Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

An additive-cubic functional equation in a Banach space

Check for updates

Siriluk Paokanta^a, Choonkil Park^b, Nipa Jun-on^c, Raweerote Suparatulatorn^{d,e,*}

^aSchool of Science, University of Phayao, Phayao, 56000, Thailand.

^bResearch Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.

^cFaculty of Sciences, Lampang Rajabhat University, Lampang, 52100, Thailand.

^dOffice of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand.

^eDepartment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Abstract

In this article, we consider the following functional equation:

2h(x+y,z+w) + 2h(x-y,z-w) + 12h(x,z) = h(x+y,2z+w) + h(x-y,2z-w).(1)

Using the direct and fixed point methods, we obtain the Hyers-Ulam stability of the proposed functional equation.

Keywords: Hyers-Ulam stability, additive-cubic functional equation, direct method, fixed point method. **2020 MSC:** 39B52, 47H10, 39B62.

©2024 All rights reserved.

1. Introduction and preliminaries

In 1940, Ulam [33] mentioned a question concerning the stability of (group) homomorphisms which motivated the study of the stability problems of functional equations. Hyers [13] then obtained a partial answer to the question for additive mappings in Banach spaces. The stability of functional equations has been also known as the Hyers-Ulam stability. Later it was extended by Aoki [2] for additive mappings and, by Rassias [30], for linear mappings by concerning an unbounded Cauchy difference. Replacing the unbounded Cauchy difference by a general control function, Găvruta [9] also extended the Rassias theorem. Hyers himself contributed a number of notable articles such as [14–16]. Recently, Park gave the definition of additive ρ -functional inequalities and proved the Hyers-Ulam stability of those inequalities in Banach spaces in [24, 25, 27]. The stability problems of various functional equations and functional inequalities have been studied extensively (see [1, 6, 10, 11, 19–21, 23, 34]).

In this article, we let \mathbb{N} , \mathbb{R} , \mathbb{R}^+ , and \mathbb{C} denote the sets of positive integers, real numbers, positive real numbers, and complex numbers, respectively. Also, we let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$. We begin with a useful result in the theory of fixed point.

^{*}Corresponding author

Email addresses: siriluk.pa@up.ac.th (Siriluk Paokanta), baak@hanyang.ac.kr (Choonkil Park), nipa.676@g.lpru.ac.th (Nipa Jun-on), raweerote.s@gmail.com (Raweerote Suparatulatorn)

doi: 10.22436/jmcs.033.03.05

Received: 2023-11-23 Revised: 2023-12-04 Accepted: 2023-12-06

Theorem 1.1 ([3, 7]). Let (\mathfrak{X}, d) be a complete generalized metric space and let $a \in \mathfrak{X}$. For a strict Lipschitz contraction $\mathfrak{J} : \mathfrak{X} \to \mathfrak{X}$ with the Lipschitz constant $\alpha < 1$, either

(1) $d(\mathcal{J}^{n}\mathfrak{a},\mathcal{J}^{n+1}\mathfrak{a}) = \infty$ for all $n \in \mathbb{N}_{0}$ or there exists $n_{0} \in \mathbb{N}$ for which $d(\mathcal{J}^{n}\mathfrak{a},\mathcal{J}^{n+1}\mathfrak{a}) < \infty$ for all $n \ge n_{0}$;

(2)
$$\mathcal{J}^{n}a \to b^{*}$$
, where b^{*} is a unique fixed point of \mathcal{J} in $\mathfrak{X}_{n_{0}} := \{b \in \mathfrak{X} : d(\mathcal{J}^{n_{0}}a, b) < \infty\}$

(3) $d(b, b^*) \leq \frac{1}{1-\alpha} d(b, \beta b)$ for all $b \in \mathfrak{X}_{n_0}$.

Applications for the stability of functional equations for proving fixed point theorems and applications in nonlinear analysis were introduced by Isac and Rassias [17] in 1996. A large number of research articles concerning the stability problems of some functional equations and various definitions of stability by using the fixed pointed method have been widely studied in [4, 5, 8, 26, 28, 29, 31, 32] and others.

Jun and Kim [18] introduced the following cubic functional equation:

$$h(2x+y) + h(2x-y) = 2h(x-y) + 2h(x-y) + 12h(x).$$
(1.1)

They established the general solution and the Hyers-Ulam-Rassias stability problem of (1.1) for mapping from a real vector space to a Banach space. The Hyers-Ulam stability of the additive-quadratic functional equation, which is additive in the first variable and quadratic in the second variable:

$$h(x+y, z+w) + h(x-y, z-w) = 2h(x, z) + 2h(x, w),$$

was found in [12].

In this paper, first, we consider the functional equation (1) which is additive-cubic. Second, we prove the Hyers-Ulam stability of the functional equation (1) by using the direct method. Finally, we prove the Hyers-Ulam stability of the functional equation (1) using the fixed point method.

2. Hyers-Ulam stability of the additive-cubic functional equation: direct method

Throughout this article, let \mathcal{X} and \mathcal{Y} be a (complex) normed space and a (complex) Banach space, respectively. For a given mapping $h : \mathcal{X}^2 \to \mathcal{Y}$, we define, for all $x, y, z, w \in \mathcal{X}$,

$$Dh(x, y, z, w) := 2h(x + y, z + w) + 2h(x - y, z - w) + 12h(x, z) - h(x + y, 2z + w) - h(x - y, 2z - w).$$

We also denote the class of mappings $\{g: \mathfrak{X}^2 \to \mathfrak{Y}: g(x, 0) = g(0, y) = 0 \text{ for all } x, y \in \mathfrak{X}\}$ by $\mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$. Next, we introduce the concept of additive-cubic mapping.

Definition 2.1. A mapping $h : \mathcal{X}^2 \to \mathcal{Y}$ is called *additive-cubic* if h is additive in the first variable and cubic in the second variable, that is, h satisfies the following system of equations

$$h(x,z) + h(y,z) = h(x+y,z)$$

and

$$2h(x, y + z) + 2h(x, y - z) + 12h(x, z) = h(x, 2y + z) + h(x, 2y - z)$$

for all x, y, $z \in \mathcal{X}$. We denote the class of additive-cubic mapping by $\mathcal{AC}(\mathcal{X}, \mathcal{Y})$.

Lemma 2.2. If $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (1), then $h \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$.

Proof. The fact that h is cubic in the second variable can be obtained by taking y = 0. Next, if y = w = 0, then 2h(x, z) + 2h(x, z) + 12h(x, z) = h(x, 2z) + h(x, 2z). So,

$$8h(x,z) = h(x,2z)$$
 (2.1)

for all $x, z \in X$. If w = 0, then 2h(x + y, z) + 2h(x - y, z) + 12h(x, z) = h(x + y, 2z) + h(x - y, 2z). Using (2.1), we obtain

$$2h(x,z) = h(x+y,z) + h(x-y,z)$$

for all $x, y, z \in \mathcal{X}$, which implies that h is additive in the first variable. This completes the proof.

Now, we present our main results.

Theorem 2.3. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}^+_0$ be a mapping such that

$$\Phi(\mathbf{x},\mathbf{y}) := \sum_{j=1}^{\infty} 8^{j} \varphi\left(\frac{\mathbf{x}}{2^{j}}, \frac{\mathbf{y}}{2^{j}}\right) < \infty$$
(2.2)

for all $x, y \in \mathfrak{X}$. If $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ and

$$\|\mathsf{Dh}(x, y, z, w)\| \leqslant \varphi(x, y)\varphi(z, w) \tag{2.3}$$

for all $x, y, z, w \in \mathfrak{X}$, then there exists a unique mapping $H \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x}, z) - \mathbf{H}(\mathbf{x}, z)\| \leq \frac{1}{16} \varphi(\mathbf{x}, 0) \Phi(z, 0)$$
 (2.4)

for all $x, z \in \mathfrak{X}$.

Proof. Replacing y = w = 0 in (2.3), we obtain

$$\|8h(x,z) - h(x,2z)\| \leq \frac{1}{2}\phi(x,0)\phi(z,0)$$
(2.5)

and so

$$\left\|8h\left(x,\frac{z}{2}\right)-h(x,z)\right\| \leq \frac{1}{2}\varphi(x,0)\varphi\left(\frac{z}{2},0\right)$$

for all $x, z \in \mathfrak{X}$. Then, for each $\mathfrak{m}, \mathfrak{l} \in \mathbb{N}_0$ with $\mathfrak{m} > \mathfrak{l}$, we have

$$\left\|8^{l}h\left(x,\frac{z}{2^{l}}\right) - 8^{m}h\left(x,\frac{z}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \left\|8^{j}h\left(x,\frac{z}{2^{j}}\right) - 8^{j+1}h\left(x,\frac{z}{2^{j+1}}\right)\right\| \leq \frac{1}{16}\sum_{j=l+1}^{m} 8^{j}\varphi(x,0)\varphi\left(\frac{z}{2^{j}},0\right)$$
(2.6)

for all $x, z \in \mathcal{X}$. Thus $\{8^n h(x, 2^{-n}z)\}$ is a Cauchy sequence and so it is a convergent sequence in \mathcal{Y} due to the completeness of \mathcal{Y} . Now, we define a mapping $H : \mathcal{X}^2 \to \mathcal{Y}$ by

$$H(x,z) := \lim_{n \to \infty} 8^n h\left(x, \frac{z}{2^n}\right)$$

for all $x, z \in \mathcal{X}$. Next, choose l = 0 and let $m \to \infty$ in (2.6). Then we have (2.4). It follows from (2.2) and (2.3) that

$$\|\mathsf{DH}(x,y,z,w)\| = \lim_{n \to \infty} 8^n \left\| \mathsf{Dh}\left(x,y,\frac{z}{2^n},\frac{w}{2^n}\right) \right\| \le \varphi(x,y) \lim_{n \to \infty} 8^n \varphi\left(\frac{z}{2^n},\frac{w}{2^n}\right) = 0$$

for all x, y, z, $w \in \mathcal{X}$. Hence, by Lemma 2.2, $H \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$. To prove the uniqueness property of H, let G be another additive-cubic mapping satisfying (2.4). Then

$$\begin{aligned} \| \mathbf{H}(\mathbf{x}, z) - \mathbf{G}(\mathbf{x}, z) \| &= 8^{q} \left\| \mathbf{H}\left(\mathbf{x}, \frac{z}{2^{q}}\right) - \mathbf{G}\left(\mathbf{x}, \frac{z}{2^{q}}\right) \right\| \\ &\leq 8^{q} \left\| \mathbf{H}\left(\mathbf{x}, \frac{z}{2^{q}}\right) - \mathbf{h}\left(\mathbf{x}, \frac{z}{2^{q}}\right) \right\| + 8^{q} \left\| \mathbf{h}\left(\mathbf{x}, \frac{z}{2^{q}}\right) - \mathbf{G}\left(\mathbf{x}, \frac{z}{2^{q}}\right) \right\| \\ &\leq 8^{q-1} \varphi(\mathbf{x}, 0) \Phi\left(\frac{z}{2^{q}}, 0\right) \end{aligned}$$

for all $x, z \in \mathcal{X}$. Therefore, $||H(x, z) - G(x, z)|| \to 0$ when $q \to \infty$ and this confirms the uniqueness of H. This completes the proof.

Theorem 2.4. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}^+_0$ be a mapping such that

$$\tilde{\Phi}(\mathbf{x},\mathbf{y}) := \sum_{j=1}^{\infty} 27^{j} \varphi\left(\frac{\mathbf{x}}{3^{j}}, \frac{\mathbf{y}}{3^{j}}\right) < \infty$$
(2.7)

for all $x, y \in \mathfrak{X}$. If $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (2.3), then there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x},z) - \tilde{\mathbf{H}}(\mathbf{x},z)\| \leq \frac{1}{27}\varphi(\mathbf{x},0) \left[\tilde{\Phi}(z,z) + \tilde{\Phi}(z,0)\right]$$
 (2.8)

for all $x, z \in \mathfrak{X}$ *.*

Proof. Replacing y = 0 and z = w in (2.3), we have

$$|2h(x,2z) + 11h(x,z) - h(x,3z)|| \leq \varphi(x,0)\varphi(z,z)$$

for all $x, z \in \mathcal{X}$. This combined with (2.5) yields that

$$\|27h(x,z) - h(x,3z)\| \le \varphi(x,0) \left[\varphi(z,z) + \varphi(z,0)\right]$$
(2.9)

and so

$$\left\|27h\left(x,\frac{z}{3}\right)-h(x,z)\right\| \leqslant \varphi(x,0)\left[\varphi\left(\frac{z}{3},\frac{z}{3}\right)+\varphi\left(\frac{z}{3},0\right)\right]$$

for all $x, z \in \mathcal{X}$. Then, for each $m, l \in \mathbb{N}_0$ with m > l, we have

$$\begin{aligned} \left\| 27^{l} h\left(x, \frac{z}{3^{l}}\right) - 27^{m} h\left(x, \frac{z}{3^{m}}\right) \right\| &\leq \sum_{j=l}^{m-1} \left\| 27^{j} h\left(x, \frac{z}{3^{j}}\right) - 27^{j+1} h\left(x, \frac{z}{3^{j+1}}\right) \right\| \\ &\leq \frac{1}{27} \sum_{j=l+1}^{m} 27^{j} \varphi(x, 0) \left[\varphi\left(\frac{z}{3^{j}}, \frac{z}{3^{j}}\right) + \varphi\left(\frac{z}{3^{j}}, 0\right) \right] \end{aligned}$$
(2.10)

for all $x, z \in \mathcal{X}$. Thus $\{27^{n}h(x, 3^{-n}z)\}$ is a Cauchy sequence and so it is a convergent sequence in \mathcal{Y} . Now, we define a mapping $\tilde{H} : \mathcal{X}^{2} \to \mathcal{Y}$ by

$$\tilde{H}(x,z) := \lim_{n \to \infty} 27^n h\left(x, \frac{z}{3^n}\right)$$

for all $x, z \in \mathcal{X}$. Next, choose l = 0 and let $m \to \infty$ in (2.10). Then we have (2.8). It follows from (2.3) and (2.7) that

$$\|\mathsf{D}\tilde{\mathsf{H}}(x,y,z,w)\| = \lim_{n \to \infty} 27^n \left\|\mathsf{Dh}\left(x,y,\frac{z}{3^n},\frac{w}{3^n}\right)\right\| \le \varphi(x,y) \lim_{n \to \infty} 27^n \varphi\left(\frac{z}{3^n},\frac{w}{3^n}\right) = 0$$

for all $x, y, z, w \in \mathcal{X}$. Hence, by Lemma 2.2, $\tilde{H} \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$. To prove the uniqueness property of \tilde{H} , let \tilde{G} be another additive-cubic mapping satisfying (2.8). Then

$$\begin{split} \|\tilde{H}(x,z) - \tilde{G}(x,z)\| &= 27^{q} \left\|\tilde{H}\left(x,\frac{z}{3^{q}}\right) - \tilde{G}\left(x,\frac{z}{3^{q}}\right)\right\| \\ &\leqslant 27^{q} \left\|\tilde{H}\left(x,\frac{z}{3^{q}}\right) - h\left(x,\frac{z}{3^{q}}\right)\right\| + 27^{q} \left\|h\left(x,\frac{z}{3^{q}}\right) - \tilde{G}\left(x,\frac{z}{3^{q}}\right)\right\| \\ &\leqslant 2 \cdot 27^{q-1}\varphi(x,0) \left[\tilde{\Phi}\left(\frac{z}{3^{q}},\frac{z}{3^{q}}\right) + \tilde{\Phi}\left(\frac{z}{3^{q}},0\right)\right] \end{split}$$

for all $x, z \in \mathfrak{X}$. Therefore, $\|\tilde{H}(x, z) - \tilde{G}(x, z)\| \to 0$ when $q \to \infty$ and this confirms the uniqueness of \tilde{H} . This completes the proof.

Proof. By letting $\varphi(x, y) = \sqrt{\theta}(\|x\|^r + \|y\|^r)$ for all $x, y \in \mathcal{X}$, we immediately obtain the result.

Theorem 2.5. Let $\phi : \mathfrak{X}^2 \to \mathbb{R}^+_0$ be a mapping satisfying

$$\Psi(\mathbf{x},\mathbf{y}) := \sum_{j=0}^{\infty} \frac{1}{8^j} \varphi\left(2^j \mathbf{x}, 2^j \mathbf{y}\right) < \infty$$
(2.11)

for all $x, y \in X$. Suppose that $h \in \mathcal{F}_0(X, Y)$ satisfies (2.3). Then there exists a unique mapping $H \in \mathcal{AC}(X, Y)$ such that

$$\|h(x,z) - H(x,z)\| \leq \frac{1}{16}\varphi(x,0)\Psi(z,0)$$
(2.12)

for all $x, z \in \mathfrak{X}$.

Proof. It follows from (2.5) that

$$\left| \mathbf{h}(\mathbf{x}, z) - \frac{1}{8} \mathbf{h}(\mathbf{x}, 2z) \right\| \leq \frac{1}{16} \varphi(\mathbf{x}, 0) \varphi(z, 0)$$

for all $x, z \in \mathcal{X}$. Then, for all $m, l \in \mathbb{N}_0$ with m > l, we have

$$\left\|\frac{1}{8^{l}}h(x,2^{l}z) - \frac{1}{8^{m}}h(x,2^{m}z)\right\| \leq \sum_{j=l}^{m-1} \left\|\frac{1}{8^{j}}h(x,2^{j}z) - \frac{1}{8^{j+1}}h(x,2^{j+1}z)\right\| \leq \frac{1}{16}\sum_{j=l}^{m-1}\frac{1}{8^{j}}\varphi(x,0)\varphi(2^{j}z,0) \quad (2.13)$$

for all $x, z \in \mathcal{X}$. Then the completeness of \mathcal{Y} implies that $\{8^{-n}h(x, 2^nz)\}$ is convergent for each $x, z \in \mathcal{X}$. Next, we define a mapping $H(x, z) : \mathcal{X}^2 \to \mathcal{Y}$ by

$$H(x,z) := \lim_{n \to \infty} \frac{1}{8^n} h(x, 2^n z)$$

for all $x, z \in \mathcal{X}$. Choose l = 0 and let $m \to \infty$ in (2.13). Then we have (2.12). Thus it follows from (2.3) and (2.11) that

$$\|\mathsf{DH}(x,y,z,w)\| = \lim_{n \to \infty} \frac{1}{8^n} \|\mathsf{Dh}(x,y,2^nz,2^nw)\| \leqslant \varphi(x,y) \lim_{n \to \infty} \frac{1}{8^n} \varphi(2^nz,2^nw) = 0$$

for all $x, y, z, w \in \mathcal{X}$. By Lemma 2.2, we have $H \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$. Let G be another mapping in $\mathcal{AC}(\mathcal{X}, \mathcal{Y})$ satisfying (2.12). Then we have

$$\begin{split} \|H(x,z) - G(x,z)\| &= \frac{1}{8^{q}} \|H(x,2^{q}z) - G(x,2^{q}z)\| \\ &\leq \frac{1}{8^{q}} \|H(x,2^{q}z) - h(x,2^{q}z)\| + \frac{1}{8^{q}} \|h(x,2^{q}z) - G(x,2^{q}z)\| \\ &\leq \frac{1}{8^{q+1}} \varphi(x,0) \Psi(2^{q}z,0) \to 0 \text{ as } q \to \infty \end{split}$$

for all $x, z \in \mathcal{X}$ and so the uniqueness of H follows. This completes the proof.

Theorem 2.6. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}^+_0$ be a mapping satisfying

$$\tilde{\Psi}(\mathbf{x},\mathbf{y}) := \sum_{j=0}^{\infty} \frac{1}{27^{j}} \varphi\left(3^{j} \mathbf{x}, 3^{j} \mathbf{y}\right) < \infty$$
(2.14)

for all $x, y \in \mathfrak{X}$. Suppose that $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (2.3). Then there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x},z) - \tilde{\mathbf{H}}(\mathbf{x},z)\| \leq \frac{1}{27}\varphi(\mathbf{x},0)\left[\tilde{\Psi}(z,z) + \tilde{\Psi}(z,0)\right]$$
(2.15)

for all $x, z \in \mathfrak{X}$.

Proof. It follows from (2.9) that

$$\left\| h(x,z) - \frac{1}{27} h(x,3z) \right\| \leq \frac{1}{27} \varphi(x,0) \left[\varphi(z,z) + \varphi(z,0) \right]$$

for all $x, z \in \mathfrak{X}$. Then, for all $\mathfrak{m}, \mathfrak{l} \in \mathbb{N}_0$ with $\mathfrak{m} > \mathfrak{l}$, we have

$$\begin{aligned} \left\| \frac{1}{27^{l}} h(x, 3^{l}z) - \frac{1}{27^{m}} h(x, 3^{m}z) \right\| &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{27^{j}} h(x, 3^{j}z) - \frac{1}{27^{j+1}} h(x, 3^{j+1}z) \right\| \\ &\leq \sum_{j=l}^{m-1} \frac{1}{27^{j+1}} \varphi(x, 0) \left[\varphi\left(3^{j}z, 3^{j}z \right) + \varphi\left(3^{j}z, 0 \right) \right] \end{aligned}$$
(2.16)

for all $x, z \in \mathcal{X}$. This implies that $\{27^{-n}h(x, 3^n z)\}$ is a convergent sequence for all $x, z \in \mathcal{X}$. Next, we define a mapping $\tilde{H}(x, z) : \mathcal{X}^2 \to \mathcal{Y}$ by

$$\tilde{\mathsf{H}}(\mathsf{x},z) := \lim_{n \to \infty} \frac{1}{27^n} \mathsf{h}(\mathsf{x},3^n z)$$

for all $x, z \in \mathcal{X}$. Choose l = 0 and let $m \to \infty$ in (2.16). Then we have (2.15). Thus it follows from (2.3) and (2.14) that

$$\|\mathsf{D}\tilde{\mathsf{H}}(\mathsf{x},\mathsf{y},z,w)\| = \lim_{n\to\infty} \frac{1}{27^n} \|\mathsf{D}\mathsf{h}(\mathsf{x},\mathsf{y},3^n z,3^n w)\| \leqslant \varphi(\mathsf{x},\mathsf{y}) \lim_{n\to\infty} \frac{1}{27^n} \varphi(3^n z,3^n w) = 0$$

for all $x, y, z, w \in \mathfrak{X}$. By Lemma 2.2, we have $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$. Let \tilde{G} be another mapping in $\mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ satisfying (2.15). Then we have

$$\begin{split} \|\tilde{H}(x,z) - \tilde{G}(x,z)\| &= \frac{1}{27^{q}} \left\| \tilde{H}(x,3^{q}z) - \tilde{G}(x,3^{q}z) \right\| \\ &\leq \frac{1}{27^{q}} \left\| \tilde{H}(x,3^{q}z) - h(x,3^{q}z) \right\| + \frac{1}{27^{q}} \left\| h(x,3^{q}z) - \tilde{G}(x,3^{q}z) \right\| \\ &\leq \frac{2}{27^{q+1}} \varphi(x,0) \left[\tilde{\Psi}(3^{q}z,3^{q}z) + \tilde{\Psi}(3^{q}z,0) \right] \to 0 \text{ as } q \to \infty \end{split}$$

for all $x, z \in \mathcal{X}$ and so the uniqueness of \tilde{H} follows. This completes the proof.

If $\varphi(x, y) = \sqrt{\theta}(||x||^r + ||y||^r)$ for all $x, y \in \mathcal{X}$, then we obtain the following corollaries.

Corollary 2.7. For all $r, \theta \in \mathbb{R}^+_0$ with $r \neq 3$, let $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ and

$$\|Dh(x, y, z, w)\| \leq \theta(\|x\|^{r} + \|y\|^{r})(\|z\|^{r} + \|w\|^{r})$$
(2.17)

for all x, y, z, $w \in \mathfrak{X}$. Then there exists a unique mapping $H \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|h(\mathbf{x}, z) - H(\mathbf{x}, z)\| \leq \begin{cases} \frac{\theta}{2(2^{r}-8)} \|\mathbf{x}\|^{r} \|z\|^{r}, & \text{if } r > 3, \\ \frac{\theta}{2(8-2^{r})} \|\mathbf{x}\|^{r} \|z\|^{r}, & \text{if } r < 3, \end{cases}$$

for all $x, z \in \mathfrak{X}$.

Corollary 2.8. For all $r, \theta \in \mathbb{R}^+_0$ with $r \neq 3$, if $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (2.17), then there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x},z) - \tilde{\mathbf{H}}(\mathbf{x},z)\| \leq \begin{cases} \frac{3\theta}{3^{r}-27} \|\mathbf{x}\|^{r} \|z\|^{r}, & \text{if } \mathbf{r} > 3, \\ \frac{3\theta}{27-3^{r}} \|\mathbf{x}\|^{r} \|z\|^{r}, & \text{if } \mathbf{r} < 3, \end{cases}$$

for all $x, z \in \mathfrak{X}$.

3. Hyers-Ulam stability of the additive-cubic functional equation: fixed point method

In this section, we use the fixed point method to prove the Hyers-Ulam stability of the additive-cubic functional equation (1).

Theorem 3.1. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}_0^+$ be a mapping such that there exists $L \in \mathbb{R}_0^+$ with L < 1 satisfying

$$\varphi\left(\frac{x}{2},\frac{y}{2}\right) \leqslant \frac{L}{8}\varphi\left(x,y\right) \tag{3.1}$$

for all $x, y \in X$. Then, for a mapping $h \in \mathcal{F}_0(X, \mathcal{Y})$ satisfying (2.3), there exists a unique mapping $H \in \mathcal{AC}(X, \mathcal{Y})$ such that

$$\|h(x,z) - H(x,z)\| \leq \frac{L}{16(1-L)}\phi(x,0)\phi(z,0)$$
(3.2)

for all $x, z \in \mathfrak{X}$.

Proof. Consider the set $\mathcal{F}_0(\mathcal{X}, \mathcal{Y})$ with the generalized metric d defined by

$$d(\mathbf{f},\mathbf{g}) = \inf \left\{ \mu \in \mathbb{R}_0^+ : \|\mathbf{f}(\mathbf{x},z) - \mathbf{g}(\mathbf{x},z)\| \leqslant \mu \varphi(\mathbf{x},0) \varphi(z,0), \quad \forall \mathbf{x}, z \in \mathcal{X} \right\},$$

where $\inf \emptyset = +\infty$ as usual. Then $(\mathcal{F}_0(\mathfrak{X}, \mathfrak{Y}), d)$ is complete, see [22]. Define a mapping $\mathcal{J} : \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y}) \to \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ by

$$\Im f(x,z) := 8f\left(x,\frac{z}{2}\right)$$

for all $x, z \in \mathfrak{X}$. For all $f, g \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ with $d(f, g) = \varepsilon$, we have

$$\|\mathbf{f}(\mathbf{x}, z) - \mathbf{g}(\mathbf{x}, z)\| \leq \varepsilon \varphi(\mathbf{x}, 0) \varphi(z, 0)$$

for all $x, z \in \mathcal{X}$. Consequently, from (3.1), we have

$$\begin{aligned} \|\Im f(x,z) - \Im g(x,z)\| &= \left\| 8f\left(x,\frac{z}{2}\right) - 8g\left(x,\frac{z}{2}\right) \right\| \\ &\leq 8\varepsilon\varphi\left(x,0\right)\varphi\left(\frac{z}{2},0\right) \leq 8\varepsilon\frac{L}{8}\varphi\left(x,0\right)\varphi\left(z,0\right) = L\varepsilon\varphi\left(x,0\right)\varphi\left(z,0\right) \end{aligned}$$

for all $x, z \in \mathcal{X}$. Then we have $d(\mathcal{J}f, \mathcal{J}g) \leq L\varepsilon$, which means that

 $d(\mathcal{J}f,\mathcal{J}g) \leqslant Ld(f,g)$

for all f, $g \in \mathcal{F}_0(\mathcal{X}, \mathcal{Y})$. It follows from (2.5) that

$$\left\| h(\mathbf{x},z) - 8h\left(\mathbf{x},\frac{z}{2}\right) \right\| \leq \frac{1}{2}\varphi(\mathbf{x},0)\varphi\left(\frac{z}{2},0\right) \leq \frac{L}{16}\varphi(\mathbf{x},0)\varphi(z,0)$$

for all $x, z \in \mathcal{X}$ and so

$$\mathrm{d}(\mathrm{h},\mathfrak{J}\mathrm{h})\leqslant\frac{\mathrm{L}}{16}.$$

From Theorem 1.1, there exists $H : X^2 \to Y$ satisfying the following.

(1) H is a unique fixed point of \mathcal{J} , i.e.,

$$H(x,z) = 8H\left(x,\frac{z}{2}\right)$$

for all $x, z \in \mathfrak{X}$. Thus there exists $\mu \in (0, \infty)$ satisfying

 $\|h(x,z) - H(x,z)\| \leq \mu \phi(x,0) \phi(z,0)$

for all $x, z \in \mathfrak{X}$.

(2) $d(\mathcal{J}^{l}h, H) \to 0$ as $l \to \infty$, which implies that

$$\lim_{l\to\infty} 8^{l}h\left(x,\frac{z}{2^{l}}\right) = H\left(x,z\right)$$

for all $x, z \in \mathfrak{X}$.

(3) $d(h, H) \leq \frac{1}{1-L}d(h, \mathcal{J}h)$, which implies that

$$\|\mathbf{h}(\mathbf{x}, z) - \mathbf{H}(\mathbf{x}, z)\| \leq \frac{L}{16(1-L)} \varphi(\mathbf{x}, 0) \varphi(z, 0)$$

for all $x, z \in \mathfrak{X}$.

From (3.1) and for all $x, y \in \mathcal{X}$, we have $8^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) \leq L^n \varphi(x, y)$ tends to zero as $n \to \infty$. As in the proof of Theorem 2.3, we can show that $H \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$. Therefore, we can conclude that there exists a unique mapping $H \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$, which satisfies (3.2). This completes the proof.

Theorem 3.2. Let $\phi : \mathfrak{X}^2 \to \mathbb{R}_0^+$ be a mapping such that there exists $L \in \mathbb{R}_0^+$ with L < 1 satisfying

$$\varphi\left(\frac{x}{3},\frac{y}{3}\right) \leqslant \frac{L}{27}\varphi\left(x,y\right)$$
(3.3)

for all $x, y \in \mathfrak{X}$. Then, for a mapping $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfying (2.3), there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x}, z) - \tilde{\mathbf{H}}(\mathbf{x}, z)\| \leq \frac{L}{27(1-L)} \varphi(\mathbf{x}, 0) \left[\varphi(z, z) + \varphi(z, 0)\right]$$
(3.4)

for all $x, z \in \mathfrak{X}$ *.*

Proof. Consider the generalized metric \tilde{d} on $\mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ given by

 $\tilde{d}(f,g) = \inf \left\{ \mu \in \mathbb{R}_0^+ : \|f(x,z) - g(x,z)\| \leqslant \mu \phi(x,0) \left[\phi(z,z) + \phi(z,0)\right], \ \forall x,z \in \mathfrak{X} \right\},$

where $\inf \emptyset = +\infty$. We can easily see that $(\mathcal{F}_0(\mathcal{X}, \mathcal{Y}), \tilde{d})$ is complete, see [22]. Now, consider the linear mapping $\tilde{\mathcal{J}} : \mathcal{F}_0(\mathcal{X}, \mathcal{Y}) \to \mathcal{F}_0(\mathcal{X}, \mathcal{Y})$ defined by

$$\tilde{\mathcal{J}}f(\mathbf{x},z) := 27f\left(\mathbf{x},\frac{z}{3}\right)$$

for all $x, z \in \mathfrak{X}$. Let $f, g \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ with $\tilde{d}(f, g) = \varepsilon$. Then we have

$$\|\mathbf{f}(\mathbf{x}, z) - \mathbf{g}(\mathbf{x}, z)\| \leq \varepsilon \varphi(\mathbf{x}, 0) \left[\varphi(z, z) + \varphi(z, 0)\right]$$

for all $a, c \in X$. Also, from (3.3), we have

$$\begin{split} \|\tilde{\mathfrak{J}}f(\mathbf{x},z) - \tilde{\mathfrak{J}}g(\mathbf{x},z)\| &= \left\| 27f\left(\mathbf{x},\frac{z}{3}\right) - 27g\left(\mathbf{x},\frac{z}{3}\right) \right\| \\ &\leqslant 27\varepsilon\varphi(\mathbf{x},0) \left[\varphi\left(\frac{z}{3},\frac{z}{3}\right) + \varphi\left(\frac{z}{3},0\right) \right] \\ &\leqslant 27\varepsilon\frac{L}{27}\varphi(\mathbf{x},0) \left[\varphi(z,z) + \varphi(z,0) \right] = \mathsf{L}\varepsilon\varphi(\mathbf{x},0) \left[\varphi(z,z) + \varphi(z,0) \right] \end{split}$$

for all $x, z \in \mathfrak{X}$. Thus $\tilde{d}(\tilde{J}f, \tilde{J}g) \leq L\varepsilon$ and so

$$\tilde{d}(\tilde{J}f,\tilde{J}g) \leq L\tilde{d}(f,g)$$

for all f, $g \in \mathcal{F}_0(\mathcal{X}, \mathcal{Y})$. It follows from (2.9) that

$$\left\| h(x,z) - 27h\left(x,\frac{z}{3}\right) \right\| \leq \varphi(x,0) \left[\varphi\left(\frac{z}{3},\frac{z}{3}\right) + \varphi\left(\frac{z}{3},0\right) \right] \leq \frac{L}{27} \varphi(x,0) \left[\varphi(z,z) + \varphi(z,0) \right]$$

for all $x, z \in \mathcal{X}$. Thus $\tilde{d}(h, \tilde{\mathcal{J}}h) \leq \frac{L}{27}$. It follows from Theorem 1.1 that there exists a mapping $\tilde{H} : \mathcal{X}^2 \to \mathcal{Y}$ satisfying the following.

(1) \tilde{H} is a unique fixed point of \tilde{J} , i.e.,

$$\tilde{\mathsf{H}}\left(\mathbf{x},z\right)=27\tilde{\mathsf{H}}\left(\mathbf{x},\frac{z}{3}\right)$$

for all $x, z \in \mathfrak{X}$. Thus there exists $\mu \in (0, \infty)$ satisfying

$$\|h(x,z) - \tilde{H}(x,z)\| \leq \mu \varphi(x,0) \left[\varphi(z,z) + \varphi(z,0)\right]$$

for all $x, z \in \mathfrak{X}$.

(2) $\tilde{d}(\tilde{J}^{l}h, \tilde{H}) \to 0$ as $l \to \infty$, which implies that

$$\lim_{l\to\infty} 27^{l}h\left(x,\frac{z}{3^{l}}\right) = \tilde{H}\left(x,z\right)$$

for all $x, z \in \mathfrak{X}$.

(3) $\tilde{d}(h, \tilde{H}) \leqslant \frac{1}{1-L} \tilde{d}(h, \tilde{J}h)$, which implies that

$$\left\| h(\mathbf{x}, z) - \tilde{H}(\mathbf{x}, z) \right\| \leq \frac{L}{27(1-L)} \varphi(\mathbf{x}, 0) \left[\varphi(z, z) + \varphi(z, 0) \right]$$

for all $x, z \in \mathfrak{X}$.

From (3.3) and for all $x, y \in \mathcal{X}$, we have $27^n \varphi\left(\frac{x}{3^n}, \frac{y}{3^n}\right) \leq L^n \varphi(x, y)$ tends to zero as $n \to \infty$. As in the proof of Theorem 2.4, we can show that $\tilde{H} \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$. Therefore, we can conclude that there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$, which satisfies (3.4). This completes the proof.

Theorem 3.3. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}_0^+$ be a mapping such that there exists $L \in \mathbb{R}_0^+$ with L < 1 satisfying

$$\varphi(\mathbf{x},\mathbf{y}) \leqslant 8L\varphi\left(\frac{\mathbf{x}}{2},\frac{\mathbf{y}}{2}\right)$$

for all $x, y \in \mathfrak{X}$. Then, for a mapping $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfying (2.3), there exists a unique mapping $H \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|h(x,z) - H(x,z)\| \leq \frac{1}{16(1-L)} \varphi(x,0)\varphi(z,0)$$
(3.5)

for all $x, z \in \mathfrak{X}$.

Proof. Consider the complete metric space $(\mathcal{F}_0(\mathcal{X}, \mathcal{Y}), d)$ given in the proof of Theorem 3.1. If we define a mapping $\mathcal{J} : \mathcal{F}_0(\mathcal{X}, \mathcal{Y}) \to \mathcal{F}_0(\mathcal{X}, \mathcal{Y})$ by

$$\mathcal{J}f(\mathbf{x},z) := \frac{1}{8}f(\mathbf{x},2z)$$

for all $x, z \in \mathcal{X}$, then it follows from (2.5) that

$$\left\| h(x,z) - \frac{1}{8}h(x,2z) \right\| \leq \frac{1}{16}\varphi(x,0)\varphi(z,0)$$

for all $x, z \in \mathcal{X}$. By using the same technique as in the proof of Theorems 2.5 and 3.1, there exists a unique mapping $H \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$ satisfying (3.5). This completes the proof.

Theorem 3.4. Let $\varphi : \mathfrak{X}^2 \to \mathbb{R}^+_0$ be a mapping such that there exists $L \in \mathbb{R}^+_0$ with L < 1 satisfying

$$\varphi(\mathbf{x},\mathbf{y}) \leqslant 27 \mathsf{L} \varphi\left(\frac{\mathbf{x}}{3},\frac{\mathbf{y}}{3}\right)$$

for all $x, y \in \mathfrak{X}$. Then, for a mapping $h \in \mathfrak{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfying (2.3), there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|h(x,z) - \tilde{H}(x,z)\| \leq \frac{1}{27(1-L)} \varphi(x,0) \left[\varphi(z,z) + \varphi(z,0)\right]$$
(3.6)

for all $x, z \in \mathfrak{X}$ *.*

Proof. Consider the complete metric space $(\mathcal{F}_0(\mathcal{X}, \mathcal{Y}), \tilde{d})$ given in the proof of Theorem 3.2. Let the linear mapping $\tilde{\mathcal{J}} : \mathcal{F}_0(\mathcal{X}, \mathcal{Y}) \to \mathcal{F}_0(\mathcal{X}, \mathcal{Y})$ defined by

$$\tilde{\mathcal{J}}f(\mathbf{x},z) := \frac{1}{27}f(\mathbf{x},3z)$$

for all $x, z \in \mathcal{X}$. It follows from (2.9) that

$$\left\| h(x,z) - \frac{1}{27} h(x,3z) \right\| \leq \frac{1}{27} \phi(x,0) \left[\phi(z,z) + \phi(z,0) \right]$$

for all $x, z \in \mathcal{X}$. By using the same technique as in the proof of Theorems 2.6 and 3.2, there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathcal{X}, \mathcal{Y})$ satisfying (3.6). This completes the proof.

Taking $L = 2^{3-r}$ and $\varphi(x, y) = \sqrt{\theta}(\|x\|^r + \|y\|^r)$ for all $x, y \in \mathcal{X}$ in Theorem 3.1, we have the following.

Corollary 3.5. Let $r, \theta \in \mathbb{R}_0^+$ with r > 3. If $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (2.17), then there exists a unique mapping $H \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x}, z) - \mathbf{H}(\mathbf{x}, z)\| \leq \frac{\theta}{2(2^{r} - 8)} \|\mathbf{x}\|^{r} \|z\|^{1}$$

for all $x, z \in \mathfrak{X}$.

Taking $L = 3^{3-r}$ and $\varphi(x, y) = \sqrt{\theta}(||x||^r + ||y||^r)$ for all $x, y \in \mathcal{X}$ in Theorem 3.2, we have the following.

Corollary 3.6. Let $r, \theta \in \mathbb{R}_0^+$ with r > 3. If $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ satisfies (2.17), then there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x}, z) - \tilde{\mathbf{H}}(\mathbf{x}, z)\| \leq \frac{3\theta}{3^{\mathrm{r}} - 27} \|\mathbf{x}\|^{\mathrm{r}} \|z\|^{\mathrm{r}}$$

for all $x, z \in \mathfrak{X}$.

Taking $L = 2^{r-3}$ and $\varphi(x, y) = \sqrt{\theta}(\|x\|^r + \|y\|^r)$ for all $x, y \in \mathcal{X}$ in Theorem 3.3, we have the following.

Corollary 3.7. Let $r, \theta \in \mathbb{R}_0^+$ with r < 3 and let $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ be a mapping satisfying (2.17). Then there exists a unique mapping $H \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(x,z) - \mathbf{H}(x,z)\| \leq \frac{\theta}{2(8-2^{r})} \|x\|^{r} \|z\|^{1}$$

for all $x, z \in \mathfrak{X}$.

Taking $L = 3^{r-3}$ and $\varphi(x, y) = \sqrt{\theta}(||x||^r + ||y||^r)$ for all $x, y \in \mathcal{X}$ in Theorem 3.4, we have the following.

Corollary 3.8. Let $r, \theta \in \mathbb{R}^+_0$ with r < 3 and let $h \in \mathcal{F}_0(\mathfrak{X}, \mathfrak{Y})$ be a mapping satisfying (2.17). Then there exists a unique mapping $\tilde{H} \in \mathcal{AC}(\mathfrak{X}, \mathfrak{Y})$ such that

$$\|\mathbf{h}(\mathbf{x}, \mathbf{z}) - \tilde{\mathbf{H}}(\mathbf{x}, \mathbf{z})\| \leqslant \frac{3\theta}{27 - 3^{\mathrm{r}}} \|\mathbf{x}\|^{\mathrm{r}} \|\mathbf{z}\|^{\mathrm{r}}$$

for all $x, z \in \mathfrak{X}$.

4. Conclusion

We have proved the Hyers-Ulam stability results of the additive-cubic functional equation (1) in Banach spaces by the direct and the fixed point methods.

Acknowledgment

This research work was partially supported by Chiang Mai University and the revenue budget in 2023, School of Science, University of Phayao.

References

- [1] M. Amyari, C. Baak, M. S. Moslehian, Nearly ternary derivations, Taiwanese J. Math., 11 (2007), 1417–1424. 1
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
- [3] L. Cădariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 7 pages. 1.1
- [4] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, In: Iteration theory (ECIT '02), Karl-Franzens-Univ. Graz, Graz, 346 (2004), 43–52. 1
- [5] L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008 (2008), 15 pages. 1
- [6] Y. J. Cho, C. Park, R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., 23 (2010), 1238–1242. 1
- [7] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. 1.1
- [8] I. El-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek's fixed point theorem, J. Fixed Point Theory Appl., **19** (2017), 2529–2540. 1
- [9] P. Găvruța, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., **184** (1994), 431–436. 1
- [10] M. E. Gordji, A. Fazeli, C. Park, 3-Lie multipliers on Banach 3-Lie algebras, Int. J. Geom. Methods Mod. Phys., 9 (2012), 15 pages. 1
- [11] M. E. Gordji, M. B. Ghaemi, B. Alizadeh, A fixed point method for perturbation of higher ring derivations non-Archimedean Banach algebras, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1611–1625. 1
- [12] I. Hwang, C. Park, Ulam stability of an additive-quadratic functional equation in Banach spaces, J. Math. Inequal., 14 (2020), 421–436. 1
- [13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224. 1
- [14] D. H. Hyers, S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828. 1
- [15] D. H. Hyers, *The stability of homomorphisms and related topics*, In: Global analysis–analysis on manifolds, **75** (1983), 140–153.
- [16] D. H. Hyers, Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153. 1
- [17] G. Isac, Th. M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219–228. 1
- [18] K.-W. Jun, H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 267–278. 1
- [19] S.-M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165–171. 1
- [20] S.-M. Jung, M. Th. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294–303.
- [21] Y.-H. Lee, S.-M. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., **12** (2018), 43–61. 1
- [22] D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567–572. 3, 3
- [23] I. Nikoufar, Jordan (θ, ϕ) -derivations on Hilbert C*-modules, Indag. Math. (N.S.), **26** (2015), 421–430. 1
- [24] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal., 9 (2015), 17–26. 1
- [25] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397–407. 1
- [26] C. Park, Fixed point method for set-valued functional equations, J. Fixed Point Theory Appl., 19 (2017), 2297–2308. 1
- [27] C. Park, *Biderivations and bihomomorphisms in Banach algebras*, Filomat, **33** (2019), 2317–2328. 1
- [28] C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadraticmultiplicative property, Open Math., 18 (2020), 837–845. 1
- [29] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96. 1
- [30] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. 1
- [31] A. Thanyacharoen, W. Sintunavarat, The new investigation of the stability of mixed type additive-quartic functional equations in non-Archimedean spaces, Demonstr. Math., 53 (2020), 174–192. 1
- [32] A. Thanyacharoen, W. Sintunavarat, On new stability results for composite functional equations in quasi-β-normed spaces, Demonstr. Math., 54 (2021), 68–84. 1
- [33] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, (1960). 1
- [34] Z. Wang, Stability of two types of cubic fuzzy set-valued functional equations, Results Math., 70 (2016), 1–14. 1