table 5: Characteristics comparison of various methods with our designed approach.

Methods Characteristics
Handle MF Handle NMF Computational complexity Decision-makers Ranking of alternatives

Han et al. [22] Yes Yes High One No
Alghamdi et al. [2] Yes Yes Less One Yes
Jana et al. [25] Yes Yes Less One Yes
Mahmood et al. [31] Yes Yes Less One Yes
Yang et al. [48] Yes Yes Less One No
Han et al. [21] Yes Yes High More than one No
Proposed approach Yes Yes Less More than one Yes
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6. Conclusions

In the past few years, the RS theory has gained in popularity. It is a new theoretical mechanism to
cope complicated issues in real-life dilemmas. There are numerous fields of life where the DM information
does not involve the objects’ positive aspects but also the negative aspects of the objects. Positive side
reflects what is seen to be feasible, while negative side reveals what is thought to be impractical. In such
cases of DM scenarios, the classical and fuzzy techniques are incapable.

In general, the main contributions made by this work are as follows.

• We have proposed a general strategy for roughness in BFSs and presented the idea of T-RBFSs.

• Some fundamental algebraic properties of the T-RBFSs and their inverses are studied in detail, and
some effects of the set-valued mapping on these inverses are examined.

• Moreover, a similarity relation between the BFSs is defined based on their T -rough approximations.

• In order to demonstrate the application of the designed model with bipolar fuzzified data, we
have built a unique strategy for addressing DM dilemmas using the theory of T-RBFSs. The DM
procedure and an algorithm of the devised strategy have been elaborated. This algorithm has three
main advantages. Firstly, it accommodates the views of more than one decision-maker. Secondly, it
gives approximations of the objects of one set by grading the objects of some other set. Thirdly, the
T -rough approximations make the decision more refined and reliable.

• Furthermore, a real-world illustration has been offered to indicate the effectiveness of the designed
methodology.

• A comparison has been made using prevailing methodologies to demonstrate the supremacy of the
recommended strategy.

We believe that our research sheds more light on the theoretical foundations of BFSs and may result
in more sufficient mathematical methods to approximate reasoning in soft computing. At the same time,
we acknowledge that there are still a number of directions in which this viewpoint has to be explored. In
the future, we want to extend our work in the following directions.

• The practical usefulness of the designed method in addressing various models, like TOPSIS, VIKOR,
ELECTRE, AHP, COPRAS, PROMETHEE, etc.

• Researchers might look at the properties of T-RBFSs concerning different algebraic structures.

• The attribute reduction of T-RBFSs should be analyzed, and comprehensive evaluations and com-
parisons with current studies should also be justified and explored.

• Another perspective is to analyze the topological characteristics of T-RBFSs to establish a robust
platform for further study.
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