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Abstract
In this article, we consider the following functional equation:

2h(x+ y, z+w) + 2h(x− y, z−w) + 12h(x, z) = h(x+ y, 2z+w) + h(x− y, 2z−w). (1)

Using the direct and fixed point methods, we obtain the Hyers-Ulam stability of the proposed functional equation.
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1. Introduction and preliminaries

In 1940, Ulam [33] mentioned a question concerning the stability of (group) homomorphisms which
motivated the study of the stability problems of functional equations. Hyers [13] then obtained a partial
answer to the question for additive mappings in Banach spaces. The stability of functional equations has
been also known as the Hyers-Ulam stability. Later it was extended by Aoki [2] for additive mappings
and, by Rassias [30], for linear mappings by concerning an unbounded Cauchy difference. Replacing
the unbounded Cauchy difference by a general control function, Găvruta [9] also extended the Rassias
theorem. Hyers himself contributed a number of notable articles such as [14–16]. Recently, Park gave the
definition of additive ρ-functional inequalities and proved the Hyers-Ulam stability of those inequalities
in Banach spaces in [24, 25, 27]. The stability problems of various functional equations and functional
inequalities have been studied extensively (see [1, 6, 10, 11, 19–21, 23, 34]).

In this article, we let N, R, R+, and C denote the sets of positive integers, real numbers, positive real
numbers, and complex numbers, respectively. Also, we let N0 = N ∪ {0} and R+

0 = R+ ∪ {0} . We begin
with a useful result in the theory of fixed point.
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Theorem 1.1 ([3, 7]). Let (X,d) be a complete generalized metric space and let a ∈ X. For a strict Lipschitz
contraction J : X→ X with the Lipschitz constant α < 1, either

(1) d(Jna, Jn+1a) =∞ for all n ∈N0 or there exists n0 ∈N for which d(Jna, Jn+1a) <∞ for all n > n0;
(2) Jna→ b∗, where b∗ is a unique fixed point of J in Xn0 := {b ∈ X : d(Jn0a,b) <∞};
(3) d(b,b∗) 6 1

1−αd(b, Jb) for all b ∈ Xn0 .

Applications for the stability of functional equations for proving fixed point theorems and applications
in nonlinear analysis were introduced by Isac and Rassias [17] in 1996. A large number of research articles
concerning the stability problems of some functional equations and various definitions of stability by
using the fixed pointed method have been widely studied in [4, 5, 8, 26, 28, 29, 31, 32] and others.

Jun and Kim [18] introduced the following cubic functional equation:

h(2x+ y) + h(2x− y) = 2h(x− y) + 2h(x− y) + 12h(x). (1.1)

They established the general solution and the Hyers-Ulam-Rassias stability problem of (1.1) for mapping
from a real vector space to a Banach space. The Hyers-Ulam stability of the additive-quadratic functional
equation, which is additive in the first variable and quadratic in the second variable:

h(x+ y, z+w) + h(x− y, z−w) = 2h(x, z) + 2h(x,w),

was found in [12].
In this paper, first, we consider the functional equation (1) which is additive-cubic. Second, we prove

the Hyers-Ulam stability of the functional equation (1) by using the direct method. Finally, we prove the
Hyers-Ulam stability of the functional equation (1) using the fixed point method.

2. Hyers-Ulam stability of the additive-cubic functional equation: direct method

Throughout this article, let X and Y be a (complex) normed space and a (complex) Banach space,
respectively. For a given mapping h : X2 → Y, we define, for all x,y, z,w ∈ X,

Dh(x,y, z,w) := 2h(x+ y, z+w) + 2h(x− y, z−w) + 12h(x, z) − h(x+ y, 2z+w) − h(x− y, 2z−w).

We also denote the class of mappings
{
g : X2 → Y : g(x, 0) = g(0,y) = 0 for all x,y ∈ X

}
by F0(X,Y).

Next, we introduce the concept of additive-cubic mapping.

Definition 2.1. A mapping h : X2 → Y is called additive-cubic if h is additive in the first variable and cubic
in the second variable, that is, h satisfies the following system of equations

h(x, z) + h(y, z) = h(x+ y, z)

and

2h(x,y+ z) + 2h(x,y− z) + 12h(x, z) = h(x, 2y+ z) + h(x, 2y− z)

for all x,y, z ∈ X. We denote the class of additive-cubic mapping by AC(X,Y).

Lemma 2.2. If h ∈ F0(X,Y) satisfies (1), then h ∈ AC(X,Y).

Proof. The fact that h is cubic in the second variable can be obtained by taking y = 0. Next, if y = w = 0,
then 2h(x, z) + 2h(x, z) + 12h(x, z) = h(x, 2z) + h(x, 2z). So,

8h(x, z) = h(x, 2z) (2.1)

for all x, z ∈ X. If w = 0, then 2h(x+ y, z) + 2h(x− y, z) + 12h(x, z) = h(x+ y, 2z) + h(x− y, 2z). Using
(2.1), we obtain

2h(x, z) = h(x+ y, z) + h(x− y, z)

for all x,y, z ∈ X, which implies that h is additive in the first variable. This completes the proof.
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Now, we present our main results.

Theorem 2.3. Let ϕ : X2 → R+
0 be a mapping such that

Φ(x,y) :=
∞∑
j=1

8jϕ
( x

2j
,
y

2j
)
<∞ (2.2)

for all x,y ∈ X. If h ∈ F0(X,Y) and

‖Dh(x,y, z,w)‖ 6 ϕ(x,y)ϕ(z,w) (2.3)

for all x,y, z,w ∈ X, then there exists a unique mapping H ∈ AC(X,Y) such that

‖h(x, z) −H(x, z)‖ 6 1
16
ϕ(x, 0)Φ(z, 0) (2.4)

for all x, z ∈ X.

Proof. Replacing y = w = 0 in (2.3), we obtain

‖8h(x, z) − h(x, 2z)‖ 6 1
2
ϕ(x, 0)ϕ(z, 0) (2.5)

and so ∥∥∥8h
(
x,
z

2

)
− h(x, z)

∥∥∥ 6
1
2
ϕ(x, 0)ϕ

(z
2

, 0
)

for all x, z ∈ X. Then, for each m, l ∈N0 with m > l, we have

∥∥∥8lh
(
x,
z

2l
)
− 8mh

(
x,
z

2m
)∥∥∥ 6

m−1∑
j=l

∥∥∥8jh
(
x,
z

2j
)
− 8j+1h

(
x,

z

2j+1

)∥∥∥ 6
1

16

m∑
j=l+1

8jϕ(x, 0)ϕ
( z

2j
, 0
)

(2.6)

for all x, z ∈ X. Thus {8nh (x, 2−nz)} is a Cauchy sequence and so it is a convergent sequence in Y due to
the completeness of Y. Now, we define a mapping H : X2 → Y by

H(x, z) := lim
n→∞ 8nh

(
x,
z

2n
)

for all x, z ∈ X. Next, choose l = 0 and let m → ∞ in (2.6). Then we have (2.4). It follows from (2.2) and
(2.3) that

‖DH(x,y, z,w)‖ = lim
n→∞ 8n

∥∥∥Dh(x,y,
z

2n
,
w

2n
)∥∥∥ 6 ϕ(x,y) lim

n→∞ 8nϕ
( z

2n
,
w

2n
)
= 0

for all x,y, z,w ∈ X. Hence, by Lemma 2.2, H ∈ AC(X,Y). To prove the uniqueness property of H, let G be
another additive-cubic mapping satisfying (2.4). Then

‖H(x, z) −G(x, z)‖ = 8q
∥∥∥H(x,

z

2q
)
−G

(
x,
z

2q
)∥∥∥

6 8q
∥∥∥H(x,

z

2q
)
− h

(
x,
z

2q
)∥∥∥+ 8q

∥∥∥h(x,
z

2q
)
−G

(
x,
z

2q
)∥∥∥

6 8q−1ϕ(x, 0)Φ
( z

2q
, 0
)

for all x, z ∈ X. Therefore, ‖H(x, z) −G(x, z)‖ → 0 when q → ∞ and this confirms the uniqueness of H.
This completes the proof.
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Theorem 2.4. Let ϕ : X2 → R+
0 be a mapping such that

Φ̃(x,y) :=
∞∑
j=1

27jϕ
( x

3j
,
y

3j
)
<∞ (2.7)

for all x,y ∈ X. If h ∈ F0(X,Y) satisfies (2.3), then there exists a unique mapping H̃ ∈ AC(X,Y) such that

‖h(x, z) − H̃(x, z)‖ 6 1
27
ϕ(x, 0)

[
Φ̃(z, z) + Φ̃(z, 0)

]
(2.8)

for all x, z ∈ X.

Proof. Replacing y = 0 and z = w in (2.3), we have

‖2h(x, 2z) + 11h(x, z) − h(x, 3z)‖ 6 ϕ(x, 0)ϕ(z, z)

for all x, z ∈ X. This combined with (2.5) yields that

‖27h(x, z) − h(x, 3z)‖ 6 ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)] (2.9)

and so ∥∥∥27h
(
x,
z

3

)
− h(x, z)

∥∥∥ 6 ϕ(x, 0)
[
ϕ
(z

3
,
z

3

)
+ϕ

(z
3

, 0
)]

for all x, z ∈ X. Then, for each m, l ∈N0 with m > l, we have

∥∥∥27lh
(
x,
z

3l
)
− 27mh

(
x,
z

3m
)∥∥∥ 6

m−1∑
j=l

∥∥∥27jh
(
x,
z

3j
)
− 27j+1h

(
x,

z

3j+1

)∥∥∥
6

1
27

m∑
j=l+1

27jϕ(x, 0)
[
ϕ
( z

3j
,
z

3j
)
+ϕ

( z
3j

, 0
)] (2.10)

for all x, z ∈ X. Thus {27nh (x, 3−nz)} is a Cauchy sequence and so it is a convergent sequence in Y. Now,
we define a mapping H̃ : X2 → Y by

H̃(x, z) := lim
n→∞ 27nh

(
x,
z

3n
)

for all x, z ∈ X. Next, choose l = 0 and let m→∞ in (2.10). Then we have (2.8). It follows from (2.3) and
(2.7) that

‖DH̃(x,y, z,w)‖ = lim
n→∞ 27n

∥∥∥Dh(x,y,
z

3n
,
w

3n
)∥∥∥ 6 ϕ(x,y) lim

n→∞ 27nϕ
( z

3n
,
w

3n
)
= 0

for all x,y, z,w ∈ X. Hence, by Lemma 2.2, H̃ ∈ AC(X,Y). To prove the uniqueness property of H̃, let G̃ be
another additive-cubic mapping satisfying (2.8). Then

‖H̃(x, z) − G̃(x, z)‖ = 27q
∥∥∥H̃(x,

z

3q
)
− G̃

(
x,
z

3q
)∥∥∥

6 27q
∥∥∥H̃(x,

z

3q
)
− h

(
x,
z

3q
)∥∥∥+ 27q

∥∥∥h(x,
z

3q
)
− G̃

(
x,
z

3q
)∥∥∥

6 2 · 27q−1ϕ(x, 0)
[
Φ̃
( z

3q
,
z

3q
)
+ Φ̃

( z
3q

, 0
)]

for all x, z ∈ X. Therefore, ‖H̃(x, z) − G̃(x, z)‖ → 0 when q → ∞ and this confirms the uniqueness of H̃.
This completes the proof.
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Proof. By letting ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X, we immediately obtain the result.

Theorem 2.5. Let ϕ : X2 → R+
0 be a mapping satisfying

Ψ(x,y) :=
∞∑
j=0

1
8j
ϕ
(
2jx, 2jy

)
<∞ (2.11)

for all x,y ∈ X. Suppose that h ∈ F0(X,Y) satisfies (2.3). Then there exists a unique mapping H ∈ AC(X,Y) such
that

‖h(x, z) −H(x, z)‖ 6 1
16
ϕ(x, 0)Ψ(z, 0) (2.12)

for all x, z ∈ X.

Proof. It follows from (2.5) that ∥∥∥∥h(x, z) −
1
8
h(x, 2z)

∥∥∥∥ 6
1

16
ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ X. Then, for all m, l ∈N0 with m > l, we have∥∥∥∥ 1
8l
h(x, 2lz) −

1
8m
h(x, 2mz)

∥∥∥∥ 6
m−1∑
j=l

∥∥∥∥ 1
8j
h(x, 2jz) −

1
8j+1h(x, 2j+1z)

∥∥∥∥ 6
1
16

m−1∑
j=l

1
8j
ϕ(x, 0)ϕ(2jz, 0) (2.13)

for all x, z ∈ X. Then the completeness of Y implies that {8−nh(x, 2nz)} is convergent for each x, z ∈ X.
Next, we define a mapping H(x, z) : X2 → Y by

H(x, z) := lim
n→∞ 1

8n
h(x, 2nz)

for all x, z ∈ X. Choose l = 0 and let m→∞ in (2.13). Then we have (2.12). Thus it follows from (2.3) and
(2.11) that

‖DH(x,y, z,w)‖ = lim
n→∞ 1

8n
‖Dh (x,y, 2nz, 2nw)‖ 6 ϕ(x,y) lim

n→∞ 1
8n
ϕ (2nz, 2nw) = 0

for all x,y, z,w ∈ X. By Lemma 2.2, we have H ∈ AC(X,Y). Let G be another mapping in AC(X,Y)
satisfying (2.12). Then we have

‖H(x, z) −G(x, z)‖ = 1
8q
‖H (x, 2qz) −G (x, 2qz)‖

6
1

8q
‖H (x, 2qz) − h (x, 2qz)‖+ 1

8q
‖h (x, 2qz) −G (x, 2qz)‖

6
1

8q+1ϕ(x, 0)Ψ (2qz, 0)→ 0 as q→∞
for all x, z ∈ X and so the uniqueness of H follows. This completes the proof.

Theorem 2.6. Let ϕ : X2 → R+
0 be a mapping satisfying

Ψ̃(x,y) :=
∞∑
j=0

1
27j
ϕ
(
3jx, 3jy

)
<∞ (2.14)

for all x,y ∈ X. Suppose that h ∈ F0(X,Y) satisfies (2.3). Then there exists a unique mapping H̃ ∈ AC(X,Y) such
that

‖h(x, z) − H̃(x, z)‖ 6 1
27
ϕ(x, 0)

[
Ψ̃(z, z) + Ψ̃(z, 0)

]
(2.15)

for all x, z ∈ X.
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Proof. It follows from (2.9) that∥∥∥∥h(x, z) −
1

27
h(x, 3z)

∥∥∥∥ 6
1
27
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X. Then, for all m, l ∈N0 with m > l, we have∥∥∥∥ 1
27l
h(x, 3lz) −

1
27m

h(x, 3mz)
∥∥∥∥ 6

m−1∑
j=l

∥∥∥∥ 1
27j
h(x, 3jz) −

1
27j+1h(x, 3j+1z)

∥∥∥∥
6
m−1∑
j=l

1
27j+1ϕ(x, 0)

[
ϕ
(
3jz, 3jz

)
+ϕ

(
3jz, 0

)] (2.16)

for all x, z ∈ X. This implies that {27−nh(x, 3nz)} is a convergent sequence for all x, z ∈ X. Next, we define
a mapping H̃(x, z) : X2 → Y by

H̃(x, z) := lim
n→∞ 1

27n
h(x, 3nz)

for all x, z ∈ X. Choose l = 0 and let m→∞ in (2.16). Then we have (2.15). Thus it follows from (2.3) and
(2.14) that

‖DH̃(x,y, z,w)‖ = lim
n→∞ 1

27n
‖Dh (x,y, 3nz, 3nw)‖ 6 ϕ(x,y) lim

n→∞ 1
27n

ϕ (3nz, 3nw) = 0

for all x,y, z,w ∈ X. By Lemma 2.2, we have H̃ ∈ AC(X,Y). Let G̃ be another mapping in AC(X,Y)
satisfying (2.15). Then we have

‖H̃(x, z) − G̃(x, z)‖ = 1
27q

∥∥H̃ (x, 3qz) − G̃ (x, 3qz)
∥∥

6
1

27q
∥∥H̃ (x, 3qz) − h (x, 3qz)

∥∥+ 1
27q

∥∥h (x, 3qz) − G̃ (x, 3qz)
∥∥

6
2

27q+1ϕ(x, 0)
[
Ψ̃ (3qz, 3qz) + Ψ̃ (3qz, 0)

]
→ 0 as q→∞

for all x, z ∈ X and so the uniqueness of H̃ follows. This completes the proof.

If ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X, then we obtain the following corollaries.

Corollary 2.7. For all r, θ ∈ R+
0 with r 6= 3, let h ∈ F0(X,Y) and

‖Dh(x,y, z,w)‖ 6 θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) (2.17)

for all x,y, z,w ∈ X. Then there exists a unique mapping H ∈ AC(X,Y) such that

‖h(x, z) −H(x, z)‖ 6

{
θ

2(2r−8)‖x‖
r‖z‖r, if r > 3,

θ
2(8−2r)‖x‖

r‖z‖r, if r < 3,

for all x, z ∈ X.

Corollary 2.8. For all r, θ ∈ R+
0 with r 6= 3, if h ∈ F0(X,Y) satisfies (2.17), then there exists a unique mapping

H̃ ∈ AC(X,Y) such that

‖h(x, z) − H̃(x, z)‖ 6

{
3θ

3r−27‖x‖
r‖z‖r, if r > 3,

3θ
27−3r ‖x‖

r‖z‖r, if r < 3,

for all x, z ∈ X.
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3. Hyers-Ulam stability of the additive-cubic functional equation: fixed point method

In this section, we use the fixed point method to prove the Hyers-Ulam stability of the additive-cubic
functional equation (1).

Theorem 3.1. Let ϕ : X2 → R+
0 be a mapping such that there exists L ∈ R+

0 with L < 1 satisfying

ϕ
(x

2
,
y

2

)
6
L

8
ϕ (x,y) (3.1)

for all x,y ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping H ∈ AC(X,Y)
such that

‖h(x, z) −H(x, z)‖ 6 L

16(1 − L)
ϕ(x, 0)ϕ(z, 0) (3.2)

for all x, z ∈ X.

Proof. Consider the set F0(X,Y) with the generalized metric d defined by

d(f,g) = inf
{
µ ∈ R+

0 : ‖f(x, z) − g(x, z)‖ 6 µϕ (x, 0)ϕ(z, 0), ∀x, z ∈ X
}

,

where inf ∅ = +∞ as usual. Then (F0(X,Y),d) is complete, see [22]. Define a mapping J : F0(X,Y) →
F0(X,Y) by

Jf(x, z) := 8f
(
x,
z

2

)
for all x, z ∈ X. For all f,g ∈ F0(X,Y) with d(f,g) = ε, we have

‖f(x, z) − g(x, z)‖ 6 εϕ (x, 0)ϕ(z, 0)

for all x, z ∈ X. Consequently, from (3.1), we have

‖Jf(x, z) − Jg(x, z)‖ =
∥∥∥8f

(
x,
z

2

)
− 8g

(
x,
z

2

)∥∥∥
6 8εϕ (x, 0)ϕ

(z
2

, 0
)
6 8ε

L

8
ϕ (x, 0)ϕ (z, 0) = Lεϕ (x, 0)ϕ (z, 0)

for all x, z ∈ X. Then we have d(Jf, Jg) 6 Lε, which means that

d(Jf, Jg) 6 Ld(f,g)

for all f,g ∈ F0(X,Y). It follows from (2.5) that∥∥∥h(x, z) − 8h
(
x,
z

2

)∥∥∥ 6
1
2
ϕ(x, 0)ϕ

(z
2

, 0
)
6
L

16
ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ X and so

d(h, Jh) 6
L

16
.

From Theorem 1.1, there exists H : X2 → Y satisfying the following.

(1) H is a unique fixed point of J, i.e.,

H (x, z) = 8H
(
x,
z

2

)
for all x, z ∈ X. Thus there exists µ ∈ (0,∞) satisfying

‖h (x, z) −H (x, z) ‖ 6 µϕ (x, 0)ϕ(z, 0)

for all x, z ∈ X.
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(2) d(Jlh,H)→ 0 as l→∞, which implies that

lim
l→∞ 8lh

(
x,
z

2l
)
= H (x, z)

for all x, z ∈ X.

(3) d(h,H) 6 1
1−Ld(h, Jh), which implies that

‖h(x, z) −H(x, z)‖ 6 L

16(1 − L)
ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ X.
From (3.1) and for all x,y ∈ X, we have 8nϕ

(
x

2n , y2n
)
6 Lnϕ (x,y) tends to zero as n → ∞. As in

the proof of Theorem 2.3, we can show that H ∈ AC(X,Y). Therefore, we can conclude that there exists a
unique mapping H ∈ AC(X,Y), which satisfies (3.2). This completes the proof.

Theorem 3.2. Let ϕ : X2 → R+
0 be a mapping such that there exists L ∈ R+

0 with L < 1 satisfying

ϕ
(x

3
,
y

3

)
6
L

27
ϕ (x,y) (3.3)

for all x,y ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping H̃ ∈ AC(X,Y)
such that

‖h(x, z) − H̃(x, z)‖ 6 L

27(1 − L)
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)] (3.4)

for all x, z ∈ X.

Proof. Consider the generalized metric d̃ on F0(X,Y) given by

d̃(f,g) = inf
{
µ ∈ R+

0 : ‖f(x, z) − g(x, z)‖ 6 µϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)] , ∀x, z ∈ X
}

,

where inf ∅ = +∞. We can easily see that (F0(X,Y), d̃) is complete, see [22]. Now, consider the linear
mapping J̃ : F0(X,Y)→ F0(X,Y) defined by

J̃f(x, z) := 27f
(
x,
z

3

)
for all x, z ∈ X. Let f,g ∈ F0(X,Y) with d̃(f,g) = ε. Then we have

‖f(x, z) − g(x, z)‖ 6 εϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all a, c ∈ X. Also, from (3.3), we have

‖J̃f(x, z) − J̃g(x, z)‖ =
∥∥∥27f

(
x,
z

3

)
− 27g

(
x,
z

3

)∥∥∥
6 27εϕ(x, 0)

[
ϕ
(z

3
,
z

3

)
+ϕ

(z
3

, 0
)]

6 27ε
L

27
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)] = Lεϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X. Thus d̃(J̃f, J̃g) 6 Lε and so

d̃(J̃f, J̃g) 6 Ld̃(f,g)

for all f,g ∈ F0(X,Y). It follows from (2.9) that∥∥∥h(x, z) − 27h
(
x,
z

3

)∥∥∥ 6 ϕ(x, 0)
[
ϕ
(z

3
,
z

3

)
+ϕ

(z
3

, 0
)]

6
L

27
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X. Thus d̃(h, J̃h) 6 L
27 . It follows from Theorem 1.1 that there exists a mapping H̃ : X2 → Y

satisfying the following.
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(1) H̃ is a unique fixed point of J̃, i.e.,

H̃ (x, z) = 27H̃
(
x,
z

3

)
for all x, z ∈ X. Thus there exists µ ∈ (0,∞) satisfying

‖h (x, z) − H̃ (x, z) ‖ 6 µϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X.

(2) d̃(J̃lh, H̃)→ 0 as l→∞, which implies that

lim
l→∞ 27lh

(
x,
z

3l
)
= H̃ (x, z)

for all x, z ∈ X.

(3) d̃(h, H̃) 6 1
1−L d̃(h, J̃h), which implies that∥∥h(x, z) − H̃(x, z)

∥∥ 6
L

27(1 − L)
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X.
From (3.3) and for all x,y ∈ X, we have 27nϕ

(
x

3n , y3n
)
6 Lnϕ (x,y) tends to zero as n → ∞. As in

the proof of Theorem 2.4, we can show that H̃ ∈ AC(X,Y). Therefore, we can conclude that there exists a
unique mapping H̃ ∈ AC(X,Y), which satisfies (3.4). This completes the proof.

Theorem 3.3. Let ϕ : X2 → R+
0 be a mapping such that there exists L ∈ R+

0 with L < 1 satisfying

ϕ (x,y) 6 8Lϕ
(x

2
,
y

2

)
for all x,y ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping H ∈ AC(X,Y)
such that

‖h(x, z) −H(x, z)‖ 6 1
16(1 − L)

ϕ(x, 0)ϕ(z, 0) (3.5)

for all x, z ∈ X.

Proof. Consider the complete metric space (F0(X,Y),d) given in the proof of Theorem 3.1. If we define a
mapping J : F0(X,Y)→ F0(X,Y) by

Jf(x, z) :=
1
8
f (x, 2z)

for all x, z ∈ X, then it follows from (2.5) that∥∥∥∥h(x, z) −
1
8
h(x, 2z)

∥∥∥∥ 6
1

16
ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ X. By using the same technique as in the proof of Theorems 2.5 and 3.1, there exists a unique
mapping H ∈ AC(X,Y) satisfying (3.5). This completes the proof.

Theorem 3.4. Let ϕ : X2 → R+
0 be a mapping such that there exists L ∈ R+

0 with L < 1 satisfying

ϕ (x,y) 6 27Lϕ
(x

3
,
y

3

)
for all x,y ∈ X. Then, for a mapping h ∈ F0(X,Y) satisfying (2.3), there exists a unique mapping H̃ ∈ AC(X,Y)
such that

‖h(x, z) − H̃(x, z)‖ 6 1
27(1 − L)

ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)] (3.6)

for all x, z ∈ X.
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Proof. Consider the complete metric space (F0(X,Y), d̃) given in the proof of Theorem 3.2. Let the linear
mapping J̃ : F0(X,Y)→ F0(X,Y) defined by

J̃f(x, z) :=
1
27
f (x, 3z)

for all x, z ∈ X. It follows from (2.9) that∥∥∥∥h(x, z) −
1

27
h(x, 3z)

∥∥∥∥ 6
1
27
ϕ(x, 0) [ϕ(z, z) +ϕ(z, 0)]

for all x, z ∈ X. By using the same technique as in the proof of Theorems 2.6 and 3.2, there exists a unique
mapping H̃ ∈ AC(X,Y) satisfying (3.6). This completes the proof.

Taking L = 23−r and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X in Theorem 3.1, we have the following.

Corollary 3.5. Let r, θ ∈ R+
0 with r > 3. If h ∈ F0(X,Y) satisfies (2.17), then there exists a unique mapping

H ∈ AC(X,Y) such that

‖h(x, z) −H(x, z)‖ 6 θ

2(2r − 8)
‖x‖r‖z‖r

for all x, z ∈ X.

Taking L = 33−r and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X in Theorem 3.2, we have the following.

Corollary 3.6. Let r, θ ∈ R+
0 with r > 3. If h ∈ F0(X,Y) satisfies (2.17), then there exists a unique mapping

H̃ ∈ AC(X,Y) such that

‖h(x, z) − H̃(x, z)‖ 6 3θ
3r − 27

‖x‖r‖z‖r

for all x, z ∈ X.

Taking L = 2r−3 and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X in Theorem 3.3, we have the following.

Corollary 3.7. Let r, θ ∈ R+
0 with r < 3 and let h ∈ F0(X,Y) be a mapping satisfying (2.17). Then there exists a

unique mapping H ∈ AC(X,Y) such that

‖h(x, z) −H(x, z)‖ 6 θ

2(8 − 2r)
‖x‖r‖z‖r

for all x, z ∈ X.

Taking L = 3r−3 and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ X in Theorem 3.4, we have the following.

Corollary 3.8. Let r, θ ∈ R+
0 with r < 3 and let h ∈ F0(X,Y) be a mapping satisfying (2.17). Then there exists a

unique mapping H̃ ∈ AC(X,Y) such that

‖h(x, z) − H̃(x, z)‖ 6 3θ
27 − 3r

‖x‖r‖z‖r

for all x, z ∈ X.

4. Conclusion

We have proved the Hyers-Ulam stability results of the additive-cubic functional equation (1) in Banach
spaces by the direct and the fixed point methods.
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